/* * Copyright 2006 The Android Open Source Project * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #ifndef SkScalar_DEFINED #define SkScalar_DEFINED #include "include/private/base/SkAssert.h" #include "include/private/base/SkFloatingPoint.h" #include typedef float SkScalar; #define SK_Scalar1 1.0f #define SK_ScalarHalf 0.5f #define SK_ScalarSqrt2 SK_FloatSqrt2 #define SK_ScalarPI SK_FloatPI #define SK_ScalarTanPIOver8 0.414213562f #define SK_ScalarRoot2Over2 0.707106781f #define SK_ScalarMax 3.402823466e+38f #define SK_ScalarMin (-SK_ScalarMax) #define SK_ScalarInfinity SK_FloatInfinity #define SK_ScalarNegativeInfinity SK_FloatNegativeInfinity #define SK_ScalarNaN SK_FloatNaN #define SkScalarFloorToScalar(x) std::floor(x) #define SkScalarCeilToScalar(x) std::ceil(x) #define SkScalarRoundToScalar(x) sk_float_round(x) #define SkScalarTruncToScalar(x) std::trunc(x) #define SkScalarFloorToInt(x) sk_float_floor2int(x) #define SkScalarCeilToInt(x) sk_float_ceil2int(x) #define SkScalarRoundToInt(x) sk_float_round2int(x) #define SkScalarAbs(x) std::fabs(x) #define SkScalarCopySign(x, y) std::copysign(x, y) #define SkScalarMod(x, y) std::fmod(x,y) #define SkScalarSqrt(x) std::sqrt(x) #define SkScalarPow(b, e) std::pow(b, e) #define SkScalarSin(radians) ((float)std::sin(radians)) #define SkScalarCos(radians) ((float)std::cos(radians)) #define SkScalarTan(radians) ((float)std::tan(radians)) #define SkScalarASin(val) ((float)std::asin(val)) #define SkScalarACos(val) ((float)std::acos(val)) #define SkScalarATan2(y, x) ((float)std::atan2(y,x)) #define SkScalarExp(x) ((float)std::exp(x)) #define SkScalarLog(x) ((float)std::log(x)) #define SkScalarLog2(x) ((float)std::log2(x)) ////////////////////////////////////////////////////////////////////////////////////////////////// #define SkIntToScalar(x) static_cast(x) #define SkIntToFloat(x) static_cast(x) #define SkScalarTruncToInt(x) sk_float_saturate2int(x) #define SkScalarToFloat(x) static_cast(x) #define SkFloatToScalar(x) static_cast(x) #define SkScalarToDouble(x) static_cast(x) #define SkDoubleToScalar(x) sk_double_to_float(x) /** Returns the fractional part of the scalar. */ static inline SkScalar SkScalarFraction(SkScalar x) { return x - SkScalarTruncToScalar(x); } static inline SkScalar SkScalarSquare(SkScalar x) { return x * x; } #define SkScalarInvert(x) (SK_Scalar1 / (x)) #define SkScalarAve(a, b) (((a) + (b)) * SK_ScalarHalf) #define SkScalarHalf(a) ((a) * SK_ScalarHalf) #define SkDegreesToRadians(degrees) ((degrees) * (SK_ScalarPI / 180)) #define SkRadiansToDegrees(radians) ((radians) * (180 / SK_ScalarPI)) static inline bool SkScalarIsInt(SkScalar x) { return x == SkScalarFloorToScalar(x); } /** * Returns -1 || 0 || 1 depending on the sign of value: * -1 if x < 0 * 0 if x == 0 * 1 if x > 0 */ static inline int SkScalarSignAsInt(SkScalar x) { return x < 0 ? -1 : (x > 0); } // Scalar result version of above static inline SkScalar SkScalarSignAsScalar(SkScalar x) { return x < 0 ? -SK_Scalar1 : ((x > 0) ? SK_Scalar1 : 0); } #define SK_ScalarNearlyZero (SK_Scalar1 / (1 << 12)) static inline bool SkScalarNearlyZero(SkScalar x, SkScalar tolerance = SK_ScalarNearlyZero) { SkASSERT(tolerance >= 0); return SkScalarAbs(x) <= tolerance; } static inline bool SkScalarNearlyEqual(SkScalar x, SkScalar y, SkScalar tolerance = SK_ScalarNearlyZero) { SkASSERT(tolerance >= 0); return SkScalarAbs(x-y) <= tolerance; } #define SK_ScalarSinCosNearlyZero (SK_Scalar1 / (1 << 16)) static inline float SkScalarSinSnapToZero(SkScalar radians) { float v = SkScalarSin(radians); return SkScalarNearlyZero(v, SK_ScalarSinCosNearlyZero) ? 0.0f : v; } static inline float SkScalarCosSnapToZero(SkScalar radians) { float v = SkScalarCos(radians); return SkScalarNearlyZero(v, SK_ScalarSinCosNearlyZero) ? 0.0f : v; } /** Linearly interpolate between A and B, based on t. If t is 0, return A If t is 1, return B else interpolate. t must be [0..SK_Scalar1] */ static inline SkScalar SkScalarInterp(SkScalar A, SkScalar B, SkScalar t) { SkASSERT(t >= 0 && t <= SK_Scalar1); return A + (B - A) * t; } /** Interpolate along the function described by (keys[length], values[length]) for the passed searchKey. SearchKeys outside the range keys[0]-keys[Length] clamp to the min or max value. This function assumes the number of pairs (length) will be small and a linear search is used. Repeated keys are allowed for discontinuous functions (so long as keys is monotonically increasing). If key is the value of a repeated scalar in keys the first one will be used. */ SkScalar SkScalarInterpFunc(SkScalar searchKey, const SkScalar keys[], const SkScalar values[], int length); /* * Helper to compare an array of scalars. */ static inline bool SkScalarsEqual(const SkScalar a[], const SkScalar b[], int n) { SkASSERT(n >= 0); for (int i = 0; i < n; ++i) { if (a[i] != b[i]) { return false; } } return true; } #endif