/* * Copyright 2012 Google Inc. * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #include "gm/gm.h" #include "include/core/SkBlendMode.h" #include "include/core/SkCanvas.h" #include "include/core/SkMatrix.h" #include "include/core/SkPaint.h" #include "include/core/SkPoint.h" #include "include/core/SkRRect.h" #include "include/core/SkRect.h" #include "include/core/SkScalar.h" #include "include/core/SkSize.h" #include "include/core/SkString.h" #include "include/core/SkTypes.h" #include "include/effects/SkGradientShader.h" #include "include/private/gpu/ganesh/GrTypesPriv.h" #include "src/core/SkCanvasPriv.h" #include "src/gpu/ganesh/GrCanvas.h" #include "src/gpu/ganesh/GrCaps.h" #include "src/gpu/ganesh/GrFragmentProcessor.h" #include "src/gpu/ganesh/GrPaint.h" #include "src/gpu/ganesh/GrRecordingContextPriv.h" #include "src/gpu/ganesh/SurfaceDrawContext.h" #include "src/gpu/ganesh/effects/GrPorterDuffXferProcessor.h" #include "src/gpu/ganesh/effects/GrRRectEffect.h" #include "src/gpu/ganesh/ops/FillRectOp.h" #include "src/gpu/ganesh/ops/GrDrawOp.h" #include #include namespace skiagm { /////////////////////////////////////////////////////////////////////////////// class RRectGM : public GM { public: enum Type { kBW_Draw_Type, kAA_Draw_Type, kBW_Clip_Type, kAA_Clip_Type, kEffect_Type, }; RRectGM(Type type) : fType(type) { } protected: void onOnceBeforeDraw() override { this->setBGColor(0xFFDDDDDD); this->setUpRRects(); } SkString getName() const override { SkString name("rrect"); switch (fType) { case kBW_Draw_Type: name.append("_draw_bw"); break; case kAA_Draw_Type: name.append("_draw_aa"); break; case kBW_Clip_Type: name.append("_clip_bw"); break; case kAA_Clip_Type: name.append("_clip_aa"); break; case kEffect_Type: name.append("_effect"); break; } return name; } SkISize getISize() override { return SkISize::Make(kImageWidth, kImageHeight); } DrawResult onDraw(SkCanvas* canvas, SkString* errorMsg) override { auto sdc = skgpu::ganesh::TopDeviceSurfaceDrawContext(canvas); auto rContext = canvas->recordingContext(); if (kEffect_Type == fType && (!sdc || !rContext)) { *errorMsg = kErrorMsg_DrawSkippedGpuOnly; return DrawResult::kSkip; } SkPaint paint; if (kAA_Draw_Type == fType) { paint.setAntiAlias(true); } if (fType == kBW_Clip_Type || fType == kAA_Clip_Type) { // Add a gradient to the paint to ensure local coords are respected. SkPoint pts[3] = {{0, 0}, {1.5f, 1}}; SkColor colors[3] = {SK_ColorBLACK, SK_ColorYELLOW}; paint.setShader(SkGradientShader::MakeLinear(pts, colors, nullptr, 2, SkTileMode::kClamp)); } #ifdef SK_DEBUG const SkRect kMaxImageBound = SkRect::MakeWH(SkIntToScalar(kImageWidth), SkIntToScalar(kImageHeight)); #endif int lastEdgeType = (kEffect_Type == fType) ? (int) GrClipEdgeType::kLast: 0; int y = 1; for (int et = 0; et <= lastEdgeType; ++et) { int x = 1; for (int curRRect = 0; curRRect < kNumRRects; ++curRRect) { bool drew = true; #ifdef SK_DEBUG if (curRRect != kNumRRects - 1) { // skip last rrect, which is large but clipped SkRect imageSpaceBounds = fRRects[curRRect].getBounds(); imageSpaceBounds.offset(SkIntToScalar(x), SkIntToScalar(y)); SkASSERT(kMaxImageBound.contains(imageSpaceBounds)); } #endif canvas->save(); canvas->translate(SkIntToScalar(x), SkIntToScalar(y)); SkRRect rrect = fRRects[curRRect]; if (curRRect == kNumRRects - 1) { canvas->clipRect({0, 0, kTileX - 2, kTileY - 2}); canvas->translate(-0.14f * rrect.rect().width(), -0.14f * rrect.rect().height()); } if (kEffect_Type == fType) { fRRects[curRRect].transform(canvas->getLocalToDeviceAs3x3(), &rrect); GrClipEdgeType edgeType = (GrClipEdgeType) et; const auto& caps = *rContext->priv().caps()->shaderCaps(); auto [success, fp] = GrRRectEffect::Make(/*inputFP=*/nullptr, edgeType, rrect, caps); if (success) { GrPaint grPaint; grPaint.setXPFactory(GrPorterDuffXPFactory::Get(SkBlendMode::kSrc)); grPaint.setCoverageFragmentProcessor(std::move(fp)); grPaint.setColor4f({ 0, 0, 0, 1.f }); SkRect bounds = rrect.getBounds(); bounds.intersect(SkRect::MakeXYWH(x, y, kTileX - 2, kTileY - 2)); if (et >= (int) GrClipEdgeType::kInverseFillBW) { bounds.outset(2.f, 2.f); } sdc->addDrawOp(skgpu::ganesh::FillRectOp::MakeNonAARect( rContext, std::move(grPaint), SkMatrix::I(), bounds)); } else { drew = false; } } else if (fType == kBW_Clip_Type || fType == kAA_Clip_Type) { bool aaClip = (kAA_Clip_Type == fType); canvas->clipRRect(rrect, aaClip); canvas->setMatrix(SkMatrix::Scale(kImageWidth, kImageHeight)); canvas->drawRect(SkRect::MakeWH(1, 1), paint); } else { canvas->drawRRect(rrect, paint); } canvas->restore(); if (drew) { x = x + kTileX; if (x > kImageWidth) { x = 1; y += kTileY; } } } if (x != 1) { y += kTileY; } } return DrawResult::kOk; } void setUpRRects() { // each RRect must fit in a 0x0 -> (kTileX-2)x(kTileY-2) block. These will be tiled across // the screen in kTileX x kTileY tiles. The extra empty pixels on each side are for AA. // simple cases fRRects[0].setRect(SkRect::MakeWH(kTileX-2, kTileY-2)); fRRects[1].setOval(SkRect::MakeWH(kTileX-2, kTileY-2)); fRRects[2].setRectXY(SkRect::MakeWH(kTileX-2, kTileY-2), 10, 10); fRRects[3].setRectXY(SkRect::MakeWH(kTileX-2, kTileY-2), 10, 5); // small circular corners are an interesting test case for gpu clipping fRRects[4].setRectXY(SkRect::MakeWH(kTileX-2, kTileY-2), 1, 1); fRRects[5].setRectXY(SkRect::MakeWH(kTileX-2, kTileY-2), 0.5f, 0.5f); fRRects[6].setRectXY(SkRect::MakeWH(kTileX-2, kTileY-2), 0.2f, 0.2f); // The first complex case needs special handling since it is a square fRRects[kNumSimpleCases].setRectRadii(SkRect::MakeWH(kTileY-2, kTileY-2), gRadii[0]); for (size_t i = 1; i < std::size(gRadii); ++i) { fRRects[kNumSimpleCases+i].setRectRadii(SkRect::MakeWH(kTileX-2, kTileY-2), gRadii[i]); } // The last case is larger than kTileX-2 x kTileY-2 but will be drawn at an offset // into a clip rect that respects the tile size and highlights the rrect's corner curve. fRRects[kNumRRects - 1].setRectXY({9.f, 9.f, 1699.f, 1699.f}, 843.749f, 843.75f); } private: Type fType; inline static constexpr int kImageWidth = 640; inline static constexpr int kImageHeight = 480; inline static constexpr int kTileX = 80; inline static constexpr int kTileY = 40; inline static constexpr int kNumSimpleCases = 7; inline static constexpr int kNumComplexCases = 35; static const SkVector gRadii[kNumComplexCases][4]; inline static constexpr int kNumRRects = kNumSimpleCases + kNumComplexCases + 1 /* extra big */; SkRRect fRRects[kNumRRects]; using INHERITED = GM; }; // Radii for the various test cases. Order is UL, UR, LR, LL const SkVector RRectGM::gRadii[kNumComplexCases][4] = { // a circle { { kTileY, kTileY }, { kTileY, kTileY }, { kTileY, kTileY }, { kTileY, kTileY } }, // odd ball cases { { 8, 8 }, { 32, 32 }, { 8, 8 }, { 32, 32 } }, { { 16, 8 }, { 8, 16 }, { 16, 8 }, { 8, 16 } }, { { 0, 0 }, { 16, 16 }, { 8, 8 }, { 32, 32 } }, // UL { { 30, 30 }, { 0, 0 }, { 0, 0 }, { 0, 0 } }, { { 30, 15 }, { 0, 0 }, { 0, 0 }, { 0, 0 } }, { { 15, 30 }, { 0, 0 }, { 0, 0 }, { 0, 0 } }, // UR { { 0, 0 }, { 30, 30 }, { 0, 0 }, { 0, 0 } }, { { 0, 0 }, { 30, 15 }, { 0, 0 }, { 0, 0 } }, { { 0, 0 }, { 15, 30 }, { 0, 0 }, { 0, 0 } }, // LR { { 0, 0 }, { 0, 0 }, { 30, 30 }, { 0, 0 } }, { { 0, 0 }, { 0, 0 }, { 30, 15 }, { 0, 0 } }, { { 0, 0 }, { 0, 0 }, { 15, 30 }, { 0, 0 } }, // LL { { 0, 0 }, { 0, 0 }, { 0, 0 }, { 30, 30 } }, { { 0, 0 }, { 0, 0 }, { 0, 0 }, { 30, 15 } }, { { 0, 0 }, { 0, 0 }, { 0, 0 }, { 15, 30 } }, // over-sized radii { { 0, 0 }, { 100, 400 }, { 0, 0 }, { 0, 0 } }, { { 0, 0 }, { 400, 400 }, { 0, 0 }, { 0, 0 } }, { { 400, 400 }, { 400, 400 }, { 400, 400 }, { 400, 400 } }, // circular corner tabs { { 0, 0 }, { 20, 20 }, { 20, 20 }, { 0, 0 } }, { { 20, 20 }, { 20, 20 }, { 0, 0 }, { 0, 0 } }, { { 0, 0 }, { 0, 0 }, { 20, 20 }, { 20, 20 } }, { { 20, 20 }, { 0, 0 }, { 0, 0 }, { 20, 20 } }, // small radius circular corner tabs { { 0, 0 }, { 0.2f, 0.2f }, { 0.2f, 0.2f }, { 0, 0 } }, { { 0.3f, 0.3f }, { 0.3f, .3f }, { 0, 0 }, { 0, 0 } }, // single circular corner cases { { 0, 0 }, { 0, 0 }, { 0, 0 }, { 15, 15 } }, { { 0, 0 }, { 0, 0 }, { 15, 15 }, { 0, 0 } }, { { 0, 0 }, { 15, 15 }, { 0, 0 }, { 0, 0 } }, { { 15, 15 }, { 0, 0 }, { 0, 0 }, { 0, 0 } }, // nine patch elliptical { { 5, 7 }, { 8, 7 }, { 8, 12 }, { 5, 12 } }, { { 0, 7 }, { 8, 7 }, { 8, 12 }, { 0, 12 } }, // nine patch elliptical, small radii { { 0.4f, 7 }, { 8, 7 }, { 8, 12 }, { 0.4f, 12 } }, { { 0.4f, 0.4f }, { 8, 0.4f }, { 8, 12 }, { 0.4f, 12 } }, { { 20, 0.4f }, { 18, 0.4f }, { 18, 0.4f }, { 20, 0.4f } }, { { 0.3f, 0.4f }, { 0.3f, 0.4f }, { 0.3f, 0.4f }, { 0.3f, 0.4f } }, }; /////////////////////////////////////////////////////////////////////////////// DEF_GM( return new RRectGM(RRectGM::kAA_Draw_Type); ) DEF_GM( return new RRectGM(RRectGM::kBW_Draw_Type); ) DEF_GM( return new RRectGM(RRectGM::kAA_Clip_Type); ) DEF_GM( return new RRectGM(RRectGM::kBW_Clip_Type); ) DEF_GM( return new RRectGM(RRectGM::kEffect_Type); ) // This GM is designed to test a variety of fill and stroked rectangles and round rectangles, with // different stroke width and join type scenarios. The geometry parameters are chosen so that // Graphite should be able to use its AnalyticRoundRectRenderStep and batch into a single draw. DEF_SIMPLE_GM(stroke_rect_rrects, canvas, 1350, 700) { canvas->scale(0.5f, 0.5f); canvas->translate(50.f, 50.f); auto draw = [&](int cx, int cy, bool rrect, float width, SkPaint::Join join) { SkPaint p; p.setAntiAlias(true); p.setStrokeWidth(width); p.setStyle(width >= 0.f ? SkPaint::kStroke_Style : SkPaint::kFill_Style); p.setStrokeJoin(join); canvas->save(); canvas->translate(cx * 110.f, cy * 110.f); float dx = cx % 2 ? 0.5f : 0.f; float dy = cy % 2 ? 0.5f : 0.f; SkRect rect = SkRect::MakeWH(50.f, 40.f); rect.offset(dx, dy); if (width < 0.0) { rect.outset(25.f, 25.f); // make it the same size as the largest stroke } // Filled rounded rects can have arbitrary corners float cornerScale = std::min(rect.width(), rect.height()); SkVector outerRadii[4] = { { 0.25f * cornerScale, 0.75f * cornerScale }, { 0.f, 0.f}, { 0.50f * cornerScale, 0.50f * cornerScale }, { 0.75f * cornerScale, 0.25f * cornerScale } }; // Stroked rounded rects will only have circular corners so that they remain compatible with // Graphite's AnalyticRoundRectRenderStep's requirements. SkVector strokeRadii[4] = { { 0.25f * cornerScale, 0.25f * cornerScale }, { 0.f, 0.f }, // this corner matches join type { 0.50f * cornerScale, 0.50f * cornerScale }, { 0.75f * cornerScale, 0.75f * cornerScale } }; if (rrect) { SkRRect r; if (width >= 0.0) { r.setRectRadii(rect, strokeRadii); } else { r.setRectRadii(rect, outerRadii); } canvas->drawRRect(r, p); } else { canvas->drawRect(rect, p); } canvas->restore(); }; // The stroke widths are chosen to test when the inner stroke edges have completely crossed // over (50); when the inner corner circles intersect each other (30); a typical "nice" // stroke (10); a skinny stroke (1); and a hairline (0). int i = 0; for (float width : {-1.f, 50.f, 30.f, 10.f, 1.f, 0.f}) { int j = 0; for (SkPaint::Join join : { SkPaint::kMiter_Join, SkPaint::kBevel_Join, SkPaint::kRound_Join }) { if (width < 0 && join != SkPaint::kMiter_Join) { continue; // Don't repeat fills, since join type is ignored } draw(2*i, 2*j, false, width, join); draw(2*i+1, 2*j, false, width, join); draw(2*i, 2*j+1, false, width, join); draw(2*i+1, 2*j+1, false, width, join); j++; } i++; } canvas->translate(0.f, 50.f); i = 0; for (float width : {-1.f, 50.f, 30.f, 10.f, 1.f, 0.f}) { int j = 3; for (SkPaint::Join join : { SkPaint::kMiter_Join, SkPaint::kBevel_Join, SkPaint::kRound_Join }) { if (width < 0 && join != SkPaint::kMiter_Join) { continue; } draw(2*i, 2*j, true, width, join); draw(2*i+1, 2*j, true, width, join); draw(2*i, 2*j+1, true, width, join); draw(2*i+1, 2*j+1, true, width, join); j++; } i++; } // Rotated "footballs" auto drawComplex = [&](int cx, int cy, float width, float stretch) { SkPaint p; p.setAntiAlias(true); p.setStrokeWidth(width); p.setStyle(SkPaint::kStroke_Style); p.setStrokeJoin(SkPaint::kBevel_Join); canvas->save(); canvas->translate(cx * 110.f, cy * 110.f); SkRect rect = SkRect::MakeWH(cx % 2 ? 50.f : (40.f + stretch), cx % 2 ? (40.f + stretch) : 50.f); const SkVector kBigCorner{30.f, 30.f}; const SkVector kRectCorner{0.f, 0.f}; SkVector strokeRadii[4] = { cy % 2 ? kRectCorner : kBigCorner, cy % 2 ? kBigCorner : kRectCorner, cy % 2 ? kRectCorner : kBigCorner, cy % 2 ? kBigCorner : kRectCorner }; SkRRect r; r.setRectRadii(rect, strokeRadii); canvas->drawRRect(r, p); canvas->restore(); }; canvas->translate(0.f, -50.f); i = 6; for (float width : {50.f, 30.f, 20.f, 10.f, 1.f, 0.f}) { int j = 0; for (float stretch: {0.f, 5.f, 10.f}) { drawComplex(2*i, 2*j, width, stretch); drawComplex(2*i+1, 2*j, width, stretch); drawComplex(2*i, 2*j+1, width, stretch); drawComplex(2*i+1, 2*j+1, width, stretch); j++; } i++; } // Rotated "D"s auto drawComplex2 = [&](int cx, int cy, float width, float stretch) { SkPaint p; p.setAntiAlias(true); p.setStrokeWidth(width); p.setStyle(SkPaint::kStroke_Style); p.setStrokeJoin(SkPaint::kMiter_Join); canvas->save(); canvas->translate(cx * 110.f, cy * 110.f); SkRect rect = SkRect::MakeWH(cx % 2 ? 50.f : (40.f + stretch), cx % 2 ? (40.f + stretch) : 50.f); const SkVector kBigCorner{30.f, 30.f}; const SkVector kRectCorner{0.f, 0.f}; SkVector strokeRadii[4] = { cx % 2 ? kRectCorner : kBigCorner, (cx % 2) ^ (cy % 2) ? kBigCorner : kRectCorner, cx % 2 ? kBigCorner : kRectCorner, (cx % 2) ^ (cy % 2) ? kRectCorner : kBigCorner }; SkRRect r; r.setRectRadii(rect, strokeRadii); canvas->drawRRect(r, p); canvas->restore(); }; canvas->translate(0.f, 50.f); i = 6; for (float width : {50.f, 30.f, 20.f, 10.f, 1.f, 0.f}) { int j = 3; for (float stretch: {0.f, 5.f, 10.f}) { drawComplex2(2*i, 2*j, width, stretch); drawComplex2(2*i+1, 2*j, width, stretch); drawComplex2(2*i, 2*j+1, width, stretch); drawComplex2(2*i+1, 2*j+1, width, stretch); j++; } i++; } } } // namespace skiagm