/* * Copyright 2019 Google LLC * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #include "bench/Benchmark.h" #include "bench/ResultsWriter.h" #include "bench/SkSLBench.h" #include "include/core/SkCanvas.h" #include "src/base/SkArenaAlloc.h" #include "src/core/SkRasterPipeline.h" #include "src/gpu/ganesh/GrCaps.h" #include "src/gpu/ganesh/GrRecordingContextPriv.h" #include "src/gpu/ganesh/mock/GrMockCaps.h" #include "src/sksl/SkSLCompiler.h" #include "src/sksl/SkSLModuleLoader.h" #include "src/sksl/SkSLParser.h" #include "src/sksl/codegen/SkSLGLSLCodeGenerator.h" #include "src/sksl/codegen/SkSLMetalCodeGenerator.h" #include "src/sksl/codegen/SkSLRasterPipelineBuilder.h" #include "src/sksl/codegen/SkSLRasterPipelineCodeGenerator.h" #include "src/sksl/codegen/SkSLSPIRVCodeGenerator.h" #include "src/sksl/codegen/SkSLWGSLCodeGenerator.h" #include "src/sksl/ir/SkSLFunctionDeclaration.h" #include "src/sksl/ir/SkSLProgram.h" #include #include "src/sksl/generated/sksl_shared.minified.sksl" #include "src/sksl/generated/sksl_compute.minified.sksl" #include "src/sksl/generated/sksl_frag.minified.sksl" #include "src/sksl/generated/sksl_gpu.minified.sksl" #include "src/sksl/generated/sksl_public.minified.sksl" #include "src/sksl/generated/sksl_rt_shader.minified.sksl" #include "src/sksl/generated/sksl_vert.minified.sksl" #include "src/sksl/generated/sksl_graphite_frag.minified.sksl" #include "src/sksl/generated/sksl_graphite_vert.minified.sksl" #include "src/sksl/generated/sksl_graphite_frag_es2.minified.sksl" #include "src/sksl/generated/sksl_graphite_vert_es2.minified.sksl" class SkSLCompilerStartupBench : public Benchmark { protected: const char* onGetName() override { return "sksl_compiler_startup"; } bool isSuitableFor(Backend backend) override { return backend == Backend::kNonRendering; } void onDraw(int loops, SkCanvas*) override { for (int i = 0; i < loops; i++) { SkSL::Compiler compiler; } } }; DEF_BENCH(return new SkSLCompilerStartupBench();) enum class Output { kNone, kGLSL, kMetal, kSPIRV, kSkRP, kGrMtl, kGrWGSL, }; class SkSLCompileBench : public Benchmark { public: static const char* output_string(Output output) { switch (output) { case Output::kNone: return ""; case Output::kGLSL: return "glsl_"; case Output::kMetal: return "metal_"; case Output::kSPIRV: return "spirv_"; case Output::kGrMtl: return "grmtl_"; case Output::kGrWGSL: return "grwgsl_"; case Output::kSkRP: return "skrp_"; } SkUNREACHABLE; } SkSLCompileBench(std::string name, const char* src, bool optimize, Output output) : fName(std::string("sksl_") + (optimize ? "" : "unoptimized_") + output_string(output) + name) , fSrc(src) , fCaps(GrContextOptions(), GrMockOptions()) , fOutput(output) { fSettings.fOptimize = optimize; // The test programs we compile don't follow Vulkan rules and thus produce invalid SPIR-V. // This is harmless, so long as we don't try to validate them. fSettings.fValidateSPIRV = false; this->fixUpSource(); } protected: const char* onGetName() override { return fName.c_str(); } bool isSuitableFor(Backend backend) override { #if !defined(SK_GRAPHITE) if (this->usesGraphite()) { return false; } #endif return backend == Backend::kNonRendering; } bool usesRuntimeShader() const { return fOutput == Output::kSkRP; } bool usesGraphite() const { return fOutput == Output::kGrMtl || fOutput == Output::kGrWGSL; } void fixUpSource() { auto fixup = [this](const char* input, const char* replacement) { fSrc = std::regex_replace(fSrc, std::regex(input), replacement); }; // Runtime shaders have slightly different conventions than fragment shaders. // Perform a handful of fixups to compensate. These are hand-tuned for our current set of // test shaders and will probably need to be updated if we add more. if (this->usesRuntimeShader()) { fixup(R"(void main\(\))", "half4 main(float2 xy)"); fixup(R"(sk_FragColor =)", "return"); fixup(R"(sk_FragCoord)", "_FragCoord"); fixup(R"(sampler2D )", "uniform shader "); fixup(R"((flat |noperspective |)in )", "uniform "); fixup(R"(sample\(([A-Za-z0-9_]+), ([A-Za-z0-9_]+)\))", "$01.eval($02)"); fSrc = "#version 300\nuniform float4 _FragCoord;\n" + fSrc; } } void onDraw(int loops, SkCanvas* canvas) override { SkSL::ProgramKind kind; if (this->usesRuntimeShader()) { kind = SkSL::ProgramKind::kRuntimeShader; } else if (this->usesGraphite()) { kind = SkSL::ProgramKind::kGraphiteFragment; } else { kind = SkSL::ProgramKind::kFragment; } for (int i = 0; i < loops; i++) { std::unique_ptr program = fCompiler.convertProgram(kind, fSrc, fSettings); if (fCompiler.errorCount()) { SK_ABORT("shader compilation failed: %s\n", fCompiler.errorText().c_str()); } std::string result; switch (fOutput) { case Output::kNone: break; case Output::kGLSL: SkAssertResult(SkSL::ToGLSL(*program, fCaps.shaderCaps(), &result)); break; case Output::kMetal: case Output::kGrMtl: SkAssertResult(SkSL::ToMetal(*program, fCaps.shaderCaps(), &result)); break; case Output::kSPIRV: SkAssertResult(SkSL::ToSPIRV(*program, fCaps.shaderCaps(), &result)); break; case Output::kGrWGSL: SkAssertResult(SkSL::ToWGSL(*program, fCaps.shaderCaps(), &result)); break; case Output::kSkRP: SkAssertResult(CompileToSkRP(*program)); break; } } } static bool CompileToSkRP(const SkSL::Program& program) { const SkSL::FunctionDeclaration* main = program.getFunction("main"); if (!main) { return false; } // Compile our program. std::unique_ptr rasterProg = SkSL::MakeRasterPipelineProgram( program, *main->definition(), /*debugTrace=*/nullptr, /*writeTraceOps=*/false); if (!rasterProg) { return false; } // We need to supply a valid uniform range, but the uniform values inside don't actually // matter, since we aren't going to run the shader. float uniformBuffer[1024]; if (rasterProg->numUniforms() > (int)std::size(uniformBuffer)) { return false; } // Append the program to a raster pipeline. SkSTArenaAlloc<2048> alloc; SkRasterPipeline pipeline(&alloc); rasterProg->appendStages(&pipeline, &alloc, /*callbacks=*/nullptr, /*uniforms=*/SkSpan{uniformBuffer, rasterProg->numUniforms()}); return true; } private: std::string fName; std::string fSrc; GrMockCaps fCaps; SkSL::Compiler fCompiler; SkSL::ProgramSettings fSettings; Output fOutput; using INHERITED = Benchmark; }; /////////////////////////////////////////////////////////////////////////////// #define COMPILER_BENCH(name, text) \ static constexpr char name ## _SRC[] = text; \ DEF_BENCH(return new SkSLCompileBench(#name, name##_SRC, /*optimize=*/false, Output::kNone);) \ DEF_BENCH(return new SkSLCompileBench(#name, name##_SRC, /*optimize=*/true, Output::kNone);) \ DEF_BENCH(return new SkSLCompileBench(#name, name##_SRC, /*optimize=*/true, Output::kGLSL);) \ DEF_BENCH(return new SkSLCompileBench(#name, name##_SRC, /*optimize=*/true, Output::kMetal);) \ DEF_BENCH(return new SkSLCompileBench(#name, name##_SRC, /*optimize=*/true, Output::kSPIRV);) \ DEF_BENCH(return new SkSLCompileBench(#name, name##_SRC, /*optimize=*/true, Output::kSkRP);) // This fragment shader is from the third tile on the top row of GM_gradients_2pt_conical_outside. // To get an ES2 compatible shader, nonconstantArrayIndexSupport in GrShaderCaps is forced off. COMPILER_BENCH(large, R"( uniform half4 uthresholds1_7_S1_c0_c0_c0; uniform half4 uthresholds9_13_S1_c0_c0_c0; uniform float4 uscale_S1_c0_c0_c0[4]; uniform float4 ubias_S1_c0_c0_c0[4]; uniform half uinvR1_S1_c0_c0_c1_c0; uniform half ufx_S1_c0_c0_c1_c0; uniform float3x3 umatrix_S1_c0_c0_c1; uniform half4 uleftBorderColor_S1_c0_c0; uniform half4 urightBorderColor_S1_c0_c0; uniform float3x3 umatrix_S1_c1; uniform half urange_S1; sampler2D uTextureSampler_0_S1; flat in half4 vcolor_S0; noperspective in float2 vTransformedCoords_6_S0; half4 UnrolledBinaryColorizer_S1_c0_c0_c0(half4 _input, float2 _coords) { half4 _tmp_0_inColor = _input; float2 _tmp_1_coords = _coords; half t = half(_tmp_1_coords.x); float4 s; float4 b; { if (t < uthresholds1_7_S1_c0_c0_c0.y) { if (t < uthresholds1_7_S1_c0_c0_c0.x) { s = uscale_S1_c0_c0_c0[0]; b = ubias_S1_c0_c0_c0[0]; } else { s = uscale_S1_c0_c0_c0[1]; b = ubias_S1_c0_c0_c0[1]; } } else { if (t < uthresholds1_7_S1_c0_c0_c0.z) { s = uscale_S1_c0_c0_c0[2]; b = ubias_S1_c0_c0_c0[2]; } else { s = uscale_S1_c0_c0_c0[3]; b = ubias_S1_c0_c0_c0[3]; } } } return half4(half4(float(t) * s + b)); } half4 TwoPointConicalFocalLayout_S1_c0_c0_c1_c0(half4 _input) { half4 _tmp_2_inColor = _input; float2 _tmp_3_coords = vTransformedCoords_6_S0; float t = -1.0; half v = 1.0; float x_t = -1.0; if (bool(int(0))) { x_t = dot(_tmp_3_coords, _tmp_3_coords) / _tmp_3_coords.x; } else if (bool(int(0))) { x_t = length(_tmp_3_coords) - _tmp_3_coords.x * float(uinvR1_S1_c0_c0_c1_c0); } else { float temp = _tmp_3_coords.x * _tmp_3_coords.x - _tmp_3_coords.y * _tmp_3_coords.y; if (temp >= 0.0) { if (bool(int(0)) || !bool(int(1))) { x_t = -sqrt(temp) - _tmp_3_coords.x * float(uinvR1_S1_c0_c0_c1_c0); } else { x_t = sqrt(temp) - _tmp_3_coords.x * float(uinvR1_S1_c0_c0_c1_c0); } } } if (!bool(int(0))) { if (x_t <= 0.0) { v = -1.0; } } if (bool(int(1))) { if (bool(int(0))) { t = x_t; } else { t = x_t + float(ufx_S1_c0_c0_c1_c0); } } else { if (bool(int(0))) { t = -x_t; } else { t = -x_t + float(ufx_S1_c0_c0_c1_c0); } } if (bool(int(0))) { t = 1.0 - t; } return half4(half4(half(t), v, 0.0, 0.0)); } half4 MatrixEffect_S1_c0_c0_c1(half4 _input) { return TwoPointConicalFocalLayout_S1_c0_c0_c1_c0(_input); } half4 ClampedGradient_S1_c0_c0(half4 _input) { half4 _tmp_4_inColor = _input; half4 t = MatrixEffect_S1_c0_c0_c1(_tmp_4_inColor); half4 outColor; if (!bool(int(0)) && t.y < 0.0) { outColor = half4(0.0); } else if (t.x < 0.0) { outColor = uleftBorderColor_S1_c0_c0; } else if (t.x > 1.0) { outColor = urightBorderColor_S1_c0_c0; } else { outColor = UnrolledBinaryColorizer_S1_c0_c0_c0(_tmp_4_inColor, float2(half2(t.x, 0.0))); } return half4(outColor); } half4 DisableCoverageAsAlpha_S1_c0(half4 _input) { _input = ClampedGradient_S1_c0_c0(_input); half4 _tmp_5_inColor = _input; return half4(_input); } half4 TextureEffect_S1_c1_c0(half4 _input, float2 _coords) { return sample(uTextureSampler_0_S1, _coords).000r; } half4 MatrixEffect_S1_c1(half4 _input, float2 _coords) { return TextureEffect_S1_c1_c0(_input, float3x2(umatrix_S1_c1) * _coords.xy1); } half4 Dither_S1(half4 _input) { half4 _tmp_6_inColor = _input; half4 color = DisableCoverageAsAlpha_S1_c0(_tmp_6_inColor); half value = MatrixEffect_S1_c1(_tmp_6_inColor, sk_FragCoord.xy).w - 0.5; return half4(half4(clamp(color.xyz + value * urange_S1, 0.0, color.w), color.w)); } void main() { // Stage 0, QuadPerEdgeAAGeometryProcessor half4 outputColor_S0; outputColor_S0 = vcolor_S0; const half4 outputCoverage_S0 = half4(1); half4 output_S1; output_S1 = Dither_S1(outputColor_S0); { // Xfer Processor: Porter Duff sk_FragColor = output_S1 * outputCoverage_S0; } } )"); // This fragment shader is taken from GM_BlurDrawImage. COMPILER_BENCH(medium, R"( uniform float3x3 umatrix_S1_c0; uniform float3x3 umatrix_S2_c0_c0; uniform float4 urect_S2_c0; sampler2D uTextureSampler_0_S1; sampler2D uTextureSampler_0_S2; flat in half4 vcolor_S0; noperspective in float2 vTransformedCoords_3_S0; half4 TextureEffect_S1_c0_c0(half4 _input) { return sample(uTextureSampler_0_S1, vTransformedCoords_3_S0); } half4 MatrixEffect_S1_c0(half4 _input) { return TextureEffect_S1_c0_c0(_input); } half4 DisableCoverageAsAlpha_S1(half4 _input) { _input = MatrixEffect_S1_c0(_input); half4 _tmp_0_inColor = _input; return half4(_input); } half4 TextureEffect_S2_c0_c0_c0(half4 _input, float2 _coords) { return sample(uTextureSampler_0_S2, _coords).000r; } half4 MatrixEffect_S2_c0_c0(half4 _input, float2 _coords) { return TextureEffect_S2_c0_c0_c0(_input, float3x2(umatrix_S2_c0_c0) * _coords.xy1); } half4 RectBlur_S2_c0(half4 _input, float2 _coords) { half4 _tmp_1_inColor = _input; float2 _tmp_2_coords = _coords; half xCoverage; half yCoverage; if (bool(int(1))) { half2 xy = max(half2(urect_S2_c0.xy - _tmp_2_coords), half2(_tmp_2_coords - urect_S2_c0.zw)); xCoverage = MatrixEffect_S2_c0_c0(_tmp_1_inColor, float2(half2(xy.x, 0.5))).w; yCoverage = MatrixEffect_S2_c0_c0(_tmp_1_inColor, float2(half2(xy.y, 0.5))).w; } else { half4 rect = half4(half2(urect_S2_c0.xy - _tmp_2_coords), half2(_tmp_2_coords - urect_S2_c0.zw)); xCoverage = (1.0 - MatrixEffect_S2_c0_c0(_tmp_1_inColor, float2(half2(rect.x, 0.5))).w) - MatrixEffect_S2_c0_c0(_tmp_1_inColor, float2(half2(rect.z, 0.5))).w; yCoverage = (1.0 - MatrixEffect_S2_c0_c0(_tmp_1_inColor, float2(half2(rect.y, 0.5))).w) - MatrixEffect_S2_c0_c0(_tmp_1_inColor, float2(half2(rect.w, 0.5))).w; } return half4((_input * xCoverage) * yCoverage); } half4 DeviceSpace_S2(half4 _input) { return RectBlur_S2_c0(_input, sk_FragCoord.xy); } void main() { // Stage 0, QuadPerEdgeAAGeometryProcessor half4 outputColor_S0; outputColor_S0 = vcolor_S0; const half4 outputCoverage_S0 = half4(1); half4 output_S1; output_S1 = DisableCoverageAsAlpha_S1(outputColor_S0); half4 output_S2; output_S2 = DeviceSpace_S2(outputCoverage_S0); { // Xfer Processor: Porter Duff sk_FragColor = output_S1 * output_S2; } } )"); // This fragment shader is taken from GM_lcdtext. COMPILER_BENCH(small, R"( sampler2D uTextureSampler_0_S0; noperspective in float2 vTextureCoords_S0; flat in float vTexIndex_S0; noperspective in half4 vinColor_S0; void main() { // Stage 0, BitmapText half4 outputColor_S0; outputColor_S0 = vinColor_S0; half4 texColor; { texColor = sample(uTextureSampler_0_S0, vTextureCoords_S0).rrrr; } half4 outputCoverage_S0 = texColor; { // Xfer Processor: Porter Duff sk_FragColor = outputColor_S0 * outputCoverage_S0; } } )"); COMPILER_BENCH(tiny, "void main() { sk_FragColor = half4(1); }"); #define GRAPHITE_BENCH(name, text) \ static constexpr char name##_SRC[] = text; \ DEF_BENCH(return new SkSLCompileBench(#name, name##_SRC, /*optimize=*/true, Output::kGrMtl);) \ DEF_BENCH(return new SkSLCompileBench(#name, name##_SRC, /*optimize=*/true, Output::kGrWGSL);) // This fragment shader is from the third tile on the top row of GM_gradients_2pt_conical_outside. GRAPHITE_BENCH(graphite_large, R"( layout(location=0) in flat int shadingSsboIndexVar; layout(location=1) in float2 localCoordsVar; layout(location=2) in float4 jacobian; layout(location=3) in float4 edgeDistances; layout(location=4) in float4 xRadii; layout(location=5) in float4 yRadii; layout(location=6) in float2 strokeParams; layout(location=7) in float2 perPixelControl; struct FSUniformData { // 0 - SolidColor uniforms float4 color_0; // 2 - ConicalGradient8 uniforms float4 colors_2[8]; float4 offsets_2[2]; float2 point0_2; float2 point1_2; float radius0_2; float radius1_2; int tilemode_2; int colorSpace_2; int doUnPremul_2; // 3 - ColorSpaceTransform uniforms int flags_3; int srcKind_3; half3x3 gamutTransform_3; int dstKind_3; half4x4 csXformCoeffs_3; // 4 - DitherShader uniforms half range_4; } ; layout (binding=2) buffer FSUniforms { FSUniformData fsUniformData[]; } ; // 4 - DitherShader samplers layout(binding=0) sampler2D sampler_4; // [1] 1: ColorFilterShader half4 ColorFilterShader_1(half4 inColor, half4 destColor, float2 coords) { return sk_color_space_transform(sk_conical_grad_8_shader(coords, fsUniformData[shadingSsboIndexVar].colors_2, fsUniformData[shadingSsboIndexVar].offsets_2, fsUniformData[shadingSsboIndexVar].point0_2, fsUniformData[shadingSsboIndexVar].point1_2, fsUniformData[shadingSsboIndexVar].radius0_2, fsUniformData[shadingSsboIndexVar].radius1_2, fsUniformData[shadingSsboIndexVar].tilemode_2, fsUniformData[shadingSsboIndexVar].colorSpace_2, fsUniformData[shadingSsboIndexVar].doUnPremul_2), fsUniformData[shadingSsboIndexVar].flags_3, fsUniformData[shadingSsboIndexVar].srcKind_3, fsUniformData[shadingSsboIndexVar].gamutTransform_3, fsUniformData[shadingSsboIndexVar].dstKind_3, fsUniformData[shadingSsboIndexVar].csXformCoeffs_3); } void main() { half4 initialColor = half4(0); // [0] SolidColor half4 outColor_0 = sk_solid_shader(fsUniformData[shadingSsboIndexVar].color_0); // [1] ColorFilterShader half4 outColor_1 = ColorFilterShader_1(outColor_0, half4(1), localCoordsVar); // [4] DitherShader half4 outColor_4 = sk_dither_shader(outColor_1, localCoordsVar, fsUniformData[shadingSsboIndexVar].range_4, sampler_4); // [5] SrcOver half4 outColor_5 = outColor_4; half4 outputCoverage; outputCoverage = analytic_rrect_coverage_fn(sk_FragCoord, jacobian, edgeDistances, xRadii, yRadii, strokeParams, perPixelControl); sk_FragColor = outColor_5 * outputCoverage; } )"); // This fragment shader is taken from GM_lcdtext. GRAPHITE_BENCH(graphite_small, R"( layout(location=0) in flat int shadingSsboIndexVar; layout(location=1) in float2 textureCoords; layout(location=2) in half texIndex; layout(location=3) in half maskFormat; layout (binding=1) uniform StepUniforms { layout(offset=0) float4x4 subRunDeviceMatrix; layout(offset=64) float4x4 deviceToLocal; layout(offset=128) float2 atlasSizeInv; } ; struct FSUniformData { // 0 - SolidColor uniforms float4 color_0; } ; layout (binding=2) buffer FSUniforms { FSUniformData fsUniformData[]; } ; layout(binding=0) sampler2D text_atlas_0; layout(binding=1) sampler2D text_atlas_1; layout(binding=2) sampler2D text_atlas_2; layout(binding=3) sampler2D text_atlas_3; void main() { half4 initialColor = half4(0); // [0] SolidColor half4 outColor_0 = sk_solid_shader(fsUniformData[shadingSsboIndexVar].color_0); // [1] SrcOver half4 outColor_1 = outColor_0; half4 outputCoverage; outputCoverage = bitmap_text_coverage_fn(sample_indexed_atlas(textureCoords, int(texIndex), text_atlas_0, text_atlas_1, text_atlas_2, text_atlas_3), int(maskFormat)); sk_FragColor = outColor_1 * outputCoverage; } )"); #if defined(SK_BUILD_FOR_UNIX) #include static int64_t heap_bytes_used() { return (int64_t)mallinfo().uordblks; } #elif defined(SK_BUILD_FOR_MAC) || defined(SK_BUILD_FOR_IOS) #include static int64_t heap_bytes_used() { malloc_statistics_t stats; malloc_zone_pressure_relief(malloc_default_zone(), 0); malloc_zone_statistics(malloc_default_zone(), &stats); return (int64_t)stats.size_in_use; } #else static int64_t heap_bytes_used() { return -1; } #endif static void bench(NanoJSONResultsWriter* log, const char* name, int bytes) { SkDEBUGCODE(SkDebugf("%s: %d bytes\n", name, bytes);) log->beginObject(name); // test log->beginObject("meta"); // config log->appendS32("bytes", bytes); // sub_result log->endObject(); // config log->endObject(); // test } // These benchmarks aren't timed, they produce memory usage statistics. They run standalone, and // directly add their results to the nanobench log. void RunSkSLModuleBenchmarks(NanoJSONResultsWriter* log) { // Heap used by a default compiler (with no modules loaded) int64_t before = heap_bytes_used(); SkSL::Compiler compiler; int baselineBytes = heap_bytes_used(); if (baselineBytes >= 0) { baselineBytes = (baselineBytes - before); bench(log, "sksl_compiler_baseline", baselineBytes); } // Heap used by a compiler with the two main GPU modules (fragment + vertex) and runtime effects // (shader + color filter + blender) loaded. Ganesh will load all of these in regular usage. before = heap_bytes_used(); compiler.moduleForProgramKind(SkSL::ProgramKind::kVertex); compiler.moduleForProgramKind(SkSL::ProgramKind::kFragment); compiler.moduleForProgramKind(SkSL::ProgramKind::kRuntimeColorFilter); compiler.moduleForProgramKind(SkSL::ProgramKind::kRuntimeShader); compiler.moduleForProgramKind(SkSL::ProgramKind::kRuntimeBlender); compiler.moduleForProgramKind(SkSL::ProgramKind::kPrivateRuntimeColorFilter); compiler.moduleForProgramKind(SkSL::ProgramKind::kPrivateRuntimeShader); compiler.moduleForProgramKind(SkSL::ProgramKind::kPrivateRuntimeBlender); int64_t gpuBytes = heap_bytes_used(); if (gpuBytes >= 0) { gpuBytes = (gpuBytes - before) + baselineBytes; bench(log, "sksl_compiler_gpu", gpuBytes); } #if defined(SK_GRAPHITE) // Heap used by a compiler with the Graphite modules loaded. before = heap_bytes_used(); compiler.moduleForProgramKind(SkSL::ProgramKind::kGraphiteVertex); compiler.moduleForProgramKind(SkSL::ProgramKind::kGraphiteFragment); int64_t graphiteBytes = heap_bytes_used(); if (graphiteBytes >= 0) { graphiteBytes = (graphiteBytes - before) + gpuBytes; bench(log, "sksl_compiler_graphite", graphiteBytes); } // Heap used by a compiler with compute-shader support loaded. before = heap_bytes_used(); compiler.moduleForProgramKind(SkSL::ProgramKind::kCompute); int64_t computeBytes = heap_bytes_used(); if (computeBytes >= 0) { computeBytes = (computeBytes - before) + baselineBytes; bench(log, "sksl_compiler_compute", computeBytes); } #endif // Report the minified module sizes. int compilerGPUBinarySize = std::size(SKSL_MINIFIED_sksl_shared) + std::size(SKSL_MINIFIED_sksl_gpu) + std::size(SKSL_MINIFIED_sksl_vert) + std::size(SKSL_MINIFIED_sksl_frag) + std::size(SKSL_MINIFIED_sksl_public) + std::size(SKSL_MINIFIED_sksl_rt_shader); bench(log, "sksl_binary_size_gpu", compilerGPUBinarySize); int compilerGraphiteBinarySize = std::size(SKSL_MINIFIED_sksl_graphite_frag) + std::size(SKSL_MINIFIED_sksl_graphite_vert); bench(log, "sksl_binary_size_graphite", compilerGraphiteBinarySize); int compilerGraphiteES2BinarySize = std::size(SKSL_MINIFIED_sksl_graphite_frag_es2) + std::size(SKSL_MINIFIED_sksl_graphite_vert_es2); bench(log, "sksl_binary_size_graphite_es2", compilerGraphiteES2BinarySize); int compilerComputeBinarySize = std::size(SKSL_MINIFIED_sksl_compute); bench(log, "sksl_binary_size_compute", compilerComputeBinarySize); } class SkSLModuleLoaderBench : public Benchmark { public: SkSLModuleLoaderBench(const char* name, std::vector moduleList) : fName(name), fModuleList(std::move(moduleList)) {} const char* onGetName() override { return fName; } bool isSuitableFor(Backend backend) override { return backend == Backend::kNonRendering; } bool shouldLoop() const override { return false; } void onPreDraw(SkCanvas*) override { SkSL::ModuleLoader::Get().unloadModules(); } void onDraw(int loops, SkCanvas*) override { SkASSERT(loops == 1); SkSL::Compiler compiler; for (SkSL::ProgramKind kind : fModuleList) { compiler.moduleForProgramKind(kind); } } const char* fName; std::vector fModuleList; }; DEF_BENCH(return new SkSLModuleLoaderBench("sksl_module_loader_ganesh", { SkSL::ProgramKind::kVertex, SkSL::ProgramKind::kFragment, SkSL::ProgramKind::kRuntimeColorFilter, SkSL::ProgramKind::kRuntimeShader, SkSL::ProgramKind::kRuntimeBlender, SkSL::ProgramKind::kPrivateRuntimeColorFilter, SkSL::ProgramKind::kPrivateRuntimeShader, SkSL::ProgramKind::kPrivateRuntimeBlender, SkSL::ProgramKind::kCompute, });) DEF_BENCH(return new SkSLModuleLoaderBench("sksl_module_loader_graphite", { SkSL::ProgramKind::kVertex, SkSL::ProgramKind::kFragment, SkSL::ProgramKind::kRuntimeColorFilter, SkSL::ProgramKind::kRuntimeShader, SkSL::ProgramKind::kRuntimeBlender, SkSL::ProgramKind::kPrivateRuntimeColorFilter, SkSL::ProgramKind::kPrivateRuntimeShader, SkSL::ProgramKind::kPrivateRuntimeBlender, SkSL::ProgramKind::kCompute, SkSL::ProgramKind::kGraphiteVertex, SkSL::ProgramKind::kGraphiteFragment, });)