// Copyright (C) 2022, Cloudflare, Inc. // All rights reserved. // // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: // // * Redistributions of source code must retain the above copyright notice, // this list of conditions and the following disclaimer. // // * Redistributions in binary form must reproduce the above copyright // notice, this list of conditions and the following disclaimer in the // documentation and/or other materials provided with the distribution. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS // IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, // THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR // PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR // CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, // EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, // PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR // PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF // LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING // NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS // SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. use super::*; use crate::rand; use crate::recovery; use std::cmp; use std::time::Instant; /// 1.2Mbps in bytes/sec const PACING_RATE_1_2MBPS: u64 = 1200 * 1000 / 8; /// 24Mbps in bytes/sec const PACING_RATE_24MBPS: u64 = 24 * 1000 * 1000 / 8; /// The minimal cwnd value BBR tries to target, in bytes #[inline] fn bbr_min_pipe_cwnd(r: &mut Recovery) -> usize { BBR_MIN_PIPE_CWND_PKTS * r.max_datagram_size } // BBR Functions when ACK is received. // pub fn bbr_update_model_and_state( r: &mut Recovery, packet: &Acked, now: Instant, ) { bbr_update_btlbw(r, packet); bbr_check_cycle_phase(r, now); bbr_check_full_pipe(r); bbr_check_drain(r, now); bbr_update_rtprop(r, now); bbr_check_probe_rtt(r, now); } pub fn bbr_update_control_parameters(r: &mut Recovery, now: Instant) { pacing::bbr_set_pacing_rate(r); bbr_set_send_quantum(r); // Set outgoing packet pacing rate // It is called here because send_quantum may be updated too. r.set_pacing_rate(r.bbr_state.pacing_rate, now); bbr_set_cwnd(r); } // BBR Functions while processing ACKs. // // 4.1.1.5. Updating the BBR.BtlBw Max Filter fn bbr_update_btlbw(r: &mut Recovery, packet: &Acked) { bbr_update_round(r, packet); if r.delivery_rate() >= r.bbr_state.btlbw || !r.delivery_rate.sample_is_app_limited() { // Since minmax filter is based on time, // start_time + (round_count as seconds) is used instead. r.bbr_state.btlbw = r.bbr_state.btlbwfilter.running_max( BTLBW_FILTER_LEN, r.bbr_state.start_time + Duration::from_secs(r.bbr_state.round_count), r.delivery_rate(), ); } } // 4.1.1.3 Tracking Time for the BBR.BtlBw Max Filter fn bbr_update_round(r: &mut Recovery, packet: &Acked) { let bbr = &mut r.bbr_state; if packet.delivered >= bbr.next_round_delivered { bbr.next_round_delivered = r.delivery_rate.delivered(); bbr.round_count += 1; bbr.round_start = true; bbr.packet_conservation = false; } else { bbr.round_start = false; } } // 4.1.2.3. Updating the BBR.RTprop Min Filter fn bbr_update_rtprop(r: &mut Recovery, now: Instant) { let bbr = &mut r.bbr_state; let rs_rtt = r.delivery_rate.sample_rtt(); bbr.rtprop_expired = now > bbr.rtprop_stamp + RTPROP_FILTER_LEN; if !rs_rtt.is_zero() && (rs_rtt <= bbr.rtprop || bbr.rtprop_expired) { bbr.rtprop = rs_rtt; bbr.rtprop_stamp = now; } } // 4.2.2 Send Quantum fn bbr_set_send_quantum(r: &mut Recovery) { let rate = r.bbr_state.pacing_rate; r.send_quantum = match rate { rate if rate < PACING_RATE_1_2MBPS => r.max_datagram_size, rate if rate < PACING_RATE_24MBPS => 2 * r.max_datagram_size, _ => cmp::min((rate / 1000_u64) as usize, 64 * 1024), } } // 4.2.3.2 Target cwnd fn bbr_inflight(r: &mut Recovery, gain: f64) -> usize { let bbr = &mut r.bbr_state; if bbr.rtprop == Duration::MAX { return r.max_datagram_size * INITIAL_WINDOW_PACKETS; } let quanta = 3 * r.send_quantum; let estimated_bdp = bbr.btlbw as f64 * bbr.rtprop.as_secs_f64(); (gain * estimated_bdp) as usize + quanta } fn bbr_update_target_cwnd(r: &mut Recovery) { r.bbr_state.target_cwnd = bbr_inflight(r, r.bbr_state.cwnd_gain); } // 4.2.3.4 Modulating cwnd in Loss Recovery pub fn bbr_save_cwnd(r: &mut Recovery) -> usize { if !r.bbr_state.in_recovery && r.bbr_state.state != BBRStateMachine::ProbeRTT { r.congestion_window } else { r.congestion_window.max(r.bbr_state.prior_cwnd) } } pub fn bbr_restore_cwnd(r: &mut Recovery) { r.congestion_window = r.congestion_window.max(r.bbr_state.prior_cwnd); } fn bbr_modulate_cwnd_for_recovery(r: &mut Recovery) { let acked_bytes = r.bbr_state.newly_acked_bytes; let lost_bytes = r.bbr_state.newly_lost_bytes; if lost_bytes > 0 { // QUIC mininum cwnd is 2 x MSS. r.congestion_window = r .congestion_window .saturating_sub(lost_bytes) .max(r.max_datagram_size * recovery::MINIMUM_WINDOW_PACKETS); } if r.bbr_state.packet_conservation { r.congestion_window = r.congestion_window.max(r.bytes_in_flight + acked_bytes); } } // 4.2.3.5 Modulating cwnd in ProbeRTT fn bbr_modulate_cwnd_for_probe_rtt(r: &mut Recovery) { if r.bbr_state.state == BBRStateMachine::ProbeRTT { r.congestion_window = r.congestion_window.min(bbr_min_pipe_cwnd(r)) } } // 4.2.3.6 Core cwnd Adjustment Mechanism fn bbr_set_cwnd(r: &mut Recovery) { let acked_bytes = r.bbr_state.newly_acked_bytes; bbr_update_target_cwnd(r); bbr_modulate_cwnd_for_recovery(r); if !r.bbr_state.packet_conservation { if r.bbr_state.filled_pipe { r.congestion_window = cmp::min( r.congestion_window + acked_bytes, r.bbr_state.target_cwnd, ) } else if r.congestion_window < r.bbr_state.target_cwnd || r.delivery_rate.delivered() < r.max_datagram_size * INITIAL_WINDOW_PACKETS { r.congestion_window += acked_bytes; } r.congestion_window = r.congestion_window.max(bbr_min_pipe_cwnd(r)) } bbr_modulate_cwnd_for_probe_rtt(r); } // 4.3.2.2. Estimating When Startup has Filled the Pipe fn bbr_check_full_pipe(r: &mut Recovery) { // No need to check for a full pipe now. if r.bbr_state.filled_pipe || !r.bbr_state.round_start || r.delivery_rate.sample_is_app_limited() { return; } // BBR.BtlBw still growing? if r.bbr_state.btlbw >= (r.bbr_state.full_bw as f64 * BTLBW_GROWTH_TARGET) as u64 { // record new baseline level r.bbr_state.full_bw = r.bbr_state.btlbw; r.bbr_state.full_bw_count = 0; return; } // another round w/o much growth r.bbr_state.full_bw_count += 1; if r.bbr_state.full_bw_count >= 3 { r.bbr_state.filled_pipe = true; } } // 4.3.3. Drain fn bbr_enter_drain(r: &mut Recovery) { let bbr = &mut r.bbr_state; bbr.state = BBRStateMachine::Drain; // pace slowly bbr.pacing_gain = 1.0 / BBR_HIGH_GAIN; // maintain cwnd bbr.cwnd_gain = BBR_HIGH_GAIN; } fn bbr_check_drain(r: &mut Recovery, now: Instant) { if r.bbr_state.state == BBRStateMachine::Startup && r.bbr_state.filled_pipe { bbr_enter_drain(r); } if r.bbr_state.state == BBRStateMachine::Drain && r.bytes_in_flight <= bbr_inflight(r, 1.0) { // we estimate queue is drained bbr_enter_probe_bw(r, now); } } // 4.3.4.3. Gain Cycling Algorithm fn bbr_enter_probe_bw(r: &mut Recovery, now: Instant) { let bbr = &mut r.bbr_state; bbr.state = BBRStateMachine::ProbeBW; bbr.pacing_gain = 1.0; bbr.cwnd_gain = 2.0; // cycle_index will be one of (1, 2, 3, 4, 5, 6, 7). Since // bbr_advance_cycle_phase() is called right next and it will // increase cycle_index by 1, the actual cycle_index in the // beginning of ProbeBW will be one of (2, 3, 4, 5, 6, 7, 0) // to avoid index 1 (pacing_gain=3/4). See 4.3.4.2 for details. bbr.cycle_index = BBR_GAIN_CYCLE_LEN - 1 - (rand::rand_u64_uniform(BBR_GAIN_CYCLE_LEN as u64 - 1) as usize); bbr_advance_cycle_phase(r, now); } fn bbr_check_cycle_phase(r: &mut Recovery, now: Instant) { let bbr = &mut r.bbr_state; if bbr.state == BBRStateMachine::ProbeBW && bbr_is_next_cycle_phase(r, now) { bbr_advance_cycle_phase(r, now); } } fn bbr_advance_cycle_phase(r: &mut Recovery, now: Instant) { let bbr = &mut r.bbr_state; bbr.cycle_stamp = now; bbr.cycle_index = (bbr.cycle_index + 1) % BBR_GAIN_CYCLE_LEN; bbr.pacing_gain = PACING_GAIN_CYCLE[bbr.cycle_index]; } fn bbr_is_next_cycle_phase(r: &mut Recovery, now: Instant) -> bool { let bbr = &mut r.bbr_state; let lost_bytes = bbr.newly_lost_bytes; let pacing_gain = bbr.pacing_gain; let prior_in_flight = bbr.prior_bytes_in_flight; let is_full_length = (now - bbr.cycle_stamp) > bbr.rtprop; // pacing_gain == 1.0 if (pacing_gain - 1.0).abs() < f64::EPSILON { return is_full_length; } if pacing_gain > 1.0 { return is_full_length && (lost_bytes > 0 || prior_in_flight >= bbr_inflight(r, pacing_gain)); } is_full_length || prior_in_flight <= bbr_inflight(r, 1.0) } // 4.3.5. ProbeRTT fn bbr_check_probe_rtt(r: &mut Recovery, now: Instant) { if r.bbr_state.state != BBRStateMachine::ProbeRTT && r.bbr_state.rtprop_expired && !r.bbr_state.idle_restart { bbr_enter_probe_rtt(r); r.bbr_state.prior_cwnd = bbr_save_cwnd(r); r.bbr_state.probe_rtt_done_stamp = None; } if r.bbr_state.state == BBRStateMachine::ProbeRTT { bbr_handle_probe_rtt(r, now); } r.bbr_state.idle_restart = false; } fn bbr_enter_probe_rtt(r: &mut Recovery) { let bbr = &mut r.bbr_state; bbr.state = BBRStateMachine::ProbeRTT; bbr.pacing_gain = 1.0; bbr.cwnd_gain = 1.0; } fn bbr_handle_probe_rtt(r: &mut Recovery, now: Instant) { // Ignore low rate samples during ProbeRTT. r.delivery_rate.update_app_limited(true); if let Some(probe_rtt_done_stamp) = r.bbr_state.probe_rtt_done_stamp { if r.bbr_state.round_start { r.bbr_state.probe_rtt_round_done = true; } if r.bbr_state.probe_rtt_round_done && now > probe_rtt_done_stamp { r.bbr_state.rtprop_stamp = now; bbr_restore_cwnd(r); bbr_exit_probe_rtt(r, now); } } else if r.bytes_in_flight <= bbr_min_pipe_cwnd(r) { r.bbr_state.probe_rtt_done_stamp = Some(now + PROBE_RTT_DURATION); r.bbr_state.probe_rtt_round_done = false; r.bbr_state.next_round_delivered = r.delivery_rate.delivered(); } } fn bbr_exit_probe_rtt(r: &mut Recovery, now: Instant) { if r.bbr_state.filled_pipe { bbr_enter_probe_bw(r, now); } else { init::bbr_enter_startup(r); } }