// Portions Copyright 2017 The Chromium OS Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE-BSD-3-Clause file. // // Copyright 2018 Amazon.com, Inc. or its affiliates. All Rights Reserved. // // Copyright © 2019 Intel Corporation // // Copyright (C) 2020-2021 Alibaba Cloud. All rights reserved. // // SPDX-License-Identifier: Apache-2.0 AND BSD-3-Clause use vm_memory::{ByteValued, GuestAddress, Le16, Le32, Le64}; use virtio_bindings::bindings::virtio_ring::{ VRING_DESC_F_INDIRECT, VRING_DESC_F_NEXT, VRING_DESC_F_WRITE, }; /// A virtio descriptor constraints with C representation. /// /// # Example /// /// ```rust /// # use virtio_bindings::bindings::virtio_ring::{VRING_DESC_F_NEXT, VRING_DESC_F_WRITE}; /// # use virtio_queue::mock::MockSplitQueue; /// use virtio_queue::{Descriptor, Queue, QueueOwnedT}; /// use vm_memory::{GuestAddress, GuestMemoryMmap}; /// /// # fn populate_queue(m: &GuestMemoryMmap) -> Queue { /// # let vq = MockSplitQueue::new(m, 16); /// # let mut q = vq.create_queue().unwrap(); /// # /// # // We have only one chain: (0, 1). /// # let desc = Descriptor::new(0x1000, 0x1000, VRING_DESC_F_NEXT as u16, 1); /// # vq.desc_table().store(0, desc); /// # let desc = Descriptor::new(0x2000, 0x1000, VRING_DESC_F_WRITE as u16, 0); /// # vq.desc_table().store(1, desc); /// # /// # vq.avail().ring().ref_at(0).unwrap().store(u16::to_le(0)); /// # vq.avail().idx().store(u16::to_le(1)); /// # q /// # } /// let m = &GuestMemoryMmap::<()>::from_ranges(&[(GuestAddress(0), 0x10000)]).unwrap(); /// // Populate the queue with descriptor chains and update the available ring accordingly. /// let mut queue = populate_queue(m); /// let mut i = queue.iter(m).unwrap(); /// let mut c = i.next().unwrap(); /// /// // Get the first descriptor and access its fields. /// let desc = c.next().unwrap(); /// let _addr = desc.addr(); /// let _len = desc.len(); /// let _flags = desc.flags(); /// let _next = desc.next(); /// let _is_write_only = desc.is_write_only(); /// let _has_next = desc.has_next(); /// let _refers_to_ind_table = desc.refers_to_indirect_table(); /// ``` // Note that the `ByteValued` implementation of this structure expects the `Descriptor` to store // only plain old data types. #[repr(C)] #[derive(Default, Clone, Copy, Debug)] pub struct Descriptor { /// Guest physical address of device specific data. addr: Le64, /// Length of device specific data. len: Le32, /// Includes next, write, and indirect bits. flags: Le16, /// Index into the descriptor table of the next descriptor if flags has the `next` bit set. next: Le16, } #[allow(clippy::len_without_is_empty)] impl Descriptor { /// Return the guest physical address of the descriptor buffer. pub fn addr(&self) -> GuestAddress { GuestAddress(self.addr.into()) } /// Return the length of the descriptor buffer. pub fn len(&self) -> u32 { self.len.into() } /// Return the flags for this descriptor, including next, write and indirect bits. pub fn flags(&self) -> u16 { self.flags.into() } /// Return the value stored in the `next` field of the descriptor. pub fn next(&self) -> u16 { self.next.into() } /// Check whether this descriptor refers to a buffer containing an indirect descriptor table. pub fn refers_to_indirect_table(&self) -> bool { self.flags() & VRING_DESC_F_INDIRECT as u16 != 0 } /// Check whether the `VIRTQ_DESC_F_NEXT` is set for the descriptor. pub fn has_next(&self) -> bool { self.flags() & VRING_DESC_F_NEXT as u16 != 0 } /// Check if the driver designated this as a write only descriptor. /// /// If this is false, this descriptor is read only. /// Write only means the the emulated device can write and the driver can read. pub fn is_write_only(&self) -> bool { self.flags() & VRING_DESC_F_WRITE as u16 != 0 } } #[cfg(any(test, feature = "test-utils"))] impl Descriptor { /// Create a new descriptor. /// /// # Arguments /// * `addr` - the guest physical address of the descriptor buffer. /// * `len` - the length of the descriptor buffer. /// * `flags` - the `flags` for the descriptor. /// * `next` - the `next` field of the descriptor. pub fn new(addr: u64, len: u32, flags: u16, next: u16) -> Self { Descriptor { addr: addr.into(), len: len.into(), flags: flags.into(), next: next.into(), } } /// Set the guest physical address of the descriptor buffer. pub fn set_addr(&mut self, addr: u64) { self.addr = addr.into(); } /// Set the length of the descriptor buffer. pub fn set_len(&mut self, len: u32) { self.len = len.into(); } /// Set the flags for this descriptor. pub fn set_flags(&mut self, flags: u16) { self.flags = flags.into(); } /// Set the value stored in the `next` field of the descriptor. pub fn set_next(&mut self, next: u16) { self.next = next.into(); } } // SAFETY: This is safe because `Descriptor` contains only wrappers over POD types and // all accesses through safe `vm-memory` API will validate any garbage that could be // included in there. unsafe impl ByteValued for Descriptor {} /// Represents the contents of an element from the used virtqueue ring. // Note that the `ByteValued` implementation of this structure expects the `VirtqUsedElem` to store // only plain old data types. #[repr(C)] #[derive(Clone, Copy, Default, Debug)] pub struct VirtqUsedElem { id: Le32, len: Le32, } impl VirtqUsedElem { /// Create a new `VirtqUsedElem` instance. /// /// # Arguments /// * `id` - the index of the used descriptor chain. /// * `len` - the total length of the descriptor chain which was used (written to). pub(crate) fn new(id: u32, len: u32) -> Self { VirtqUsedElem { id: id.into(), len: len.into(), } } } #[cfg(any(test, feature = "test-utils"))] #[allow(clippy::len_without_is_empty)] impl VirtqUsedElem { /// Get the index of the used descriptor chain. pub fn id(&self) -> u32 { self.id.into() } /// Get `length` field of the used ring entry. pub fn len(&self) -> u32 { self.len.into() } } // SAFETY: This is safe because `VirtqUsedElem` contains only wrappers over POD types // and all accesses through safe `vm-memory` API will validate any garbage that could be // included in there. unsafe impl ByteValued for VirtqUsedElem {} #[cfg(test)] mod tests { use super::*; use memoffset::offset_of; use std::mem::{align_of, size_of}; #[test] fn test_descriptor_offset() { assert_eq!(size_of::(), 16); assert_eq!(offset_of!(Descriptor, addr), 0); assert_eq!(offset_of!(Descriptor, len), 8); assert_eq!(offset_of!(Descriptor, flags), 12); assert_eq!(offset_of!(Descriptor, next), 14); assert!(align_of::() <= 16); } #[test] fn test_descriptor_getter_setter() { let mut desc = Descriptor::new(0, 0, 0, 0); desc.set_addr(0x1000); assert_eq!(desc.addr(), GuestAddress(0x1000)); desc.set_len(0x2000); assert_eq!(desc.len(), 0x2000); desc.set_flags(VRING_DESC_F_NEXT as u16); assert_eq!(desc.flags(), VRING_DESC_F_NEXT as u16); assert!(desc.has_next()); assert!(!desc.is_write_only()); assert!(!desc.refers_to_indirect_table()); desc.set_flags(VRING_DESC_F_WRITE as u16); assert_eq!(desc.flags(), VRING_DESC_F_WRITE as u16); assert!(!desc.has_next()); assert!(desc.is_write_only()); assert!(!desc.refers_to_indirect_table()); desc.set_flags(VRING_DESC_F_INDIRECT as u16); assert_eq!(desc.flags(), VRING_DESC_F_INDIRECT as u16); assert!(!desc.has_next()); assert!(!desc.is_write_only()); assert!(desc.refers_to_indirect_table()); desc.set_next(3); assert_eq!(desc.next(), 3); } #[test] fn test_descriptor_copy() { let e1 = Descriptor::new(1, 2, VRING_DESC_F_NEXT as u16, 3); let mut e2 = Descriptor::default(); e2.as_mut_slice().copy_from_slice(e1.as_slice()); assert_eq!(e1.addr(), e2.addr()); assert_eq!(e1.len(), e2.len()); assert_eq!(e1.flags(), e2.flags()); assert_eq!(e1.next(), e2.next()); } #[test] fn test_used_elem_offset() { assert_eq!(offset_of!(VirtqUsedElem, id), 0); assert_eq!(offset_of!(VirtqUsedElem, len), 4); assert_eq!(size_of::(), 8); } #[test] fn test_used_elem_copy() { let e1 = VirtqUsedElem::new(3, 15); let mut e2 = VirtqUsedElem::new(0, 0); e2.as_mut_slice().copy_from_slice(e1.as_slice()); assert_eq!(e1.id, e2.id); assert_eq!(e1.len, e2.len); } }