// Copyright 2015-2023 Brian Smith. // // Permission to use, copy, modify, and/or distribute this software for any // purpose with or without fee is hereby granted, provided that the above // copyright notice and this permission notice appear in all copies. // // THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHORS DISCLAIM ALL WARRANTIES // WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF // MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHORS BE LIABLE FOR ANY // SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES // WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION // OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN // CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. //! Multi-precision integers. //! //! # Modular Arithmetic. //! //! Modular arithmetic is done in finite commutative rings ℤ/mℤ for some //! modulus *m*. We work in finite commutative rings instead of finite fields //! because the RSA public modulus *n* is not prime, which means ℤ/nℤ contains //! nonzero elements that have no multiplicative inverse, so ℤ/nℤ is not a //! finite field. //! //! In some calculations we need to deal with multiple rings at once. For //! example, RSA private key operations operate in the rings ℤ/nℤ, ℤ/pℤ, and //! ℤ/qℤ. Types and functions dealing with such rings are all parameterized //! over a type `M` to ensure that we don't wrongly mix up the math, e.g. by //! multiplying an element of ℤ/pℤ by an element of ℤ/qℤ modulo q. This follows //! the "unit" pattern described in [Static checking of units in Servo]. //! //! `Elem` also uses the static unit checking pattern to statically track the //! Montgomery factors that need to be canceled out in each value using it's //! `E` parameter. //! //! [Static checking of units in Servo]: //! https://blog.mozilla.org/research/2014/06/23/static-checking-of-units-in-servo/ use self::boxed_limbs::BoxedLimbs; pub(crate) use self::{ modulus::{Modulus, PartialModulus, MODULUS_MAX_LIMBS}, private_exponent::PrivateExponent, }; use super::n0::N0; pub(crate) use super::nonnegative::Nonnegative; use crate::{ arithmetic::montgomery::*, bits, c, cpu, error, limb::{self, Limb, LimbMask, LIMB_BITS}, polyfill::u64_from_usize, }; use alloc::vec; use core::{marker::PhantomData, num::NonZeroU64}; mod boxed_limbs; mod modulus; mod private_exponent; /// A prime modulus. /// /// # Safety /// /// Some logic may assume a `Prime` number is non-zero, and thus a non-empty /// array of limbs, or make similar assumptions. TODO: Any such logic should /// be encapsulated here, or this trait should be made non-`unsafe`. TODO: /// non-zero-ness and non-empty-ness should be factored out into a separate /// trait. (In retrospect, this shouldn't have been made an `unsafe` trait /// preemptively.) pub unsafe trait Prime {} struct Width { num_limbs: usize, /// The modulus *m* that the width originated from. m: PhantomData, } /// A modulus *s* that is smaller than another modulus *l* so every element of /// ℤ/sℤ is also an element of ℤ/lℤ. /// /// # Safety /// /// Some logic may assume that the invariant holds when accessing limbs within /// a value, e.g. by assuming the larger modulus has at least as many limbs. /// TODO: Any such logic should be encapsulated here, or this trait should be /// made non-`unsafe`. (In retrospect, this shouldn't have been made an `unsafe` /// trait preemptively.) pub unsafe trait SmallerModulus {} /// A modulus *s* where s < l < 2*s for the given larger modulus *l*. This is /// the precondition for reduction by conditional subtraction, /// `elem_reduce_once()`. /// /// # Safety /// /// Some logic may assume that the invariant holds when accessing limbs within /// a value, e.g. by assuming that the smaller modulus is at most one limb /// smaller than the larger modulus. TODO: Any such logic should be /// encapsulated here, or this trait should be made non-`unsafe`. (In retrospect, /// this shouldn't have been made an `unsafe` trait preemptively.) pub unsafe trait SlightlySmallerModulus: SmallerModulus {} /// A modulus *s* where √l <= s < l for the given larger modulus *l*. This is /// the precondition for the more general Montgomery reduction from ℤ/lℤ to /// ℤ/sℤ. /// /// # Safety /// /// Some logic may assume that the invariant holds when accessing limbs within /// a value. TODO: Any such logic should be encapsulated here, or this trait /// should be made non-`unsafe`. (In retrospect, this shouldn't have been made /// an `unsafe` trait preemptively.) pub unsafe trait NotMuchSmallerModulus: SmallerModulus {} pub trait PublicModulus {} /// Elements of ℤ/mℤ for some modulus *m*. // // Defaulting `E` to `Unencoded` is a convenience for callers from outside this // submodule. However, for maximum clarity, we always explicitly use // `Unencoded` within the `bigint` submodule. pub struct Elem { limbs: BoxedLimbs, /// The number of Montgomery factors that need to be canceled out from /// `value` to get the actual value. encoding: PhantomData, } // TODO: `derive(Clone)` after https://github.com/rust-lang/rust/issues/26925 // is resolved or restrict `M: Clone` and `E: Clone`. impl Clone for Elem { fn clone(&self) -> Self { Self { limbs: self.limbs.clone(), encoding: self.encoding, } } } impl Elem { #[inline] pub fn is_zero(&self) -> bool { self.limbs.is_zero() } } /// Does a Montgomery reduction on `limbs` assuming they are Montgomery-encoded ('R') and assuming /// they are the same size as `m`, but perhaps not reduced mod `m`. The result will be /// fully reduced mod `m`. fn from_montgomery_amm(limbs: BoxedLimbs, m: &Modulus) -> Elem { debug_assert_eq!(limbs.len(), m.limbs().len()); let mut limbs = limbs; let num_limbs = m.width().num_limbs; let mut one = [0; MODULUS_MAX_LIMBS]; one[0] = 1; let one = &one[..num_limbs]; // assert!(num_limbs <= MODULUS_MAX_LIMBS); limbs_mont_mul(&mut limbs, one, m.limbs(), m.n0(), m.cpu_features()); Elem { limbs, encoding: PhantomData, } } impl Elem { #[inline] pub fn into_unencoded(self, m: &Modulus) -> Elem { from_montgomery_amm(self.limbs, m) } } impl Elem { pub fn from_be_bytes_padded( input: untrusted::Input, m: &Modulus, ) -> Result { Ok(Self { limbs: BoxedLimbs::from_be_bytes_padded_less_than(input, m)?, encoding: PhantomData, }) } #[inline] pub fn fill_be_bytes(&self, out: &mut [u8]) { // See Falko Strenzke, "Manger's Attack revisited", ICICS 2010. limb::big_endian_from_limbs(&self.limbs, out) } fn is_one(&self) -> bool { limb::limbs_equal_limb_constant_time(&self.limbs, 1) == LimbMask::True } } pub fn elem_mul( a: &Elem, b: Elem, m: &Modulus, ) -> Elem::Output> where (AF, BF): ProductEncoding, { elem_mul_(a, b, &m.as_partial()) } fn elem_mul_( a: &Elem, mut b: Elem, m: &PartialModulus, ) -> Elem::Output> where (AF, BF): ProductEncoding, { limbs_mont_mul(&mut b.limbs, &a.limbs, m.limbs(), m.n0(), m.cpu_features()); Elem { limbs: b.limbs, encoding: PhantomData, } } fn elem_mul_by_2(a: &mut Elem, m: &PartialModulus) { prefixed_extern! { fn LIMBS_shl_mod(r: *mut Limb, a: *const Limb, m: *const Limb, num_limbs: c::size_t); } unsafe { LIMBS_shl_mod( a.limbs.as_mut_ptr(), a.limbs.as_ptr(), m.limbs().as_ptr(), m.limbs().len(), ); } } pub fn elem_reduced_once>( a: &Elem, m: &Modulus, ) -> Elem { let mut r = a.limbs.clone(); assert!(r.len() <= m.limbs().len()); limb::limbs_reduce_once_constant_time(&mut r, m.limbs()); Elem { limbs: BoxedLimbs::new_unchecked(r.into_limbs()), encoding: PhantomData, } } #[inline] pub fn elem_reduced>( a: &Elem, m: &Modulus, ) -> Elem { let mut tmp = [0; MODULUS_MAX_LIMBS]; let tmp = &mut tmp[..a.limbs.len()]; tmp.copy_from_slice(&a.limbs); let mut r = m.zero(); limbs_from_mont_in_place(&mut r.limbs, tmp, m.limbs(), m.n0()); r } fn elem_squared( mut a: Elem, m: &PartialModulus, ) -> Elem::Output> where (E, E): ProductEncoding, { limbs_mont_square(&mut a.limbs, m.limbs(), m.n0(), m.cpu_features()); Elem { limbs: a.limbs, encoding: PhantomData, } } pub fn elem_widen>( a: Elem, m: &Modulus, ) -> Elem { let mut r = m.zero(); r.limbs[..a.limbs.len()].copy_from_slice(&a.limbs); r } // TODO: Document why this works for all Montgomery factors. pub fn elem_add(mut a: Elem, b: Elem, m: &Modulus) -> Elem { limb::limbs_add_assign_mod(&mut a.limbs, &b.limbs, m.limbs()); a } // TODO: Document why this works for all Montgomery factors. pub fn elem_sub(mut a: Elem, b: &Elem, m: &Modulus) -> Elem { prefixed_extern! { // `r` and `a` may alias. fn LIMBS_sub_mod( r: *mut Limb, a: *const Limb, b: *const Limb, m: *const Limb, num_limbs: c::size_t, ); } unsafe { LIMBS_sub_mod( a.limbs.as_mut_ptr(), a.limbs.as_ptr(), b.limbs.as_ptr(), m.limbs().as_ptr(), m.limbs().len(), ); } a } // The value 1, Montgomery-encoded some number of times. pub struct One(Elem); impl One { // Returns RR = = R**2 (mod n) where R = 2**r is the smallest power of // 2**LIMB_BITS such that R > m. // // Even though the assembly on some 32-bit platforms works with 64-bit // values, using `LIMB_BITS` here, rather than `N0::LIMBS_USED * LIMB_BITS`, // is correct because R**2 will still be a multiple of the latter as // `N0::LIMBS_USED` is either one or two. fn newRR(m: &PartialModulus, m_bits: bits::BitLength) -> Self { let m_bits = m_bits.as_usize_bits(); let r = (m_bits + (LIMB_BITS - 1)) / LIMB_BITS * LIMB_BITS; // base = 2**(lg m - 1). let bit = m_bits - 1; let mut base = m.zero(); base.limbs[bit / LIMB_BITS] = 1 << (bit % LIMB_BITS); // Double `base` so that base == R == 2**r (mod m). For normal moduli // that have the high bit of the highest limb set, this requires one // doubling. Unusual moduli require more doublings but we are less // concerned about the performance of those. // // Then double `base` again so that base == 2*R (mod n), i.e. `2` in // Montgomery form (`elem_exp_vartime()` requires the base to be in // Montgomery form). Then compute // RR = R**2 == base**r == R**r == (2**r)**r (mod n). // // Take advantage of the fact that `elem_mul_by_2` is faster than // `elem_squared` by replacing some of the early squarings with shifts. // TODO: Benchmark shift vs. squaring performance to determine the // optimal value of `LG_BASE`. const LG_BASE: usize = 2; // Shifts vs. squaring trade-off. debug_assert_eq!(LG_BASE.count_ones(), 1); // Must be 2**n for n >= 0. let shifts = r - bit + LG_BASE; // `m_bits >= LG_BASE` (for the currently chosen value of `LG_BASE`) // since we require the modulus to have at least `MODULUS_MIN_LIMBS` // limbs. `r >= m_bits` as seen above. So `r >= LG_BASE` and thus // `r / LG_BASE` is non-zero. // // The maximum value of `r` is determined by // `MODULUS_MAX_LIMBS * LIMB_BITS`. Further `r` is a multiple of // `LIMB_BITS` so the maximum Hamming Weight is bounded by // `MODULUS_MAX_LIMBS`. For the common case of {2048, 4096, 8192}-bit // moduli the Hamming weight is 1. For the other common case of 3072 // the Hamming weight is 2. let exponent = NonZeroU64::new(u64_from_usize(r / LG_BASE)).unwrap(); for _ in 0..shifts { elem_mul_by_2(&mut base, m) } let RR = elem_exp_vartime(base, exponent, m); Self(Elem { limbs: RR.limbs, encoding: PhantomData, // PhantomData }) } } impl AsRef> for One { fn as_ref(&self) -> &Elem { &self.0 } } impl Clone for One { fn clone(&self) -> Self { Self(self.0.clone()) } } /// Calculates base**exponent (mod m). /// /// The run time is a function of the number of limbs in `m` and the bit /// length and Hamming Weight of `exponent`. The bounds on `m` are pretty /// obvious but the bounds on `exponent` are less obvious. Callers should /// document the bounds they place on the maximum value and maximum Hamming /// weight of `exponent`. // TODO: The test coverage needs to be expanded, e.g. test with the largest // accepted exponent and with the most common values of 65537 and 3. pub(crate) fn elem_exp_vartime( base: Elem, exponent: NonZeroU64, m: &PartialModulus, ) -> Elem { // Use what [Knuth] calls the "S-and-X binary method", i.e. variable-time // square-and-multiply that scans the exponent from the most significant // bit to the least significant bit (left-to-right). Left-to-right requires // less storage compared to right-to-left scanning, at the cost of needing // to compute `exponent.leading_zeros()`, which we assume to be cheap. // // As explained in [Knuth], exponentiation by squaring is the most // efficient algorithm when the Hamming weight is 2 or less. It isn't the // most efficient for all other, uncommon, exponent values but any // suboptimality is bounded at least by the small bit length of `exponent` // as enforced by its type. // // This implementation is slightly simplified by taking advantage of the // fact that we require the exponent to be a positive integer. // // [Knuth]: The Art of Computer Programming, Volume 2: Seminumerical // Algorithms (3rd Edition), Section 4.6.3. let exponent = exponent.get(); let mut acc = base.clone(); let mut bit = 1 << (64 - 1 - exponent.leading_zeros()); debug_assert!((exponent & bit) != 0); while bit > 1 { bit >>= 1; acc = elem_squared(acc, m); if (exponent & bit) != 0 { acc = elem_mul_(&base, acc, m); } } acc } /// Uses Fermat's Little Theorem to calculate modular inverse in constant time. pub fn elem_inverse_consttime( a: Elem, m: &Modulus, ) -> Result, error::Unspecified> { elem_exp_consttime(a, &PrivateExponent::for_flt(m), m) } #[cfg(not(target_arch = "x86_64"))] pub fn elem_exp_consttime( base: Elem, exponent: &PrivateExponent, m: &Modulus, ) -> Result, error::Unspecified> { use crate::{bssl, limb::Window}; const WINDOW_BITS: usize = 5; const TABLE_ENTRIES: usize = 1 << WINDOW_BITS; let num_limbs = m.limbs().len(); let mut table = vec![0; TABLE_ENTRIES * num_limbs]; fn gather(table: &[Limb], i: Window, r: &mut Elem) { prefixed_extern! { fn LIMBS_select_512_32( r: *mut Limb, table: *const Limb, num_limbs: c::size_t, i: Window, ) -> bssl::Result; } Result::from(unsafe { LIMBS_select_512_32(r.limbs.as_mut_ptr(), table.as_ptr(), r.limbs.len(), i) }) .unwrap(); } fn power( table: &[Limb], i: Window, mut acc: Elem, mut tmp: Elem, m: &Modulus, ) -> (Elem, Elem) { for _ in 0..WINDOW_BITS { acc = elem_squared(acc, &m.as_partial()); } gather(table, i, &mut tmp); let acc = elem_mul(&tmp, acc, m); (acc, tmp) } let tmp = m.one(); let tmp = elem_mul(m.oneRR().as_ref(), tmp, m); fn entry(table: &[Limb], i: usize, num_limbs: usize) -> &[Limb] { &table[(i * num_limbs)..][..num_limbs] } fn entry_mut(table: &mut [Limb], i: usize, num_limbs: usize) -> &mut [Limb] { &mut table[(i * num_limbs)..][..num_limbs] } entry_mut(&mut table, 0, num_limbs).copy_from_slice(&tmp.limbs); entry_mut(&mut table, 1, num_limbs).copy_from_slice(&base.limbs); for i in 2..TABLE_ENTRIES { let (src1, src2) = if i % 2 == 0 { (i / 2, i / 2) } else { (i - 1, 1) }; let (previous, rest) = table.split_at_mut(num_limbs * i); let src1 = entry(previous, src1, num_limbs); let src2 = entry(previous, src2, num_limbs); let dst = entry_mut(rest, 0, num_limbs); limbs_mont_product(dst, src1, src2, m.limbs(), m.n0(), m.cpu_features()); } let (r, _) = limb::fold_5_bit_windows( exponent.limbs(), |initial_window| { let mut r = Elem { limbs: base.limbs, encoding: PhantomData, }; gather(&table, initial_window, &mut r); (r, tmp) }, |(acc, tmp), window| power(&table, window, acc, tmp, m), ); let r = r.into_unencoded(m); Ok(r) } #[cfg(target_arch = "x86_64")] pub fn elem_exp_consttime( base: Elem, exponent: &PrivateExponent, m: &Modulus, ) -> Result, error::Unspecified> { use crate::limb::LIMB_BYTES; // Pretty much all the math here requires CPU feature detection to have // been done. `cpu_features` isn't threaded through all the internal // functions, so just make it clear that it has been done at this point. let cpu_features = m.cpu_features(); // The x86_64 assembly was written under the assumption that the input data // is aligned to `MOD_EXP_CTIME_ALIGN` bytes, which was/is 64 in OpenSSL. // Similarly, OpenSSL uses the x86_64 assembly functions by giving it only // inputs `tmp`, `am`, and `np` that immediately follow the table. All the // awkwardness here stems from trying to use the assembly code like OpenSSL // does. use crate::limb::Window; const WINDOW_BITS: usize = 5; const TABLE_ENTRIES: usize = 1 << WINDOW_BITS; let num_limbs = m.limbs().len(); const ALIGNMENT: usize = 64; assert_eq!(ALIGNMENT % LIMB_BYTES, 0); let mut table = vec![0; ((TABLE_ENTRIES + 3) * num_limbs) + ALIGNMENT]; let (table, state) = { let misalignment = (table.as_ptr() as usize) % ALIGNMENT; let table = &mut table[((ALIGNMENT - misalignment) / LIMB_BYTES)..]; assert_eq!((table.as_ptr() as usize) % ALIGNMENT, 0); table.split_at_mut(TABLE_ENTRIES * num_limbs) }; fn entry(table: &[Limb], i: usize, num_limbs: usize) -> &[Limb] { &table[(i * num_limbs)..][..num_limbs] } fn entry_mut(table: &mut [Limb], i: usize, num_limbs: usize) -> &mut [Limb] { &mut table[(i * num_limbs)..][..num_limbs] } const ACC: usize = 0; // `tmp` in OpenSSL const BASE: usize = ACC + 1; // `am` in OpenSSL const M: usize = BASE + 1; // `np` in OpenSSL entry_mut(state, BASE, num_limbs).copy_from_slice(&base.limbs); entry_mut(state, M, num_limbs).copy_from_slice(m.limbs()); fn scatter(table: &mut [Limb], state: &[Limb], i: Window, num_limbs: usize) { prefixed_extern! { fn bn_scatter5(a: *const Limb, a_len: c::size_t, table: *mut Limb, i: Window); } unsafe { bn_scatter5( entry(state, ACC, num_limbs).as_ptr(), num_limbs, table.as_mut_ptr(), i, ) } } fn gather(table: &[Limb], state: &mut [Limb], i: Window, num_limbs: usize) { prefixed_extern! { fn bn_gather5(r: *mut Limb, a_len: c::size_t, table: *const Limb, i: Window); } unsafe { bn_gather5( entry_mut(state, ACC, num_limbs).as_mut_ptr(), num_limbs, table.as_ptr(), i, ) } } fn gather_square( table: &[Limb], state: &mut [Limb], n0: &N0, i: Window, num_limbs: usize, cpu_features: cpu::Features, ) { gather(table, state, i, num_limbs); assert_eq!(ACC, 0); let (acc, rest) = state.split_at_mut(num_limbs); let m = entry(rest, M - 1, num_limbs); limbs_mont_square(acc, m, n0, cpu_features); } fn gather_mul_base_amm( table: &[Limb], state: &mut [Limb], n0: &N0, i: Window, num_limbs: usize, ) { prefixed_extern! { fn bn_mul_mont_gather5( rp: *mut Limb, ap: *const Limb, table: *const Limb, np: *const Limb, n0: &N0, num: c::size_t, power: Window, ); } unsafe { bn_mul_mont_gather5( entry_mut(state, ACC, num_limbs).as_mut_ptr(), entry(state, BASE, num_limbs).as_ptr(), table.as_ptr(), entry(state, M, num_limbs).as_ptr(), n0, num_limbs, i, ); } } fn power_amm(table: &[Limb], state: &mut [Limb], n0: &N0, i: Window, num_limbs: usize) { prefixed_extern! { fn bn_power5( r: *mut Limb, a: *const Limb, table: *const Limb, n: *const Limb, n0: &N0, num: c::size_t, i: Window, ); } unsafe { bn_power5( entry_mut(state, ACC, num_limbs).as_mut_ptr(), entry_mut(state, ACC, num_limbs).as_mut_ptr(), table.as_ptr(), entry(state, M, num_limbs).as_ptr(), n0, num_limbs, i, ); } } // table[0] = base**0. { let acc = entry_mut(state, ACC, num_limbs); acc[0] = 1; limbs_mont_mul(acc, &m.oneRR().0.limbs, m.limbs(), m.n0(), cpu_features); } scatter(table, state, 0, num_limbs); // table[1] = base**1. entry_mut(state, ACC, num_limbs).copy_from_slice(&base.limbs); scatter(table, state, 1, num_limbs); for i in 2..(TABLE_ENTRIES as Window) { if i % 2 == 0 { // TODO: Optimize this to avoid gathering gather_square(table, state, m.n0(), i / 2, num_limbs, cpu_features); } else { gather_mul_base_amm(table, state, m.n0(), i - 1, num_limbs) }; scatter(table, state, i, num_limbs); } let state = limb::fold_5_bit_windows( exponent.limbs(), |initial_window| { gather(table, state, initial_window, num_limbs); state }, |state, window| { power_amm(table, state, m.n0(), window, num_limbs); state }, ); let mut r_amm = base.limbs; r_amm.copy_from_slice(entry(state, ACC, num_limbs)); Ok(from_montgomery_amm(r_amm, m)) } /// Verified a == b**-1 (mod m), i.e. a**-1 == b (mod m). pub fn verify_inverses_consttime( a: &Elem, b: Elem, m: &Modulus, ) -> Result<(), error::Unspecified> { if elem_mul(a, b, m).is_one() { Ok(()) } else { Err(error::Unspecified) } } #[inline] pub fn elem_verify_equal_consttime( a: &Elem, b: &Elem, ) -> Result<(), error::Unspecified> { if limb::limbs_equal_limbs_consttime(&a.limbs, &b.limbs) == LimbMask::True { Ok(()) } else { Err(error::Unspecified) } } // TODO: Move these methods from `Nonnegative` to `Modulus`. impl Nonnegative { pub fn to_elem(&self, m: &Modulus) -> Result, error::Unspecified> { self.verify_less_than_modulus(m)?; let mut r = m.zero(); r.limbs[0..self.limbs().len()].copy_from_slice(self.limbs()); Ok(r) } pub fn verify_less_than_modulus(&self, m: &Modulus) -> Result<(), error::Unspecified> { if self.limbs().len() > m.limbs().len() { return Err(error::Unspecified); } if self.limbs().len() == m.limbs().len() { if limb::limbs_less_than_limbs_consttime(self.limbs(), m.limbs()) != LimbMask::True { return Err(error::Unspecified); } } Ok(()) } } /// r *= a fn limbs_mont_mul(r: &mut [Limb], a: &[Limb], m: &[Limb], n0: &N0, _cpu_features: cpu::Features) { debug_assert_eq!(r.len(), m.len()); debug_assert_eq!(a.len(), m.len()); unsafe { bn_mul_mont( r.as_mut_ptr(), r.as_ptr(), a.as_ptr(), m.as_ptr(), n0, r.len(), ) } } /// r = a * b #[cfg(not(target_arch = "x86_64"))] fn limbs_mont_product( r: &mut [Limb], a: &[Limb], b: &[Limb], m: &[Limb], n0: &N0, _cpu_features: cpu::Features, ) { debug_assert_eq!(r.len(), m.len()); debug_assert_eq!(a.len(), m.len()); debug_assert_eq!(b.len(), m.len()); unsafe { bn_mul_mont( r.as_mut_ptr(), a.as_ptr(), b.as_ptr(), m.as_ptr(), n0, r.len(), ) } } /// r = r**2 fn limbs_mont_square(r: &mut [Limb], m: &[Limb], n0: &N0, _cpu_features: cpu::Features) { debug_assert_eq!(r.len(), m.len()); unsafe { bn_mul_mont( r.as_mut_ptr(), r.as_ptr(), r.as_ptr(), m.as_ptr(), n0, r.len(), ) } } prefixed_extern! { // `r` and/or 'a' and/or 'b' may alias. fn bn_mul_mont( r: *mut Limb, a: *const Limb, b: *const Limb, n: *const Limb, n0: &N0, num_limbs: c::size_t, ); } #[cfg(test)] mod tests { use super::{modulus::MODULUS_MIN_LIMBS, *}; use crate::{limb::LIMB_BYTES, test}; use alloc::format; // Type-level representation of an arbitrary modulus. struct M {} impl PublicModulus for M {} #[test] fn test_elem_exp_consttime() { let cpu_features = cpu::features(); test::run( test_file!("../../crypto/fipsmodule/bn/test/mod_exp_tests.txt"), |section, test_case| { assert_eq!(section, ""); let m = consume_modulus::(test_case, "M", cpu_features); let expected_result = consume_elem(test_case, "ModExp", &m); let base = consume_elem(test_case, "A", &m); let e = { let bytes = test_case.consume_bytes("E"); PrivateExponent::from_be_bytes_for_test_only(untrusted::Input::from(&bytes), &m) .expect("valid exponent") }; let base = into_encoded(base, &m); let actual_result = elem_exp_consttime(base, &e, &m).unwrap(); assert_elem_eq(&actual_result, &expected_result); Ok(()) }, ) } // TODO: fn test_elem_exp_vartime() using // "src/rsa/bigint_elem_exp_vartime_tests.txt". See that file for details. // In the meantime, the function is tested indirectly via the RSA // verification and signing tests. #[test] fn test_elem_mul() { let cpu_features = cpu::features(); test::run( test_file!("../../crypto/fipsmodule/bn/test/mod_mul_tests.txt"), |section, test_case| { assert_eq!(section, ""); let m = consume_modulus::(test_case, "M", cpu_features); let expected_result = consume_elem(test_case, "ModMul", &m); let a = consume_elem(test_case, "A", &m); let b = consume_elem(test_case, "B", &m); let b = into_encoded(b, &m); let a = into_encoded(a, &m); let actual_result = elem_mul(&a, b, &m); let actual_result = actual_result.into_unencoded(&m); assert_elem_eq(&actual_result, &expected_result); Ok(()) }, ) } #[test] fn test_elem_squared() { let cpu_features = cpu::features(); test::run( test_file!("bigint_elem_squared_tests.txt"), |section, test_case| { assert_eq!(section, ""); let m = consume_modulus::(test_case, "M", cpu_features); let expected_result = consume_elem(test_case, "ModSquare", &m); let a = consume_elem(test_case, "A", &m); let a = into_encoded(a, &m); let actual_result = elem_squared(a, &m.as_partial()); let actual_result = actual_result.into_unencoded(&m); assert_elem_eq(&actual_result, &expected_result); Ok(()) }, ) } #[test] fn test_elem_reduced() { let cpu_features = cpu::features(); test::run( test_file!("bigint_elem_reduced_tests.txt"), |section, test_case| { assert_eq!(section, ""); struct MM {} unsafe impl SmallerModulus for M {} unsafe impl NotMuchSmallerModulus for M {} let m = consume_modulus::(test_case, "M", cpu_features); let expected_result = consume_elem(test_case, "R", &m); let a = consume_elem_unchecked::(test_case, "A", expected_result.limbs.len() * 2); let actual_result = elem_reduced(&a, &m); let oneRR = m.oneRR(); let actual_result = elem_mul(oneRR.as_ref(), actual_result, &m); assert_elem_eq(&actual_result, &expected_result); Ok(()) }, ) } #[test] fn test_elem_reduced_once() { let cpu_features = cpu::features(); test::run( test_file!("bigint_elem_reduced_once_tests.txt"), |section, test_case| { assert_eq!(section, ""); struct N {} struct QQ {} unsafe impl SmallerModulus for QQ {} unsafe impl SlightlySmallerModulus for QQ {} let qq = consume_modulus::(test_case, "QQ", cpu_features); let expected_result = consume_elem::(test_case, "R", &qq); let n = consume_modulus::(test_case, "N", cpu_features); let a = consume_elem::(test_case, "A", &n); let actual_result = elem_reduced_once(&a, &qq); assert_elem_eq(&actual_result, &expected_result); Ok(()) }, ) } #[test] fn test_modulus_debug() { let (modulus, _) = Modulus::::from_be_bytes_with_bit_length( untrusted::Input::from(&[0xff; LIMB_BYTES * MODULUS_MIN_LIMBS]), cpu::features(), ) .unwrap(); assert_eq!("Modulus", format!("{:?}", modulus)); } fn consume_elem( test_case: &mut test::TestCase, name: &str, m: &Modulus, ) -> Elem { let value = test_case.consume_bytes(name); Elem::from_be_bytes_padded(untrusted::Input::from(&value), m).unwrap() } fn consume_elem_unchecked( test_case: &mut test::TestCase, name: &str, num_limbs: usize, ) -> Elem { let value = consume_nonnegative(test_case, name); let mut limbs = BoxedLimbs::zero(Width { num_limbs, m: PhantomData, }); limbs[0..value.limbs().len()].copy_from_slice(value.limbs()); Elem { limbs, encoding: PhantomData, } } fn consume_modulus( test_case: &mut test::TestCase, name: &str, cpu_features: cpu::Features, ) -> Modulus { let value = test_case.consume_bytes(name); let (value, _) = Modulus::from_be_bytes_with_bit_length(untrusted::Input::from(&value), cpu_features) .unwrap(); value } fn consume_nonnegative(test_case: &mut test::TestCase, name: &str) -> Nonnegative { let bytes = test_case.consume_bytes(name); let (r, _r_bits) = Nonnegative::from_be_bytes_with_bit_length(untrusted::Input::from(&bytes)).unwrap(); r } fn assert_elem_eq(a: &Elem, b: &Elem) { if elem_verify_equal_consttime(a, b).is_err() { panic!("{:x?} != {:x?}", &*a.limbs, &*b.limbs); } } fn into_encoded(a: Elem, m: &Modulus) -> Elem { elem_mul(m.oneRR().as_ref(), a, m) } }