// Copyright 2015-2021 Brian Smith. // // Permission to use, copy, modify, and/or distribute this software for any // purpose with or without fee is hereby granted, provided that the above // copyright notice and this permission notice appear in all copies. // // THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHORS DISCLAIM ALL WARRANTIES // WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF // MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHORS BE LIABLE FOR ANY // SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES // WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION // OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN // CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. //! Authenticated Encryption with Associated Data (AEAD). //! //! See [Authenticated encryption: relations among notions and analysis of the //! generic composition paradigm][AEAD] for an introduction to the concept of //! AEADs. //! //! [AEAD]: https://eprint.iacr.org/2000/025.pdf //! [`crypto.cipher.AEAD`]: https://golang.org/pkg/crypto/cipher/#AEAD use super::{Aad, Algorithm, BoundKey, LessSafeKey, NonceSequence, Tag, UnboundKey}; use crate::error; /// An AEAD key for encrypting and signing ("sealing"), bound to a nonce /// sequence. /// /// Intentionally not `Clone` or `Copy` since cloning would allow duplication /// of the nonce sequence. pub struct SealingKey { key: LessSafeKey, nonce_sequence: N, } impl BoundKey for SealingKey { fn new(key: UnboundKey, nonce_sequence: N) -> Self { Self { key: key.into_inner(), nonce_sequence, } } #[inline] fn algorithm(&self) -> &'static Algorithm { self.key.algorithm() } } impl core::fmt::Debug for SealingKey { fn fmt(&self, f: &mut core::fmt::Formatter) -> Result<(), core::fmt::Error> { self.key.fmt_debug("SealingKey", f) } } impl SealingKey { /// Encrypts and signs (“seals”) data in place, appending the tag to the /// resulting ciphertext. /// /// `key.seal_in_place_append_tag(aad, in_out)` is equivalent to: /// /// ```skip /// key.seal_in_place_separate_tag(aad, in_out.as_mut()) /// .map(|tag| in_out.extend(tag.as_ref())) /// ``` #[inline] pub fn seal_in_place_append_tag( &mut self, aad: Aad, in_out: &mut InOut, ) -> Result<(), error::Unspecified> where A: AsRef<[u8]>, InOut: AsMut<[u8]> + for<'in_out> Extend<&'in_out u8>, { self.key .seal_in_place_append_tag(self.nonce_sequence.advance()?, aad, in_out) } /// Encrypts and signs (“seals”) data in place. /// /// `aad` is the additional authenticated data (AAD), if any. This is /// authenticated but not encrypted. The type `A` could be a byte slice /// `&[u8]`, a byte array `[u8; N]` for some constant `N`, `Vec`, etc. /// If there is no AAD then use `Aad::empty()`. /// /// The plaintext is given as the input value of `in_out`. `seal_in_place()` /// will overwrite the plaintext with the ciphertext and return the tag. /// For most protocols, the caller must append the tag to the ciphertext. /// The tag will be `self.algorithm.tag_len()` bytes long. #[inline] pub fn seal_in_place_separate_tag( &mut self, aad: Aad, in_out: &mut [u8], ) -> Result where A: AsRef<[u8]>, { self.key .seal_in_place_separate_tag(self.nonce_sequence.advance()?, aad, in_out) } }