// Copyright 2018 The ChromiumOS Authors // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. mod read_dir; use std::cmp::min; use std::collections::btree_map; use std::collections::BTreeMap; use std::ffi::CStr; use std::ffi::CString; use std::fs::File; use std::io; use std::io::Cursor; use std::io::Read; use std::io::Write; use std::mem; use std::mem::MaybeUninit; use std::ops::Deref; use std::os::unix::ffi::OsStrExt; use std::os::unix::fs::FileExt; use std::os::unix::io::AsRawFd; use std::os::unix::io::FromRawFd; use std::os::unix::io::RawFd; use std::path::Path; use std::str::FromStr; use read_dir::read_dir; use serde::Deserialize; use serde::Serialize; use crate::protocol::*; use crate::syscall; // Tlopen and Tlcreate flags. Taken from "include/net/9p/9p.h" in the linux tree. const P9_RDONLY: u32 = 0o00000000; const P9_WRONLY: u32 = 0o00000001; const P9_RDWR: u32 = 0o00000002; const P9_NOACCESS: u32 = 0o00000003; const P9_CREATE: u32 = 0o00000100; const P9_EXCL: u32 = 0o00000200; const P9_NOCTTY: u32 = 0o00000400; const P9_TRUNC: u32 = 0o00001000; const P9_APPEND: u32 = 0o00002000; const P9_NONBLOCK: u32 = 0o00004000; const P9_DSYNC: u32 = 0o00010000; const P9_FASYNC: u32 = 0o00020000; const P9_DIRECT: u32 = 0o00040000; const P9_LARGEFILE: u32 = 0o00100000; const P9_DIRECTORY: u32 = 0o00200000; const P9_NOFOLLOW: u32 = 0o00400000; const P9_NOATIME: u32 = 0o01000000; const _P9_CLOEXEC: u32 = 0o02000000; const P9_SYNC: u32 = 0o04000000; // Mapping from 9P flags to libc flags. const MAPPED_FLAGS: [(u32, i32); 16] = [ (P9_WRONLY, libc::O_WRONLY), (P9_RDWR, libc::O_RDWR), (P9_CREATE, libc::O_CREAT), (P9_EXCL, libc::O_EXCL), (P9_NOCTTY, libc::O_NOCTTY), (P9_TRUNC, libc::O_TRUNC), (P9_APPEND, libc::O_APPEND), (P9_NONBLOCK, libc::O_NONBLOCK), (P9_DSYNC, libc::O_DSYNC), (P9_FASYNC, 0), // Unsupported (P9_DIRECT, libc::O_DIRECT), (P9_LARGEFILE, libc::O_LARGEFILE), (P9_DIRECTORY, libc::O_DIRECTORY), (P9_NOFOLLOW, libc::O_NOFOLLOW), (P9_NOATIME, libc::O_NOATIME), (P9_SYNC, libc::O_SYNC), ]; // 9P Qid types. Taken from "include/net/9p/9p.h" in the linux tree. const P9_QTDIR: u8 = 0x80; const _P9_QTAPPEND: u8 = 0x40; const _P9_QTEXCL: u8 = 0x20; const _P9_QTMOUNT: u8 = 0x10; const _P9_QTAUTH: u8 = 0x08; const _P9_QTTMP: u8 = 0x04; const P9_QTSYMLINK: u8 = 0x02; const _P9_QTLINK: u8 = 0x01; const P9_QTFILE: u8 = 0x00; // Bitmask values for the getattr request. const _P9_GETATTR_MODE: u64 = 0x00000001; const _P9_GETATTR_NLINK: u64 = 0x00000002; const _P9_GETATTR_UID: u64 = 0x00000004; const _P9_GETATTR_GID: u64 = 0x00000008; const _P9_GETATTR_RDEV: u64 = 0x00000010; const _P9_GETATTR_ATIME: u64 = 0x00000020; const _P9_GETATTR_MTIME: u64 = 0x00000040; const _P9_GETATTR_CTIME: u64 = 0x00000080; const _P9_GETATTR_INO: u64 = 0x00000100; const _P9_GETATTR_SIZE: u64 = 0x00000200; const _P9_GETATTR_BLOCKS: u64 = 0x00000400; const _P9_GETATTR_BTIME: u64 = 0x00000800; const _P9_GETATTR_GEN: u64 = 0x00001000; const _P9_GETATTR_DATA_VERSION: u64 = 0x00002000; const P9_GETATTR_BASIC: u64 = 0x000007ff; /* Mask for fields up to BLOCKS */ const _P9_GETATTR_ALL: u64 = 0x00003fff; /* Mask for All fields above */ // Bitmask values for the setattr request. const P9_SETATTR_MODE: u32 = 0x00000001; const P9_SETATTR_UID: u32 = 0x00000002; const P9_SETATTR_GID: u32 = 0x00000004; const P9_SETATTR_SIZE: u32 = 0x00000008; const P9_SETATTR_ATIME: u32 = 0x00000010; const P9_SETATTR_MTIME: u32 = 0x00000020; const P9_SETATTR_CTIME: u32 = 0x00000040; const P9_SETATTR_ATIME_SET: u32 = 0x00000080; const P9_SETATTR_MTIME_SET: u32 = 0x00000100; // 9p lock constants. Taken from "include/net/9p/9p.h" in the linux kernel. const _P9_LOCK_TYPE_RDLCK: u8 = 0; const _P9_LOCK_TYPE_WRLCK: u8 = 1; const P9_LOCK_TYPE_UNLCK: u8 = 2; const _P9_LOCK_FLAGS_BLOCK: u8 = 1; const _P9_LOCK_FLAGS_RECLAIM: u8 = 2; const P9_LOCK_SUCCESS: u8 = 0; const _P9_LOCK_BLOCKED: u8 = 1; const _P9_LOCK_ERROR: u8 = 2; const _P9_LOCK_GRACE: u8 = 3; // Minimum and maximum message size that we'll expect from the client. const MIN_MESSAGE_SIZE: u32 = 256; const MAX_MESSAGE_SIZE: u32 = 64 * 1024 + 24; // 64 KiB of payload plus some extra for the header #[derive(PartialEq, Eq)] enum FileType { Regular, Directory, Other, } impl From for FileType { fn from(mode: libc::mode_t) -> Self { match mode & libc::S_IFMT { libc::S_IFREG => FileType::Regular, libc::S_IFDIR => FileType::Directory, _ => FileType::Other, } } } // Represents state that the server is holding on behalf of a client. Fids are somewhat like file // descriptors but are not restricted to open files and directories. Fids are identified by a unique // 32-bit number chosen by the client. Most messages sent by clients include a fid on which to // operate. The fid in a Tattach message represents the root of the file system tree that the client // is allowed to access. A client can create more fids by walking the directory tree from that fid. struct Fid { path: File, file: Option, filetype: FileType, } impl From for Qid { fn from(st: libc::stat64) -> Qid { let ty = match st.st_mode & libc::S_IFMT { libc::S_IFDIR => P9_QTDIR, libc::S_IFREG => P9_QTFILE, libc::S_IFLNK => P9_QTSYMLINK, _ => 0, }; Qid { ty, // TODO: deal with the 2038 problem before 2038 version: st.st_mtime as u32, path: st.st_ino, } } } fn statat(d: &File, name: &CStr, flags: libc::c_int) -> io::Result { let mut st = MaybeUninit::::zeroed(); // Safe because the kernel will only write data in `st` and we check the return // value. let res = unsafe { libc::fstatat64( d.as_raw_fd(), name.as_ptr(), st.as_mut_ptr(), flags | libc::AT_SYMLINK_NOFOLLOW, ) }; if res >= 0 { // Safe because the kernel guarantees that the struct is now fully initialized. Ok(unsafe { st.assume_init() }) } else { Err(io::Error::last_os_error()) } } fn stat(f: &File) -> io::Result { // Safe because this is a constant value and a valid C string. let pathname = unsafe { CStr::from_bytes_with_nul_unchecked(b"\0") }; statat(f, pathname, libc::AT_EMPTY_PATH) } fn string_to_cstring(s: String) -> io::Result { CString::new(s).map_err(|_| io::Error::from_raw_os_error(libc::EINVAL)) } fn error_to_rmessage(err: io::Error) -> Rmessage { let errno = if let Some(errno) = err.raw_os_error() { errno } else { // Make a best-effort guess based on the kind. match err.kind() { io::ErrorKind::NotFound => libc::ENOENT, io::ErrorKind::PermissionDenied => libc::EPERM, io::ErrorKind::ConnectionRefused => libc::ECONNREFUSED, io::ErrorKind::ConnectionReset => libc::ECONNRESET, io::ErrorKind::ConnectionAborted => libc::ECONNABORTED, io::ErrorKind::NotConnected => libc::ENOTCONN, io::ErrorKind::AddrInUse => libc::EADDRINUSE, io::ErrorKind::AddrNotAvailable => libc::EADDRNOTAVAIL, io::ErrorKind::BrokenPipe => libc::EPIPE, io::ErrorKind::AlreadyExists => libc::EEXIST, io::ErrorKind::WouldBlock => libc::EWOULDBLOCK, io::ErrorKind::InvalidInput => libc::EINVAL, io::ErrorKind::InvalidData => libc::EINVAL, io::ErrorKind::TimedOut => libc::ETIMEDOUT, io::ErrorKind::WriteZero => libc::EIO, io::ErrorKind::Interrupted => libc::EINTR, io::ErrorKind::Other => libc::EIO, io::ErrorKind::UnexpectedEof => libc::EIO, _ => libc::EIO, } }; Rmessage::Lerror(Rlerror { ecode: errno as u32, }) } // Sigh.. Cow requires the underlying type to implement Clone. enum MaybeOwned<'b, T> { Borrowed(&'b T), Owned(T), } impl<'a, T> Deref for MaybeOwned<'a, T> { type Target = T; fn deref(&self) -> &Self::Target { use MaybeOwned::*; match *self { Borrowed(borrowed) => borrowed, Owned(ref owned) => owned, } } } impl<'a, T> AsRef for MaybeOwned<'a, T> { fn as_ref(&self) -> &T { use MaybeOwned::*; match self { Borrowed(borrowed) => borrowed, Owned(ref owned) => owned, } } } fn ebadf() -> io::Error { io::Error::from_raw_os_error(libc::EBADF) } pub type ServerIdMap = BTreeMap; pub type ServerUidMap = ServerIdMap; pub type ServerGidMap = ServerIdMap; fn map_id_from_host(map: &ServerIdMap, id: T) -> T { map.get(&id).map_or(id.clone(), |v| v.clone()) } // Performs an ascii case insensitive lookup and returns an O_PATH fd for the entry, if found. fn ascii_casefold_lookup(proc: &File, parent: &File, name: &[u8]) -> io::Result { let mut dir = open_fid(proc, parent, P9_DIRECTORY)?; let mut dirents = read_dir(&mut dir, 0)?; while let Some(entry) = dirents.next().transpose()? { if name.eq_ignore_ascii_case(entry.name.to_bytes()) { return lookup(parent, entry.name); } } Err(io::Error::from_raw_os_error(libc::ENOENT)) } fn lookup(parent: &File, name: &CStr) -> io::Result { // Safe because this doesn't modify any memory and we check the return value. let fd = syscall!(unsafe { libc::openat64( parent.as_raw_fd(), name.as_ptr(), libc::O_PATH | libc::O_NOFOLLOW | libc::O_CLOEXEC, ) })?; // Safe because we just opened this fd. Ok(unsafe { File::from_raw_fd(fd) }) } fn do_walk( proc: &File, wnames: Vec, start: &File, ascii_casefold: bool, mds: &mut Vec, ) -> io::Result { let mut current = MaybeOwned::Borrowed(start); for wname in wnames { let name = string_to_cstring(wname)?; current = MaybeOwned::Owned(lookup(current.as_ref(), &name).or_else(|e| { if ascii_casefold { if let Some(libc::ENOENT) = e.raw_os_error() { return ascii_casefold_lookup(proc, current.as_ref(), name.to_bytes()); } } Err(e) })?); mds.push(stat(¤t)?); } match current { MaybeOwned::Owned(owned) => Ok(owned), MaybeOwned::Borrowed(borrowed) => borrowed.try_clone(), } } fn open_fid(proc: &File, path: &File, p9_flags: u32) -> io::Result { let pathname = string_to_cstring(format!("self/fd/{}", path.as_raw_fd()))?; // We always open files with O_CLOEXEC. let mut flags: i32 = libc::O_CLOEXEC; for &(p9f, of) in &MAPPED_FLAGS { if (p9_flags & p9f) != 0 { flags |= of; } } if p9_flags & P9_NOACCESS == P9_RDONLY { flags |= libc::O_RDONLY; } // Safe because this doesn't modify any memory and we check the return value. We need to // clear the O_NOFOLLOW flag because we want to follow the proc symlink. let fd = syscall!(unsafe { libc::openat64( proc.as_raw_fd(), pathname.as_ptr(), flags & !libc::O_NOFOLLOW, ) })?; // Safe because we just opened this fd and we know it is valid. Ok(unsafe { File::from_raw_fd(fd) }) } #[derive(Clone, Serialize, Deserialize)] pub struct Config { pub root: Box, pub msize: u32, pub uid_map: ServerUidMap, pub gid_map: ServerGidMap, pub ascii_casefold: bool, } impl FromStr for Config { type Err = &'static str; fn from_str(params: &str) -> Result { let mut cfg = Self::default(); if params.is_empty() { return Ok(cfg); } for opt in params.split(':') { let mut o = opt.splitn(2, '='); let kind = o.next().ok_or("`cfg` options mut not be empty")?; let value = o .next() .ok_or("`cfg` options must be of the form `kind=value`")?; match kind { "ascii_casefold" => { let ascii_casefold = value .parse() .map_err(|_| "`ascii_casefold` must be a boolean")?; cfg.ascii_casefold = ascii_casefold; } _ => return Err("unrecognized option for p9 config"), } } Ok(cfg) } } impl Default for Config { fn default() -> Config { Config { root: Path::new("/").into(), msize: MAX_MESSAGE_SIZE, uid_map: Default::default(), gid_map: Default::default(), ascii_casefold: false, } } } pub struct Server { fids: BTreeMap, proc: File, cfg: Config, } impl Server { pub fn new>>( root: P, uid_map: ServerUidMap, gid_map: ServerGidMap, ) -> io::Result { Server::with_config(Config { root: root.into(), msize: MAX_MESSAGE_SIZE, uid_map, gid_map, ascii_casefold: false, }) } pub fn with_config(cfg: Config) -> io::Result { // Safe because this is a valid c-string. let proc_cstr = unsafe { CStr::from_bytes_with_nul_unchecked(b"/proc\0") }; // Safe because this doesn't modify any memory and we check the return value. let fd = syscall!(unsafe { libc::openat64( libc::AT_FDCWD, proc_cstr.as_ptr(), libc::O_PATH | libc::O_NOFOLLOW | libc::O_CLOEXEC, ) })?; // Safe because we just opened this fd and we know it is valid. let proc = unsafe { File::from_raw_fd(fd) }; Ok(Server { fids: BTreeMap::new(), proc, cfg, }) } pub fn keep_fds(&self) -> Vec { vec![self.proc.as_raw_fd()] } pub fn handle_message( &mut self, reader: &mut R, writer: &mut W, ) -> io::Result<()> { let Tframe { tag, msg } = WireFormat::decode(&mut reader.take(self.cfg.msize as u64))?; let rmsg = match msg { Ok(Tmessage::Version(ref version)) => self.version(version).map(Rmessage::Version), Ok(Tmessage::Flush(ref flush)) => self.flush(flush).and(Ok(Rmessage::Flush)), Ok(Tmessage::Walk(walk)) => self.walk(walk).map(Rmessage::Walk), Ok(Tmessage::Read(ref read)) => self.read(read).map(Rmessage::Read), Ok(Tmessage::Write(ref write)) => self.write(write).map(Rmessage::Write), Ok(Tmessage::Clunk(ref clunk)) => self.clunk(clunk).and(Ok(Rmessage::Clunk)), Ok(Tmessage::Remove(ref remove)) => self.remove(remove).and(Ok(Rmessage::Remove)), Ok(Tmessage::Attach(ref attach)) => self.attach(attach).map(Rmessage::Attach), Ok(Tmessage::Auth(ref auth)) => self.auth(auth).map(Rmessage::Auth), Ok(Tmessage::Statfs(ref statfs)) => self.statfs(statfs).map(Rmessage::Statfs), Ok(Tmessage::Lopen(ref lopen)) => self.lopen(lopen).map(Rmessage::Lopen), Ok(Tmessage::Lcreate(lcreate)) => self.lcreate(lcreate).map(Rmessage::Lcreate), Ok(Tmessage::Symlink(ref symlink)) => self.symlink(symlink).map(Rmessage::Symlink), Ok(Tmessage::Mknod(ref mknod)) => self.mknod(mknod).map(Rmessage::Mknod), Ok(Tmessage::Rename(ref rename)) => self.rename(rename).and(Ok(Rmessage::Rename)), Ok(Tmessage::Readlink(ref readlink)) => self.readlink(readlink).map(Rmessage::Readlink), Ok(Tmessage::GetAttr(ref get_attr)) => self.get_attr(get_attr).map(Rmessage::GetAttr), Ok(Tmessage::SetAttr(ref set_attr)) => { self.set_attr(set_attr).and(Ok(Rmessage::SetAttr)) } Ok(Tmessage::XattrWalk(ref xattr_walk)) => { self.xattr_walk(xattr_walk).map(Rmessage::XattrWalk) } Ok(Tmessage::XattrCreate(ref xattr_create)) => self .xattr_create(xattr_create) .and(Ok(Rmessage::XattrCreate)), Ok(Tmessage::Readdir(ref readdir)) => self.readdir(readdir).map(Rmessage::Readdir), Ok(Tmessage::Fsync(ref fsync)) => self.fsync(fsync).and(Ok(Rmessage::Fsync)), Ok(Tmessage::Lock(ref lock)) => self.lock(lock).map(Rmessage::Lock), Ok(Tmessage::GetLock(ref get_lock)) => self.get_lock(get_lock).map(Rmessage::GetLock), Ok(Tmessage::Link(link)) => self.link(link).and(Ok(Rmessage::Link)), Ok(Tmessage::Mkdir(mkdir)) => self.mkdir(mkdir).map(Rmessage::Mkdir), Ok(Tmessage::RenameAt(rename_at)) => { self.rename_at(rename_at).and(Ok(Rmessage::RenameAt)) } Ok(Tmessage::UnlinkAt(unlink_at)) => { self.unlink_at(unlink_at).and(Ok(Rmessage::UnlinkAt)) } Err(e) => { // The header was successfully decoded, but the body failed to decode - send an // error response for this tag. let error = format!("Tframe message decode failed: {}", e); Err(io::Error::new(io::ErrorKind::InvalidData, error)) } }; // Errors while handling requests are never fatal. let response = Rframe { tag, msg: rmsg.unwrap_or_else(error_to_rmessage), }; response.encode(writer)?; writer.flush() } fn auth(&mut self, _auth: &Tauth) -> io::Result { // Returning an error for the auth message means that the server does not require // authentication. Err(io::Error::from_raw_os_error(libc::EOPNOTSUPP)) } fn attach(&mut self, attach: &Tattach) -> io::Result { // TODO: Check attach parameters match self.fids.entry(attach.fid) { btree_map::Entry::Vacant(entry) => { let root = CString::new(self.cfg.root.as_os_str().as_bytes()) .map_err(|e| io::Error::new(io::ErrorKind::InvalidData, e))?; // Safe because this doesn't modify any memory and we check the return value. let fd = syscall!(unsafe { libc::openat64( libc::AT_FDCWD, root.as_ptr(), libc::O_PATH | libc::O_NOFOLLOW | libc::O_CLOEXEC, ) })?; let root_path = unsafe { File::from_raw_fd(fd) }; let st = stat(&root_path)?; let fid = Fid { // Safe because we just opened this fd. path: root_path, file: None, filetype: st.st_mode.into(), }; let response = Rattach { qid: st.into() }; entry.insert(fid); Ok(response) } btree_map::Entry::Occupied(_) => Err(io::Error::from_raw_os_error(libc::EBADF)), } } fn version(&mut self, version: &Tversion) -> io::Result { if version.msize < MIN_MESSAGE_SIZE { return Err(io::Error::from_raw_os_error(libc::EINVAL)); } // A Tversion request clunks all open fids and terminates any pending I/O. self.fids.clear(); self.cfg.msize = min(self.cfg.msize, version.msize); Ok(Rversion { msize: self.cfg.msize, version: if version.version == "9P2000.L" { String::from("9P2000.L") } else { String::from("unknown") }, }) } #[allow(clippy::unnecessary_wraps)] fn flush(&mut self, _flush: &Tflush) -> io::Result<()> { // TODO: Since everything is synchronous we can't actually flush requests. Ok(()) } fn walk(&mut self, walk: Twalk) -> io::Result { // `newfid` must not currently be in use unless it is the same as `fid`. if walk.fid != walk.newfid && self.fids.contains_key(&walk.newfid) { return Err(io::Error::from_raw_os_error(libc::EBADF)); } // We need to walk the tree. First get the starting path. let start = &self.fids.get(&walk.fid).ok_or_else(ebadf)?.path; // Now walk the tree and break on the first error, if any. let expected_len = walk.wnames.len(); let mut mds = Vec::with_capacity(expected_len); match do_walk( &self.proc, walk.wnames, start, self.cfg.ascii_casefold, &mut mds, ) { Ok(end) => { // Store the new fid if the full walk succeeded. if mds.len() == expected_len { let st = mds.last().copied().map(Ok).unwrap_or_else(|| stat(&end))?; self.fids.insert( walk.newfid, Fid { path: end, file: None, filetype: st.st_mode.into(), }, ); } } Err(e) => { // Only return an error if it occurred on the first component. if mds.is_empty() { return Err(e); } } } Ok(Rwalk { wqids: mds.into_iter().map(Qid::from).collect(), }) } fn read(&mut self, read: &Tread) -> io::Result { // Thankfully, `read` cannot be used to read directories in 9P2000.L. let file = self .fids .get_mut(&read.fid) .and_then(|fid| fid.file.as_mut()) .ok_or_else(ebadf)?; // Use an empty Rread struct to figure out the overhead of the header. let header_size = Rframe { tag: 0, msg: Rmessage::Read(Rread { data: Data(Vec::new()), }), } .byte_size(); let capacity = min(self.cfg.msize - header_size, read.count); let mut buf = Data(vec![0u8; capacity as usize]); let count = file.read_at(&mut buf, read.offset)?; buf.truncate(count); Ok(Rread { data: buf }) } fn write(&mut self, write: &Twrite) -> io::Result { let file = self .fids .get_mut(&write.fid) .and_then(|fid| fid.file.as_mut()) .ok_or_else(ebadf)?; let count = file.write_at(&write.data, write.offset)?; Ok(Rwrite { count: count as u32, }) } fn clunk(&mut self, clunk: &Tclunk) -> io::Result<()> { match self.fids.entry(clunk.fid) { btree_map::Entry::Vacant(_) => Err(io::Error::from_raw_os_error(libc::EBADF)), btree_map::Entry::Occupied(entry) => { entry.remove(); Ok(()) } } } fn remove(&mut self, _remove: &Tremove) -> io::Result<()> { // Since a file could be linked into multiple locations, there is no way to know exactly // which path we are supposed to unlink. Linux uses unlink_at anyway, so we can just return // an error here. Err(io::Error::from_raw_os_error(libc::EOPNOTSUPP)) } fn statfs(&mut self, statfs: &Tstatfs) -> io::Result { let fid = self.fids.get(&statfs.fid).ok_or_else(ebadf)?; let mut buf = MaybeUninit::zeroed(); // Safe because this will only modify `out` and we check the return value. syscall!(unsafe { libc::fstatfs64(fid.path.as_raw_fd(), buf.as_mut_ptr()) })?; // Safe because this only has integer types and any value is valid. let out = unsafe { buf.assume_init() }; Ok(Rstatfs { ty: out.f_type as u32, bsize: out.f_bsize as u32, blocks: out.f_blocks, bfree: out.f_bfree, bavail: out.f_bavail, files: out.f_files, ffree: out.f_ffree, // Safe because the fsid has only integer fields and the compiler will verify that is // the same width as the `fsid` field in Rstatfs. fsid: unsafe { mem::transmute(out.f_fsid) }, namelen: out.f_namelen as u32, }) } fn lopen(&mut self, lopen: &Tlopen) -> io::Result { let fid = self.fids.get_mut(&lopen.fid).ok_or_else(ebadf)?; let file = open_fid(&self.proc, &fid.path, lopen.flags)?; let st = stat(&file)?; fid.file = Some(file); Ok(Rlopen { qid: st.into(), iounit: 0, // Allow the client to send requests up to the negotiated max message size. }) } fn lcreate(&mut self, lcreate: Tlcreate) -> io::Result { let fid = self.fids.get_mut(&lcreate.fid).ok_or_else(ebadf)?; if fid.filetype != FileType::Directory { return Err(io::Error::from_raw_os_error(libc::ENOTDIR)); } let mut flags: i32 = libc::O_CLOEXEC | libc::O_CREAT | libc::O_EXCL; for &(p9f, of) in &MAPPED_FLAGS { if (lcreate.flags & p9f) != 0 { flags |= of; } } if lcreate.flags & P9_NOACCESS == P9_RDONLY { flags |= libc::O_RDONLY; } let name = string_to_cstring(lcreate.name)?; // Safe because this doesn't modify any memory and we check the return value. let fd = syscall!(unsafe { libc::openat64(fid.path.as_raw_fd(), name.as_ptr(), flags, lcreate.mode) })?; // Safe because we just opened this fd and we know it is valid. let file = unsafe { File::from_raw_fd(fd) }; let st = stat(&file)?; fid.file = Some(file); fid.filetype = FileType::Regular; // This fid now refers to the newly created file so we need to update the O_PATH fd for it // as well. fid.path = lookup(&fid.path, &name)?; Ok(Rlcreate { qid: st.into(), iounit: 0, // Allow the client to send requests up to the negotiated max message size. }) } fn symlink(&mut self, _symlink: &Tsymlink) -> io::Result { // symlinks are not allowed. Err(io::Error::from_raw_os_error(libc::EACCES)) } fn mknod(&mut self, _mknod: &Tmknod) -> io::Result { // No nodes either. Err(io::Error::from_raw_os_error(libc::EACCES)) } fn rename(&mut self, _rename: &Trename) -> io::Result<()> { // We cannot support this as an inode may be linked into multiple directories but we don't // know which one the client wants us to rename. Linux uses rename_at anyway, so we don't // need to worry about this. Err(io::Error::from_raw_os_error(libc::EOPNOTSUPP)) } fn readlink(&mut self, readlink: &Treadlink) -> io::Result { let fid = self.fids.get(&readlink.fid).ok_or_else(ebadf)?; let mut link = vec![0; libc::PATH_MAX as usize]; // Safe because this will only modify `link` and we check the return value. let len = syscall!(unsafe { libc::readlinkat( fid.path.as_raw_fd(), [0].as_ptr(), link.as_mut_ptr() as *mut libc::c_char, link.len(), ) })? as usize; link.truncate(len); let target = String::from_utf8(link) .map_err(|err| io::Error::new(io::ErrorKind::InvalidData, err))?; Ok(Rreadlink { target }) } #[allow(clippy::unnecessary_cast)] // nlink_t is u32 on 32-bit platforms fn get_attr(&mut self, get_attr: &Tgetattr) -> io::Result { let fid = self.fids.get_mut(&get_attr.fid).ok_or_else(ebadf)?; let st = stat(&fid.path)?; Ok(Rgetattr { valid: P9_GETATTR_BASIC, qid: st.into(), mode: st.st_mode, uid: map_id_from_host(&self.cfg.uid_map, st.st_uid), gid: map_id_from_host(&self.cfg.gid_map, st.st_gid), nlink: st.st_nlink as u64, rdev: st.st_rdev, size: st.st_size as u64, blksize: st.st_blksize as u64, blocks: st.st_blocks as u64, atime_sec: st.st_atime as u64, atime_nsec: st.st_atime_nsec as u64, mtime_sec: st.st_mtime as u64, mtime_nsec: st.st_mtime_nsec as u64, ctime_sec: st.st_ctime as u64, ctime_nsec: st.st_ctime_nsec as u64, btime_sec: 0, btime_nsec: 0, gen: 0, data_version: 0, }) } fn set_attr(&mut self, set_attr: &Tsetattr) -> io::Result<()> { let fid = self.fids.get(&set_attr.fid).ok_or_else(ebadf)?; let path = string_to_cstring(format!("self/fd/{}", fid.path.as_raw_fd()))?; if set_attr.valid & P9_SETATTR_MODE != 0 { // Safe because this doesn't modify any memory and we check the return value. syscall!(unsafe { libc::fchmodat(self.proc.as_raw_fd(), path.as_ptr(), set_attr.mode, 0) })?; } if set_attr.valid & (P9_SETATTR_UID | P9_SETATTR_GID) != 0 { let uid = if set_attr.valid & P9_SETATTR_UID != 0 { set_attr.uid } else { -1i32 as u32 }; let gid = if set_attr.valid & P9_SETATTR_GID != 0 { set_attr.gid } else { -1i32 as u32 }; // Safe because this doesn't modify any memory and we check the return value. syscall!(unsafe { libc::fchownat(self.proc.as_raw_fd(), path.as_ptr(), uid, gid, 0) })?; } if set_attr.valid & P9_SETATTR_SIZE != 0 { let file = if fid.filetype == FileType::Directory { return Err(io::Error::from_raw_os_error(libc::EISDIR)); } else if let Some(ref file) = fid.file { MaybeOwned::Borrowed(file) } else { MaybeOwned::Owned(open_fid(&self.proc, &fid.path, P9_NONBLOCK | P9_RDWR)?) }; file.set_len(set_attr.size)?; } if set_attr.valid & (P9_SETATTR_ATIME | P9_SETATTR_MTIME) != 0 { let times = [ libc::timespec { tv_sec: set_attr.atime_sec as _, tv_nsec: if set_attr.valid & P9_SETATTR_ATIME == 0 { libc::UTIME_OMIT } else if set_attr.valid & P9_SETATTR_ATIME_SET == 0 { libc::UTIME_NOW } else { set_attr.atime_nsec as _ }, }, libc::timespec { tv_sec: set_attr.mtime_sec as _, tv_nsec: if set_attr.valid & P9_SETATTR_MTIME == 0 { libc::UTIME_OMIT } else if set_attr.valid & P9_SETATTR_MTIME_SET == 0 { libc::UTIME_NOW } else { set_attr.mtime_nsec as _ }, }, ]; // Safe because file is valid and we have initialized times fully. let ret = unsafe { libc::utimensat( self.proc.as_raw_fd(), path.as_ptr(), × as *const libc::timespec, 0, ) }; if ret < 0 { return Err(io::Error::last_os_error()); } } // The ctime would have been updated by any of the above operations so we only // need to change it if it was the only option given. if set_attr.valid & P9_SETATTR_CTIME != 0 && set_attr.valid & (!P9_SETATTR_CTIME) == 0 { // Setting -1 as the uid and gid will not actually change anything but will // still update the ctime. let ret = unsafe { libc::fchownat( self.proc.as_raw_fd(), path.as_ptr(), libc::uid_t::max_value(), libc::gid_t::max_value(), 0, ) }; if ret < 0 { return Err(io::Error::last_os_error()); } } Ok(()) } fn xattr_walk(&mut self, _xattr_walk: &Txattrwalk) -> io::Result { Err(io::Error::from_raw_os_error(libc::EOPNOTSUPP)) } fn xattr_create(&mut self, _xattr_create: &Txattrcreate) -> io::Result<()> { Err(io::Error::from_raw_os_error(libc::EOPNOTSUPP)) } fn readdir(&mut self, readdir: &Treaddir) -> io::Result { let fid = self.fids.get_mut(&readdir.fid).ok_or_else(ebadf)?; if fid.filetype != FileType::Directory { return Err(io::Error::from_raw_os_error(libc::ENOTDIR)); } // Use an empty Rreaddir struct to figure out the maximum number of bytes that // can be returned. let header_size = Rframe { tag: 0, msg: Rmessage::Readdir(Rreaddir { data: Data(Vec::new()), }), } .byte_size(); let count = min(self.cfg.msize - header_size, readdir.count); let mut cursor = Cursor::new(Vec::with_capacity(count as usize)); let dir = fid.file.as_mut().ok_or_else(ebadf)?; let mut dirents = read_dir(dir, readdir.offset as libc::off64_t)?; while let Some(dirent) = dirents.next().transpose()? { let st = statat(&fid.path, dirent.name, 0)?; let name = dirent .name .to_str() .map(String::from) .map_err(|err| io::Error::new(io::ErrorKind::InvalidData, err))?; let entry = Dirent { qid: st.into(), offset: dirent.offset, ty: dirent.type_, name, }; let byte_size = entry.byte_size() as usize; if cursor.get_ref().capacity() - cursor.get_ref().len() < byte_size { // No more room in the buffer. break; } entry.encode(&mut cursor)?; } Ok(Rreaddir { data: Data(cursor.into_inner()), }) } fn fsync(&mut self, fsync: &Tfsync) -> io::Result<()> { let file = self .fids .get(&fsync.fid) .and_then(|fid| fid.file.as_ref()) .ok_or_else(ebadf)?; if fsync.datasync == 0 { file.sync_all()?; } else { file.sync_data()?; } Ok(()) } /// Implement posix byte range locking code. /// Our implementation mirrors that of QEMU/9p - that is to say, /// we essentially punt on mirroring lock state between client/server /// and defer lock semantics to the VFS layer on the client side. Aside /// from fd existence check we always return success. QEMU reference: /// /// /// NOTE: this means that files locked on the client may be interefered with /// from either the server's side, or from other clients (guests). This /// tracks with QEMU implementation, and will be obviated if crosvm decides /// to drop 9p in favor of virtio-fs. QEMU only allows for a single client, /// and we leave it to users of the crate to provide actual lock handling. fn lock(&mut self, lock: &Tlock) -> io::Result { // Ensure fd passed in TLOCK request exists and has a mapping. let fd = self .fids .get(&lock.fid) .and_then(|fid| fid.file.as_ref()) .ok_or_else(ebadf)? .as_raw_fd(); syscall!(unsafe { // Safe because zero-filled libc::stat is a valid value, fstat // populates the struct fields. let mut stbuf: libc::stat64 = std::mem::zeroed(); // Safe because this doesn't modify memory and we check the return value. libc::fstat64(fd, &mut stbuf) })?; Ok(Rlock { status: P9_LOCK_SUCCESS, }) } /// /// Much like lock(), defer locking semantics to VFS and return success. /// fn get_lock(&mut self, get_lock: &Tgetlock) -> io::Result { // Ensure fd passed in GETTLOCK request exists and has a mapping. let fd = self .fids .get(&get_lock.fid) .and_then(|fid| fid.file.as_ref()) .ok_or_else(ebadf)? .as_raw_fd(); // Safe because this doesn't modify memory and we check the return value. syscall!(unsafe { let mut stbuf: libc::stat64 = std::mem::zeroed(); libc::fstat64(fd, &mut stbuf) })?; Ok(Rgetlock { type_: P9_LOCK_TYPE_UNLCK, start: get_lock.start, length: get_lock.length, proc_id: get_lock.proc_id, client_id: get_lock.client_id.clone(), }) } fn link(&mut self, link: Tlink) -> io::Result<()> { let target = self.fids.get(&link.fid).ok_or_else(ebadf)?; let path = string_to_cstring(format!("self/fd/{}", target.path.as_raw_fd()))?; let dir = self.fids.get(&link.dfid).ok_or_else(ebadf)?; let name = string_to_cstring(link.name)?; // Safe because this doesn't modify any memory and we check the return value. syscall!(unsafe { libc::linkat( self.proc.as_raw_fd(), path.as_ptr(), dir.path.as_raw_fd(), name.as_ptr(), libc::AT_SYMLINK_FOLLOW, ) })?; Ok(()) } fn mkdir(&mut self, mkdir: Tmkdir) -> io::Result { let fid = self.fids.get(&mkdir.dfid).ok_or_else(ebadf)?; let name = string_to_cstring(mkdir.name)?; // Safe because this doesn't modify any memory and we check the return value. syscall!(unsafe { libc::mkdirat(fid.path.as_raw_fd(), name.as_ptr(), mkdir.mode) })?; Ok(Rmkdir { qid: statat(&fid.path, &name, 0).map(Qid::from)?, }) } fn rename_at(&mut self, rename_at: Trenameat) -> io::Result<()> { let olddir = self.fids.get(&rename_at.olddirfid).ok_or_else(ebadf)?; let oldname = string_to_cstring(rename_at.oldname)?; let newdir = self.fids.get(&rename_at.newdirfid).ok_or_else(ebadf)?; let newname = string_to_cstring(rename_at.newname)?; // Safe because this doesn't modify any memory and we check the return value. syscall!(unsafe { libc::renameat( olddir.path.as_raw_fd(), oldname.as_ptr(), newdir.path.as_raw_fd(), newname.as_ptr(), ) })?; Ok(()) } fn unlink_at(&mut self, unlink_at: Tunlinkat) -> io::Result<()> { let dir = self.fids.get(&unlink_at.dirfd).ok_or_else(ebadf)?; let name = string_to_cstring(unlink_at.name)?; syscall!(unsafe { libc::unlinkat( dir.path.as_raw_fd(), name.as_ptr(), unlink_at.flags as libc::c_int, ) })?; Ok(()) } } #[cfg(test)] mod tests;