use alloc::vec::Vec; use core::cmp::Ordering; /// Consumes a given iterator, returning the minimum elements in **ascending** order. pub(crate) fn k_smallest_general(iter: I, k: usize, mut comparator: F) -> Vec where I: Iterator, F: FnMut(&I::Item, &I::Item) -> Ordering, { /// Sift the element currently at `origin` away from the root until it is properly ordered. /// /// This will leave **larger** elements closer to the root of the heap. fn sift_down(heap: &mut [T], is_less_than: &mut F, mut origin: usize) where F: FnMut(&T, &T) -> bool, { #[inline] fn children_of(n: usize) -> (usize, usize) { (2 * n + 1, 2 * n + 2) } while origin < heap.len() { let (left_idx, right_idx) = children_of(origin); if left_idx >= heap.len() { return; } let replacement_idx = if right_idx < heap.len() && is_less_than(&heap[left_idx], &heap[right_idx]) { right_idx } else { left_idx }; if is_less_than(&heap[origin], &heap[replacement_idx]) { heap.swap(origin, replacement_idx); origin = replacement_idx; } else { return; } } } if k == 0 { iter.last(); return Vec::new(); } if k == 1 { return iter.min_by(comparator).into_iter().collect(); } let mut iter = iter.fuse(); let mut storage: Vec = iter.by_ref().take(k).collect(); let mut is_less_than = move |a: &_, b: &_| comparator(a, b) == Ordering::Less; // Rearrange the storage into a valid heap by reordering from the second-bottom-most layer up to the root. // Slightly faster than ordering on each insert, but only by a factor of lg(k). // The resulting heap has the **largest** item on top. for i in (0..=(storage.len() / 2)).rev() { sift_down(&mut storage, &mut is_less_than, i); } iter.for_each(|val| { debug_assert_eq!(storage.len(), k); if is_less_than(&val, &storage[0]) { // Treating this as an push-and-pop saves having to write a sift-up implementation. // https://en.wikipedia.org/wiki/Binary_heap#Insert_then_extract storage[0] = val; // We retain the smallest items we've seen so far, but ordered largest first so we can drop the largest efficiently. sift_down(&mut storage, &mut is_less_than, 0); } }); // Ultimately the items need to be in least-first, strict order, but the heap is currently largest-first. // To achieve this, repeatedly, // 1) "pop" the largest item off the heap into the tail slot of the underlying storage, // 2) shrink the logical size of the heap by 1, // 3) restore the heap property over the remaining items. let mut heap = &mut storage[..]; while heap.len() > 1 { let last_idx = heap.len() - 1; heap.swap(0, last_idx); // Sifting over a truncated slice means that the sifting will not disturb already popped elements. heap = &mut heap[..last_idx]; sift_down(heap, &mut is_less_than, 0); } storage } #[inline] pub(crate) fn key_to_cmp(mut key: F) -> impl FnMut(&T, &T) -> Ordering where F: FnMut(&T) -> K, K: Ord, { move |a, b| key(a).cmp(&key(b)) }