// Generated from vec.rs.tera template. Edit the template, not the generated file. use crate::{BVec2, I16Vec2, I64Vec3, IVec2, U16Vec2, U64Vec2, UVec2}; #[cfg(not(target_arch = "spirv"))] use core::fmt; use core::iter::{Product, Sum}; use core::{f32, ops::*}; /// Creates a 2-dimensional vector. #[inline(always)] #[must_use] pub const fn i64vec2(x: i64, y: i64) -> I64Vec2 { I64Vec2::new(x, y) } /// A 2-dimensional vector. #[cfg_attr(not(target_arch = "spirv"), derive(Hash))] #[derive(Clone, Copy, PartialEq, Eq)] #[cfg_attr(feature = "cuda", repr(align(16)))] #[cfg_attr(not(target_arch = "spirv"), repr(C))] #[cfg_attr(target_arch = "spirv", repr(simd))] pub struct I64Vec2 { pub x: i64, pub y: i64, } impl I64Vec2 { /// All zeroes. pub const ZERO: Self = Self::splat(0); /// All ones. pub const ONE: Self = Self::splat(1); /// All negative ones. pub const NEG_ONE: Self = Self::splat(-1); /// All `i64::MIN`. pub const MIN: Self = Self::splat(i64::MIN); /// All `i64::MAX`. pub const MAX: Self = Self::splat(i64::MAX); /// A unit vector pointing along the positive X axis. pub const X: Self = Self::new(1, 0); /// A unit vector pointing along the positive Y axis. pub const Y: Self = Self::new(0, 1); /// A unit vector pointing along the negative X axis. pub const NEG_X: Self = Self::new(-1, 0); /// A unit vector pointing along the negative Y axis. pub const NEG_Y: Self = Self::new(0, -1); /// The unit axes. pub const AXES: [Self; 2] = [Self::X, Self::Y]; /// Creates a new vector. #[inline(always)] #[must_use] pub const fn new(x: i64, y: i64) -> Self { Self { x, y } } /// Creates a vector with all elements set to `v`. #[inline] #[must_use] pub const fn splat(v: i64) -> Self { Self { x: v, y: v } } /// Creates a vector from the elements in `if_true` and `if_false`, selecting which to use /// for each element of `self`. /// /// A true element in the mask uses the corresponding element from `if_true`, and false /// uses the element from `if_false`. #[inline] #[must_use] pub fn select(mask: BVec2, if_true: Self, if_false: Self) -> Self { Self { x: if mask.test(0) { if_true.x } else { if_false.x }, y: if mask.test(1) { if_true.y } else { if_false.y }, } } /// Creates a new vector from an array. #[inline] #[must_use] pub const fn from_array(a: [i64; 2]) -> Self { Self::new(a[0], a[1]) } /// `[x, y]` #[inline] #[must_use] pub const fn to_array(&self) -> [i64; 2] { [self.x, self.y] } /// Creates a vector from the first 2 values in `slice`. /// /// # Panics /// /// Panics if `slice` is less than 2 elements long. #[inline] #[must_use] pub const fn from_slice(slice: &[i64]) -> Self { Self::new(slice[0], slice[1]) } /// Writes the elements of `self` to the first 2 elements in `slice`. /// /// # Panics /// /// Panics if `slice` is less than 2 elements long. #[inline] pub fn write_to_slice(self, slice: &mut [i64]) { slice[0] = self.x; slice[1] = self.y; } /// Creates a 3D vector from `self` and the given `z` value. #[inline] #[must_use] pub const fn extend(self, z: i64) -> I64Vec3 { I64Vec3::new(self.x, self.y, z) } /// Computes the dot product of `self` and `rhs`. #[inline] #[must_use] pub fn dot(self, rhs: Self) -> i64 { (self.x * rhs.x) + (self.y * rhs.y) } /// Returns a vector where every component is the dot product of `self` and `rhs`. #[inline] #[must_use] pub fn dot_into_vec(self, rhs: Self) -> Self { Self::splat(self.dot(rhs)) } /// Returns a vector containing the minimum values for each element of `self` and `rhs`. /// /// In other words this computes `[self.x.min(rhs.x), self.y.min(rhs.y), ..]`. #[inline] #[must_use] pub fn min(self, rhs: Self) -> Self { Self { x: self.x.min(rhs.x), y: self.y.min(rhs.y), } } /// Returns a vector containing the maximum values for each element of `self` and `rhs`. /// /// In other words this computes `[self.x.max(rhs.x), self.y.max(rhs.y), ..]`. #[inline] #[must_use] pub fn max(self, rhs: Self) -> Self { Self { x: self.x.max(rhs.x), y: self.y.max(rhs.y), } } /// Component-wise clamping of values, similar to [`i64::clamp`]. /// /// Each element in `min` must be less-or-equal to the corresponding element in `max`. /// /// # Panics /// /// Will panic if `min` is greater than `max` when `glam_assert` is enabled. #[inline] #[must_use] pub fn clamp(self, min: Self, max: Self) -> Self { glam_assert!(min.cmple(max).all(), "clamp: expected min <= max"); self.max(min).min(max) } /// Returns the horizontal minimum of `self`. /// /// In other words this computes `min(x, y, ..)`. #[inline] #[must_use] pub fn min_element(self) -> i64 { self.x.min(self.y) } /// Returns the horizontal maximum of `self`. /// /// In other words this computes `max(x, y, ..)`. #[inline] #[must_use] pub fn max_element(self) -> i64 { self.x.max(self.y) } /// Returns a vector mask containing the result of a `==` comparison for each element of /// `self` and `rhs`. /// /// In other words, this computes `[self.x == rhs.x, self.y == rhs.y, ..]` for all /// elements. #[inline] #[must_use] pub fn cmpeq(self, rhs: Self) -> BVec2 { BVec2::new(self.x.eq(&rhs.x), self.y.eq(&rhs.y)) } /// Returns a vector mask containing the result of a `!=` comparison for each element of /// `self` and `rhs`. /// /// In other words this computes `[self.x != rhs.x, self.y != rhs.y, ..]` for all /// elements. #[inline] #[must_use] pub fn cmpne(self, rhs: Self) -> BVec2 { BVec2::new(self.x.ne(&rhs.x), self.y.ne(&rhs.y)) } /// Returns a vector mask containing the result of a `>=` comparison for each element of /// `self` and `rhs`. /// /// In other words this computes `[self.x >= rhs.x, self.y >= rhs.y, ..]` for all /// elements. #[inline] #[must_use] pub fn cmpge(self, rhs: Self) -> BVec2 { BVec2::new(self.x.ge(&rhs.x), self.y.ge(&rhs.y)) } /// Returns a vector mask containing the result of a `>` comparison for each element of /// `self` and `rhs`. /// /// In other words this computes `[self.x > rhs.x, self.y > rhs.y, ..]` for all /// elements. #[inline] #[must_use] pub fn cmpgt(self, rhs: Self) -> BVec2 { BVec2::new(self.x.gt(&rhs.x), self.y.gt(&rhs.y)) } /// Returns a vector mask containing the result of a `<=` comparison for each element of /// `self` and `rhs`. /// /// In other words this computes `[self.x <= rhs.x, self.y <= rhs.y, ..]` for all /// elements. #[inline] #[must_use] pub fn cmple(self, rhs: Self) -> BVec2 { BVec2::new(self.x.le(&rhs.x), self.y.le(&rhs.y)) } /// Returns a vector mask containing the result of a `<` comparison for each element of /// `self` and `rhs`. /// /// In other words this computes `[self.x < rhs.x, self.y < rhs.y, ..]` for all /// elements. #[inline] #[must_use] pub fn cmplt(self, rhs: Self) -> BVec2 { BVec2::new(self.x.lt(&rhs.x), self.y.lt(&rhs.y)) } /// Returns a vector containing the absolute value of each element of `self`. #[inline] #[must_use] pub fn abs(self) -> Self { Self { x: self.x.abs(), y: self.y.abs(), } } /// Returns a vector with elements representing the sign of `self`. /// /// - `0` if the number is zero /// - `1` if the number is positive /// - `-1` if the number is negative #[inline] #[must_use] pub fn signum(self) -> Self { Self { x: self.x.signum(), y: self.y.signum(), } } /// Returns a bitmask with the lowest 2 bits set to the sign bits from the elements of `self`. /// /// A negative element results in a `1` bit and a positive element in a `0` bit. Element `x` goes /// into the first lowest bit, element `y` into the second, etc. #[inline] #[must_use] pub fn is_negative_bitmask(self) -> u32 { (self.x.is_negative() as u32) | (self.y.is_negative() as u32) << 1 } /// Computes the squared length of `self`. #[doc(alias = "magnitude2")] #[inline] #[must_use] pub fn length_squared(self) -> i64 { self.dot(self) } /// Compute the squared euclidean distance between two points in space. #[inline] #[must_use] pub fn distance_squared(self, rhs: Self) -> i64 { (self - rhs).length_squared() } /// Returns the element-wise quotient of [Euclidean division] of `self` by `rhs`. /// /// # Panics /// This function will panic if any `rhs` element is 0 or the division results in overflow. #[inline] #[must_use] pub fn div_euclid(self, rhs: Self) -> Self { Self::new(self.x.div_euclid(rhs.x), self.y.div_euclid(rhs.y)) } /// Returns the element-wise remainder of [Euclidean division] of `self` by `rhs`. /// /// # Panics /// This function will panic if any `rhs` element is 0 or the division results in overflow. /// /// [Euclidean division]: i64::rem_euclid #[inline] #[must_use] pub fn rem_euclid(self, rhs: Self) -> Self { Self::new(self.x.rem_euclid(rhs.x), self.y.rem_euclid(rhs.y)) } /// Returns a vector that is equal to `self` rotated by 90 degrees. #[inline] #[must_use] pub fn perp(self) -> Self { Self { x: -self.y, y: self.x, } } /// The perpendicular dot product of `self` and `rhs`. /// Also known as the wedge product, 2D cross product, and determinant. #[doc(alias = "wedge")] #[doc(alias = "cross")] #[doc(alias = "determinant")] #[inline] #[must_use] pub fn perp_dot(self, rhs: Self) -> i64 { (self.x * rhs.y) - (self.y * rhs.x) } /// Returns `rhs` rotated by the angle of `self`. If `self` is normalized, /// then this just rotation. This is what you usually want. Otherwise, /// it will be like a rotation with a multiplication by `self`'s length. #[inline] #[must_use] pub fn rotate(self, rhs: Self) -> Self { Self { x: self.x * rhs.x - self.y * rhs.y, y: self.y * rhs.x + self.x * rhs.y, } } /// Casts all elements of `self` to `f32`. #[inline] #[must_use] pub fn as_vec2(&self) -> crate::Vec2 { crate::Vec2::new(self.x as f32, self.y as f32) } /// Casts all elements of `self` to `f64`. #[inline] #[must_use] pub fn as_dvec2(&self) -> crate::DVec2 { crate::DVec2::new(self.x as f64, self.y as f64) } /// Casts all elements of `self` to `i16`. #[inline] #[must_use] pub fn as_i16vec2(&self) -> crate::I16Vec2 { crate::I16Vec2::new(self.x as i16, self.y as i16) } /// Casts all elements of `self` to `u16`. #[inline] #[must_use] pub fn as_u16vec2(&self) -> crate::U16Vec2 { crate::U16Vec2::new(self.x as u16, self.y as u16) } /// Casts all elements of `self` to `i32`. #[inline] #[must_use] pub fn as_ivec2(&self) -> crate::IVec2 { crate::IVec2::new(self.x as i32, self.y as i32) } /// Casts all elements of `self` to `u32`. #[inline] #[must_use] pub fn as_uvec2(&self) -> crate::UVec2 { crate::UVec2::new(self.x as u32, self.y as u32) } /// Casts all elements of `self` to `u64`. #[inline] #[must_use] pub fn as_u64vec2(&self) -> crate::U64Vec2 { crate::U64Vec2::new(self.x as u64, self.y as u64) } /// Returns a vector containing the wrapping addition of `self` and `rhs`. /// /// In other words this computes `[self.x.wrapping_add(rhs.x), self.y.wrapping_add(rhs.y), ..]`. #[inline] #[must_use] pub const fn wrapping_add(self, rhs: Self) -> Self { Self { x: self.x.wrapping_add(rhs.x), y: self.y.wrapping_add(rhs.y), } } /// Returns a vector containing the wrapping subtraction of `self` and `rhs`. /// /// In other words this computes `[self.x.wrapping_sub(rhs.x), self.y.wrapping_sub(rhs.y), ..]`. #[inline] #[must_use] pub const fn wrapping_sub(self, rhs: Self) -> Self { Self { x: self.x.wrapping_sub(rhs.x), y: self.y.wrapping_sub(rhs.y), } } /// Returns a vector containing the wrapping multiplication of `self` and `rhs`. /// /// In other words this computes `[self.x.wrapping_mul(rhs.x), self.y.wrapping_mul(rhs.y), ..]`. #[inline] #[must_use] pub const fn wrapping_mul(self, rhs: Self) -> Self { Self { x: self.x.wrapping_mul(rhs.x), y: self.y.wrapping_mul(rhs.y), } } /// Returns a vector containing the wrapping division of `self` and `rhs`. /// /// In other words this computes `[self.x.wrapping_div(rhs.x), self.y.wrapping_div(rhs.y), ..]`. #[inline] #[must_use] pub const fn wrapping_div(self, rhs: Self) -> Self { Self { x: self.x.wrapping_div(rhs.x), y: self.y.wrapping_div(rhs.y), } } /// Returns a vector containing the saturating addition of `self` and `rhs`. /// /// In other words this computes `[self.x.saturating_add(rhs.x), self.y.saturating_add(rhs.y), ..]`. #[inline] #[must_use] pub const fn saturating_add(self, rhs: Self) -> Self { Self { x: self.x.saturating_add(rhs.x), y: self.y.saturating_add(rhs.y), } } /// Returns a vector containing the saturating subtraction of `self` and `rhs`. /// /// In other words this computes `[self.x.saturating_sub(rhs.x), self.y.saturating_sub(rhs.y), ..]`. #[inline] #[must_use] pub const fn saturating_sub(self, rhs: Self) -> Self { Self { x: self.x.saturating_sub(rhs.x), y: self.y.saturating_sub(rhs.y), } } /// Returns a vector containing the saturating multiplication of `self` and `rhs`. /// /// In other words this computes `[self.x.saturating_mul(rhs.x), self.y.saturating_mul(rhs.y), ..]`. #[inline] #[must_use] pub const fn saturating_mul(self, rhs: Self) -> Self { Self { x: self.x.saturating_mul(rhs.x), y: self.y.saturating_mul(rhs.y), } } /// Returns a vector containing the saturating division of `self` and `rhs`. /// /// In other words this computes `[self.x.saturating_div(rhs.x), self.y.saturating_div(rhs.y), ..]`. #[inline] #[must_use] pub const fn saturating_div(self, rhs: Self) -> Self { Self { x: self.x.saturating_div(rhs.x), y: self.y.saturating_div(rhs.y), } } } impl Default for I64Vec2 { #[inline(always)] fn default() -> Self { Self::ZERO } } impl Div for I64Vec2 { type Output = Self; #[inline] fn div(self, rhs: Self) -> Self { Self { x: self.x.div(rhs.x), y: self.y.div(rhs.y), } } } impl DivAssign for I64Vec2 { #[inline] fn div_assign(&mut self, rhs: Self) { self.x.div_assign(rhs.x); self.y.div_assign(rhs.y); } } impl Div for I64Vec2 { type Output = Self; #[inline] fn div(self, rhs: i64) -> Self { Self { x: self.x.div(rhs), y: self.y.div(rhs), } } } impl DivAssign for I64Vec2 { #[inline] fn div_assign(&mut self, rhs: i64) { self.x.div_assign(rhs); self.y.div_assign(rhs); } } impl Div for i64 { type Output = I64Vec2; #[inline] fn div(self, rhs: I64Vec2) -> I64Vec2 { I64Vec2 { x: self.div(rhs.x), y: self.div(rhs.y), } } } impl Mul for I64Vec2 { type Output = Self; #[inline] fn mul(self, rhs: Self) -> Self { Self { x: self.x.mul(rhs.x), y: self.y.mul(rhs.y), } } } impl MulAssign for I64Vec2 { #[inline] fn mul_assign(&mut self, rhs: Self) { self.x.mul_assign(rhs.x); self.y.mul_assign(rhs.y); } } impl Mul for I64Vec2 { type Output = Self; #[inline] fn mul(self, rhs: i64) -> Self { Self { x: self.x.mul(rhs), y: self.y.mul(rhs), } } } impl MulAssign for I64Vec2 { #[inline] fn mul_assign(&mut self, rhs: i64) { self.x.mul_assign(rhs); self.y.mul_assign(rhs); } } impl Mul for i64 { type Output = I64Vec2; #[inline] fn mul(self, rhs: I64Vec2) -> I64Vec2 { I64Vec2 { x: self.mul(rhs.x), y: self.mul(rhs.y), } } } impl Add for I64Vec2 { type Output = Self; #[inline] fn add(self, rhs: Self) -> Self { Self { x: self.x.add(rhs.x), y: self.y.add(rhs.y), } } } impl AddAssign for I64Vec2 { #[inline] fn add_assign(&mut self, rhs: Self) { self.x.add_assign(rhs.x); self.y.add_assign(rhs.y); } } impl Add for I64Vec2 { type Output = Self; #[inline] fn add(self, rhs: i64) -> Self { Self { x: self.x.add(rhs), y: self.y.add(rhs), } } } impl AddAssign for I64Vec2 { #[inline] fn add_assign(&mut self, rhs: i64) { self.x.add_assign(rhs); self.y.add_assign(rhs); } } impl Add for i64 { type Output = I64Vec2; #[inline] fn add(self, rhs: I64Vec2) -> I64Vec2 { I64Vec2 { x: self.add(rhs.x), y: self.add(rhs.y), } } } impl Sub for I64Vec2 { type Output = Self; #[inline] fn sub(self, rhs: Self) -> Self { Self { x: self.x.sub(rhs.x), y: self.y.sub(rhs.y), } } } impl SubAssign for I64Vec2 { #[inline] fn sub_assign(&mut self, rhs: I64Vec2) { self.x.sub_assign(rhs.x); self.y.sub_assign(rhs.y); } } impl Sub for I64Vec2 { type Output = Self; #[inline] fn sub(self, rhs: i64) -> Self { Self { x: self.x.sub(rhs), y: self.y.sub(rhs), } } } impl SubAssign for I64Vec2 { #[inline] fn sub_assign(&mut self, rhs: i64) { self.x.sub_assign(rhs); self.y.sub_assign(rhs); } } impl Sub for i64 { type Output = I64Vec2; #[inline] fn sub(self, rhs: I64Vec2) -> I64Vec2 { I64Vec2 { x: self.sub(rhs.x), y: self.sub(rhs.y), } } } impl Rem for I64Vec2 { type Output = Self; #[inline] fn rem(self, rhs: Self) -> Self { Self { x: self.x.rem(rhs.x), y: self.y.rem(rhs.y), } } } impl RemAssign for I64Vec2 { #[inline] fn rem_assign(&mut self, rhs: Self) { self.x.rem_assign(rhs.x); self.y.rem_assign(rhs.y); } } impl Rem for I64Vec2 { type Output = Self; #[inline] fn rem(self, rhs: i64) -> Self { Self { x: self.x.rem(rhs), y: self.y.rem(rhs), } } } impl RemAssign for I64Vec2 { #[inline] fn rem_assign(&mut self, rhs: i64) { self.x.rem_assign(rhs); self.y.rem_assign(rhs); } } impl Rem for i64 { type Output = I64Vec2; #[inline] fn rem(self, rhs: I64Vec2) -> I64Vec2 { I64Vec2 { x: self.rem(rhs.x), y: self.rem(rhs.y), } } } #[cfg(not(target_arch = "spirv"))] impl AsRef<[i64; 2]> for I64Vec2 { #[inline] fn as_ref(&self) -> &[i64; 2] { unsafe { &*(self as *const I64Vec2 as *const [i64; 2]) } } } #[cfg(not(target_arch = "spirv"))] impl AsMut<[i64; 2]> for I64Vec2 { #[inline] fn as_mut(&mut self) -> &mut [i64; 2] { unsafe { &mut *(self as *mut I64Vec2 as *mut [i64; 2]) } } } impl Sum for I64Vec2 { #[inline] fn sum(iter: I) -> Self where I: Iterator, { iter.fold(Self::ZERO, Self::add) } } impl<'a> Sum<&'a Self> for I64Vec2 { #[inline] fn sum(iter: I) -> Self where I: Iterator, { iter.fold(Self::ZERO, |a, &b| Self::add(a, b)) } } impl Product for I64Vec2 { #[inline] fn product(iter: I) -> Self where I: Iterator, { iter.fold(Self::ONE, Self::mul) } } impl<'a> Product<&'a Self> for I64Vec2 { #[inline] fn product(iter: I) -> Self where I: Iterator, { iter.fold(Self::ONE, |a, &b| Self::mul(a, b)) } } impl Neg for I64Vec2 { type Output = Self; #[inline] fn neg(self) -> Self { Self { x: self.x.neg(), y: self.y.neg(), } } } impl Not for I64Vec2 { type Output = Self; #[inline] fn not(self) -> Self::Output { Self { x: self.x.not(), y: self.y.not(), } } } impl BitAnd for I64Vec2 { type Output = Self; #[inline] fn bitand(self, rhs: Self) -> Self::Output { Self { x: self.x.bitand(rhs.x), y: self.y.bitand(rhs.y), } } } impl BitOr for I64Vec2 { type Output = Self; #[inline] fn bitor(self, rhs: Self) -> Self::Output { Self { x: self.x.bitor(rhs.x), y: self.y.bitor(rhs.y), } } } impl BitXor for I64Vec2 { type Output = Self; #[inline] fn bitxor(self, rhs: Self) -> Self::Output { Self { x: self.x.bitxor(rhs.x), y: self.y.bitxor(rhs.y), } } } impl BitAnd for I64Vec2 { type Output = Self; #[inline] fn bitand(self, rhs: i64) -> Self::Output { Self { x: self.x.bitand(rhs), y: self.y.bitand(rhs), } } } impl BitOr for I64Vec2 { type Output = Self; #[inline] fn bitor(self, rhs: i64) -> Self::Output { Self { x: self.x.bitor(rhs), y: self.y.bitor(rhs), } } } impl BitXor for I64Vec2 { type Output = Self; #[inline] fn bitxor(self, rhs: i64) -> Self::Output { Self { x: self.x.bitxor(rhs), y: self.y.bitxor(rhs), } } } impl Shl for I64Vec2 { type Output = Self; #[inline] fn shl(self, rhs: i8) -> Self::Output { Self { x: self.x.shl(rhs), y: self.y.shl(rhs), } } } impl Shr for I64Vec2 { type Output = Self; #[inline] fn shr(self, rhs: i8) -> Self::Output { Self { x: self.x.shr(rhs), y: self.y.shr(rhs), } } } impl Shl for I64Vec2 { type Output = Self; #[inline] fn shl(self, rhs: i16) -> Self::Output { Self { x: self.x.shl(rhs), y: self.y.shl(rhs), } } } impl Shr for I64Vec2 { type Output = Self; #[inline] fn shr(self, rhs: i16) -> Self::Output { Self { x: self.x.shr(rhs), y: self.y.shr(rhs), } } } impl Shl for I64Vec2 { type Output = Self; #[inline] fn shl(self, rhs: i32) -> Self::Output { Self { x: self.x.shl(rhs), y: self.y.shl(rhs), } } } impl Shr for I64Vec2 { type Output = Self; #[inline] fn shr(self, rhs: i32) -> Self::Output { Self { x: self.x.shr(rhs), y: self.y.shr(rhs), } } } impl Shl for I64Vec2 { type Output = Self; #[inline] fn shl(self, rhs: i64) -> Self::Output { Self { x: self.x.shl(rhs), y: self.y.shl(rhs), } } } impl Shr for I64Vec2 { type Output = Self; #[inline] fn shr(self, rhs: i64) -> Self::Output { Self { x: self.x.shr(rhs), y: self.y.shr(rhs), } } } impl Shl for I64Vec2 { type Output = Self; #[inline] fn shl(self, rhs: u8) -> Self::Output { Self { x: self.x.shl(rhs), y: self.y.shl(rhs), } } } impl Shr for I64Vec2 { type Output = Self; #[inline] fn shr(self, rhs: u8) -> Self::Output { Self { x: self.x.shr(rhs), y: self.y.shr(rhs), } } } impl Shl for I64Vec2 { type Output = Self; #[inline] fn shl(self, rhs: u16) -> Self::Output { Self { x: self.x.shl(rhs), y: self.y.shl(rhs), } } } impl Shr for I64Vec2 { type Output = Self; #[inline] fn shr(self, rhs: u16) -> Self::Output { Self { x: self.x.shr(rhs), y: self.y.shr(rhs), } } } impl Shl for I64Vec2 { type Output = Self; #[inline] fn shl(self, rhs: u32) -> Self::Output { Self { x: self.x.shl(rhs), y: self.y.shl(rhs), } } } impl Shr for I64Vec2 { type Output = Self; #[inline] fn shr(self, rhs: u32) -> Self::Output { Self { x: self.x.shr(rhs), y: self.y.shr(rhs), } } } impl Shl for I64Vec2 { type Output = Self; #[inline] fn shl(self, rhs: u64) -> Self::Output { Self { x: self.x.shl(rhs), y: self.y.shl(rhs), } } } impl Shr for I64Vec2 { type Output = Self; #[inline] fn shr(self, rhs: u64) -> Self::Output { Self { x: self.x.shr(rhs), y: self.y.shr(rhs), } } } impl Shl for I64Vec2 { type Output = Self; #[inline] fn shl(self, rhs: crate::IVec2) -> Self::Output { Self { x: self.x.shl(rhs.x), y: self.y.shl(rhs.y), } } } impl Shr for I64Vec2 { type Output = Self; #[inline] fn shr(self, rhs: crate::IVec2) -> Self::Output { Self { x: self.x.shr(rhs.x), y: self.y.shr(rhs.y), } } } impl Shl for I64Vec2 { type Output = Self; #[inline] fn shl(self, rhs: crate::UVec2) -> Self::Output { Self { x: self.x.shl(rhs.x), y: self.y.shl(rhs.y), } } } impl Shr for I64Vec2 { type Output = Self; #[inline] fn shr(self, rhs: crate::UVec2) -> Self::Output { Self { x: self.x.shr(rhs.x), y: self.y.shr(rhs.y), } } } impl Index for I64Vec2 { type Output = i64; #[inline] fn index(&self, index: usize) -> &Self::Output { match index { 0 => &self.x, 1 => &self.y, _ => panic!("index out of bounds"), } } } impl IndexMut for I64Vec2 { #[inline] fn index_mut(&mut self, index: usize) -> &mut Self::Output { match index { 0 => &mut self.x, 1 => &mut self.y, _ => panic!("index out of bounds"), } } } #[cfg(not(target_arch = "spirv"))] impl fmt::Display for I64Vec2 { fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { write!(f, "[{}, {}]", self.x, self.y) } } #[cfg(not(target_arch = "spirv"))] impl fmt::Debug for I64Vec2 { fn fmt(&self, fmt: &mut fmt::Formatter<'_>) -> fmt::Result { fmt.debug_tuple(stringify!(I64Vec2)) .field(&self.x) .field(&self.y) .finish() } } impl From<[i64; 2]> for I64Vec2 { #[inline] fn from(a: [i64; 2]) -> Self { Self::new(a[0], a[1]) } } impl From for [i64; 2] { #[inline] fn from(v: I64Vec2) -> Self { [v.x, v.y] } } impl From<(i64, i64)> for I64Vec2 { #[inline] fn from(t: (i64, i64)) -> Self { Self::new(t.0, t.1) } } impl From for (i64, i64) { #[inline] fn from(v: I64Vec2) -> Self { (v.x, v.y) } } impl From for I64Vec2 { #[inline] fn from(v: I16Vec2) -> Self { Self::new(i64::from(v.x), i64::from(v.y)) } } impl From for I64Vec2 { #[inline] fn from(v: U16Vec2) -> Self { Self::new(i64::from(v.x), i64::from(v.y)) } } impl From for I64Vec2 { #[inline] fn from(v: IVec2) -> Self { Self::new(i64::from(v.x), i64::from(v.y)) } } impl From for I64Vec2 { #[inline] fn from(v: UVec2) -> Self { Self::new(i64::from(v.x), i64::from(v.y)) } } impl TryFrom for I64Vec2 { type Error = core::num::TryFromIntError; #[inline] fn try_from(v: U64Vec2) -> Result { Ok(Self::new(i64::try_from(v.x)?, i64::try_from(v.y)?)) } }