// Generated from vec.rs.tera template. Edit the template, not the generated file. use crate::{f32::math, sse2::*, BVec3A, Vec2, Vec3, Vec4}; #[cfg(not(target_arch = "spirv"))] use core::fmt; use core::iter::{Product, Sum}; use core::{f32, ops::*}; #[cfg(target_arch = "x86")] use core::arch::x86::*; #[cfg(target_arch = "x86_64")] use core::arch::x86_64::*; #[repr(C)] union UnionCast { a: [f32; 4], v: Vec3A, } /// Creates a 3-dimensional vector. #[inline(always)] #[must_use] pub const fn vec3a(x: f32, y: f32, z: f32) -> Vec3A { Vec3A::new(x, y, z) } /// A 3-dimensional vector. /// /// SIMD vector types are used for storage on supported platforms for better /// performance than the [`Vec3`] type. /// /// It is possible to convert between [`Vec3`] and [`Vec3A`] types using [`From`] /// or [`Into`] trait implementations. /// /// This type is 16 byte aligned. #[derive(Clone, Copy)] #[repr(transparent)] pub struct Vec3A(pub(crate) __m128); impl Vec3A { /// All zeroes. pub const ZERO: Self = Self::splat(0.0); /// All ones. pub const ONE: Self = Self::splat(1.0); /// All negative ones. pub const NEG_ONE: Self = Self::splat(-1.0); /// All `f32::MIN`. pub const MIN: Self = Self::splat(f32::MIN); /// All `f32::MAX`. pub const MAX: Self = Self::splat(f32::MAX); /// All `f32::NAN`. pub const NAN: Self = Self::splat(f32::NAN); /// All `f32::INFINITY`. pub const INFINITY: Self = Self::splat(f32::INFINITY); /// All `f32::NEG_INFINITY`. pub const NEG_INFINITY: Self = Self::splat(f32::NEG_INFINITY); /// A unit vector pointing along the positive X axis. pub const X: Self = Self::new(1.0, 0.0, 0.0); /// A unit vector pointing along the positive Y axis. pub const Y: Self = Self::new(0.0, 1.0, 0.0); /// A unit vector pointing along the positive Z axis. pub const Z: Self = Self::new(0.0, 0.0, 1.0); /// A unit vector pointing along the negative X axis. pub const NEG_X: Self = Self::new(-1.0, 0.0, 0.0); /// A unit vector pointing along the negative Y axis. pub const NEG_Y: Self = Self::new(0.0, -1.0, 0.0); /// A unit vector pointing along the negative Z axis. pub const NEG_Z: Self = Self::new(0.0, 0.0, -1.0); /// The unit axes. pub const AXES: [Self; 3] = [Self::X, Self::Y, Self::Z]; /// Creates a new vector. #[inline(always)] #[must_use] pub const fn new(x: f32, y: f32, z: f32) -> Self { unsafe { UnionCast { a: [x, y, z, z] }.v } } /// Creates a vector with all elements set to `v`. #[inline] #[must_use] pub const fn splat(v: f32) -> Self { unsafe { UnionCast { a: [v; 4] }.v } } /// Creates a vector from the elements in `if_true` and `if_false`, selecting which to use /// for each element of `self`. /// /// A true element in the mask uses the corresponding element from `if_true`, and false /// uses the element from `if_false`. #[inline] #[must_use] pub fn select(mask: BVec3A, if_true: Self, if_false: Self) -> Self { Self(unsafe { _mm_or_ps( _mm_andnot_ps(mask.0, if_false.0), _mm_and_ps(if_true.0, mask.0), ) }) } /// Creates a new vector from an array. #[inline] #[must_use] pub const fn from_array(a: [f32; 3]) -> Self { Self::new(a[0], a[1], a[2]) } /// `[x, y, z]` #[inline] #[must_use] pub const fn to_array(&self) -> [f32; 3] { unsafe { *(self as *const Vec3A as *const [f32; 3]) } } /// Creates a vector from the first 3 values in `slice`. /// /// # Panics /// /// Panics if `slice` is less than 3 elements long. #[inline] #[must_use] pub const fn from_slice(slice: &[f32]) -> Self { Self::new(slice[0], slice[1], slice[2]) } /// Writes the elements of `self` to the first 3 elements in `slice`. /// /// # Panics /// /// Panics if `slice` is less than 3 elements long. #[inline] pub fn write_to_slice(self, slice: &mut [f32]) { slice[0] = self.x; slice[1] = self.y; slice[2] = self.z; } /// Internal method for creating a 3D vector from a 4D vector, discarding `w`. #[allow(dead_code)] #[inline] #[must_use] pub(crate) fn from_vec4(v: Vec4) -> Self { Self(v.0) } /// Creates a 4D vector from `self` and the given `w` value. #[inline] #[must_use] pub fn extend(self, w: f32) -> Vec4 { Vec4::new(self.x, self.y, self.z, w) } /// Creates a 2D vector from the `x` and `y` elements of `self`, discarding `z`. /// /// Truncation may also be performed by using [`self.xy()`][crate::swizzles::Vec3Swizzles::xy()]. #[inline] #[must_use] pub fn truncate(self) -> Vec2 { use crate::swizzles::Vec3Swizzles; self.xy() } /// Computes the dot product of `self` and `rhs`. #[inline] #[must_use] pub fn dot(self, rhs: Self) -> f32 { unsafe { dot3(self.0, rhs.0) } } /// Returns a vector where every component is the dot product of `self` and `rhs`. #[inline] #[must_use] pub fn dot_into_vec(self, rhs: Self) -> Self { Self(unsafe { dot3_into_m128(self.0, rhs.0) }) } /// Computes the cross product of `self` and `rhs`. #[inline] #[must_use] pub fn cross(self, rhs: Self) -> Self { unsafe { // x <- a.y*b.z - a.z*b.y // y <- a.z*b.x - a.x*b.z // z <- a.x*b.y - a.y*b.x // We can save a shuffle by grouping it in this wacky order: // (self.zxy() * rhs - self * rhs.zxy()).zxy() let lhszxy = _mm_shuffle_ps(self.0, self.0, 0b01_01_00_10); let rhszxy = _mm_shuffle_ps(rhs.0, rhs.0, 0b01_01_00_10); let lhszxy_rhs = _mm_mul_ps(lhszxy, rhs.0); let rhszxy_lhs = _mm_mul_ps(rhszxy, self.0); let sub = _mm_sub_ps(lhszxy_rhs, rhszxy_lhs); Self(_mm_shuffle_ps(sub, sub, 0b01_01_00_10)) } } /// Returns a vector containing the minimum values for each element of `self` and `rhs`. /// /// In other words this computes `[self.x.min(rhs.x), self.y.min(rhs.y), ..]`. #[inline] #[must_use] pub fn min(self, rhs: Self) -> Self { Self(unsafe { _mm_min_ps(self.0, rhs.0) }) } /// Returns a vector containing the maximum values for each element of `self` and `rhs`. /// /// In other words this computes `[self.x.max(rhs.x), self.y.max(rhs.y), ..]`. #[inline] #[must_use] pub fn max(self, rhs: Self) -> Self { Self(unsafe { _mm_max_ps(self.0, rhs.0) }) } /// Component-wise clamping of values, similar to [`f32::clamp`]. /// /// Each element in `min` must be less-or-equal to the corresponding element in `max`. /// /// # Panics /// /// Will panic if `min` is greater than `max` when `glam_assert` is enabled. #[inline] #[must_use] pub fn clamp(self, min: Self, max: Self) -> Self { glam_assert!(min.cmple(max).all(), "clamp: expected min <= max"); self.max(min).min(max) } /// Returns the horizontal minimum of `self`. /// /// In other words this computes `min(x, y, ..)`. #[inline] #[must_use] pub fn min_element(self) -> f32 { unsafe { let v = self.0; let v = _mm_min_ps(v, _mm_shuffle_ps(v, v, 0b01_01_10_10)); let v = _mm_min_ps(v, _mm_shuffle_ps(v, v, 0b00_00_00_01)); _mm_cvtss_f32(v) } } /// Returns the horizontal maximum of `self`. /// /// In other words this computes `max(x, y, ..)`. #[inline] #[must_use] pub fn max_element(self) -> f32 { unsafe { let v = self.0; let v = _mm_max_ps(v, _mm_shuffle_ps(v, v, 0b00_00_10_10)); let v = _mm_max_ps(v, _mm_shuffle_ps(v, v, 0b00_00_00_01)); _mm_cvtss_f32(v) } } /// Returns a vector mask containing the result of a `==` comparison for each element of /// `self` and `rhs`. /// /// In other words, this computes `[self.x == rhs.x, self.y == rhs.y, ..]` for all /// elements. #[inline] #[must_use] pub fn cmpeq(self, rhs: Self) -> BVec3A { BVec3A(unsafe { _mm_cmpeq_ps(self.0, rhs.0) }) } /// Returns a vector mask containing the result of a `!=` comparison for each element of /// `self` and `rhs`. /// /// In other words this computes `[self.x != rhs.x, self.y != rhs.y, ..]` for all /// elements. #[inline] #[must_use] pub fn cmpne(self, rhs: Self) -> BVec3A { BVec3A(unsafe { _mm_cmpneq_ps(self.0, rhs.0) }) } /// Returns a vector mask containing the result of a `>=` comparison for each element of /// `self` and `rhs`. /// /// In other words this computes `[self.x >= rhs.x, self.y >= rhs.y, ..]` for all /// elements. #[inline] #[must_use] pub fn cmpge(self, rhs: Self) -> BVec3A { BVec3A(unsafe { _mm_cmpge_ps(self.0, rhs.0) }) } /// Returns a vector mask containing the result of a `>` comparison for each element of /// `self` and `rhs`. /// /// In other words this computes `[self.x > rhs.x, self.y > rhs.y, ..]` for all /// elements. #[inline] #[must_use] pub fn cmpgt(self, rhs: Self) -> BVec3A { BVec3A(unsafe { _mm_cmpgt_ps(self.0, rhs.0) }) } /// Returns a vector mask containing the result of a `<=` comparison for each element of /// `self` and `rhs`. /// /// In other words this computes `[self.x <= rhs.x, self.y <= rhs.y, ..]` for all /// elements. #[inline] #[must_use] pub fn cmple(self, rhs: Self) -> BVec3A { BVec3A(unsafe { _mm_cmple_ps(self.0, rhs.0) }) } /// Returns a vector mask containing the result of a `<` comparison for each element of /// `self` and `rhs`. /// /// In other words this computes `[self.x < rhs.x, self.y < rhs.y, ..]` for all /// elements. #[inline] #[must_use] pub fn cmplt(self, rhs: Self) -> BVec3A { BVec3A(unsafe { _mm_cmplt_ps(self.0, rhs.0) }) } /// Returns a vector containing the absolute value of each element of `self`. #[inline] #[must_use] pub fn abs(self) -> Self { Self(unsafe { crate::sse2::m128_abs(self.0) }) } /// Returns a vector with elements representing the sign of `self`. /// /// - `1.0` if the number is positive, `+0.0` or `INFINITY` /// - `-1.0` if the number is negative, `-0.0` or `NEG_INFINITY` /// - `NAN` if the number is `NAN` #[inline] #[must_use] pub fn signum(self) -> Self { unsafe { let result = Self(_mm_or_ps(_mm_and_ps(self.0, Self::NEG_ONE.0), Self::ONE.0)); let mask = self.is_nan_mask(); Self::select(mask, self, result) } } /// Returns a vector with signs of `rhs` and the magnitudes of `self`. #[inline] #[must_use] pub fn copysign(self, rhs: Self) -> Self { unsafe { let mask = Self::splat(-0.0); Self(_mm_or_ps( _mm_and_ps(rhs.0, mask.0), _mm_andnot_ps(mask.0, self.0), )) } } /// Returns a bitmask with the lowest 3 bits set to the sign bits from the elements of `self`. /// /// A negative element results in a `1` bit and a positive element in a `0` bit. Element `x` goes /// into the first lowest bit, element `y` into the second, etc. #[inline] #[must_use] pub fn is_negative_bitmask(self) -> u32 { unsafe { (_mm_movemask_ps(self.0) as u32) & 0x7 } } /// Returns `true` if, and only if, all elements are finite. If any element is either /// `NaN`, positive or negative infinity, this will return `false`. #[inline] #[must_use] pub fn is_finite(self) -> bool { self.x.is_finite() && self.y.is_finite() && self.z.is_finite() } /// Returns `true` if any elements are `NaN`. #[inline] #[must_use] pub fn is_nan(self) -> bool { self.is_nan_mask().any() } /// Performs `is_nan` on each element of self, returning a vector mask of the results. /// /// In other words, this computes `[x.is_nan(), y.is_nan(), z.is_nan(), w.is_nan()]`. #[inline] #[must_use] pub fn is_nan_mask(self) -> BVec3A { BVec3A(unsafe { _mm_cmpunord_ps(self.0, self.0) }) } /// Computes the length of `self`. #[doc(alias = "magnitude")] #[inline] #[must_use] pub fn length(self) -> f32 { unsafe { let dot = dot3_in_x(self.0, self.0); _mm_cvtss_f32(_mm_sqrt_ps(dot)) } } /// Computes the squared length of `self`. /// /// This is faster than `length()` as it avoids a square root operation. #[doc(alias = "magnitude2")] #[inline] #[must_use] pub fn length_squared(self) -> f32 { self.dot(self) } /// Computes `1.0 / length()`. /// /// For valid results, `self` must _not_ be of length zero. #[inline] #[must_use] pub fn length_recip(self) -> f32 { unsafe { let dot = dot3_in_x(self.0, self.0); _mm_cvtss_f32(_mm_div_ps(Self::ONE.0, _mm_sqrt_ps(dot))) } } /// Computes the Euclidean distance between two points in space. #[inline] #[must_use] pub fn distance(self, rhs: Self) -> f32 { (self - rhs).length() } /// Compute the squared euclidean distance between two points in space. #[inline] #[must_use] pub fn distance_squared(self, rhs: Self) -> f32 { (self - rhs).length_squared() } /// Returns the element-wise quotient of [Euclidean division] of `self` by `rhs`. #[inline] #[must_use] pub fn div_euclid(self, rhs: Self) -> Self { Self::new( math::div_euclid(self.x, rhs.x), math::div_euclid(self.y, rhs.y), math::div_euclid(self.z, rhs.z), ) } /// Returns the element-wise remainder of [Euclidean division] of `self` by `rhs`. /// /// [Euclidean division]: f32::rem_euclid #[inline] #[must_use] pub fn rem_euclid(self, rhs: Self) -> Self { Self::new( math::rem_euclid(self.x, rhs.x), math::rem_euclid(self.y, rhs.y), math::rem_euclid(self.z, rhs.z), ) } /// Returns `self` normalized to length 1.0. /// /// For valid results, `self` must _not_ be of length zero, nor very close to zero. /// /// See also [`Self::try_normalize()`] and [`Self::normalize_or_zero()`]. /// /// Panics /// /// Will panic if `self` is zero length when `glam_assert` is enabled. #[inline] #[must_use] pub fn normalize(self) -> Self { unsafe { let length = _mm_sqrt_ps(dot3_into_m128(self.0, self.0)); #[allow(clippy::let_and_return)] let normalized = Self(_mm_div_ps(self.0, length)); glam_assert!(normalized.is_finite()); normalized } } /// Returns `self` normalized to length 1.0 if possible, else returns `None`. /// /// In particular, if the input is zero (or very close to zero), or non-finite, /// the result of this operation will be `None`. /// /// See also [`Self::normalize_or_zero()`]. #[inline] #[must_use] pub fn try_normalize(self) -> Option { let rcp = self.length_recip(); if rcp.is_finite() && rcp > 0.0 { Some(self * rcp) } else { None } } /// Returns `self` normalized to length 1.0 if possible, else returns zero. /// /// In particular, if the input is zero (or very close to zero), or non-finite, /// the result of this operation will be zero. /// /// See also [`Self::try_normalize()`]. #[inline] #[must_use] pub fn normalize_or_zero(self) -> Self { let rcp = self.length_recip(); if rcp.is_finite() && rcp > 0.0 { self * rcp } else { Self::ZERO } } /// Returns whether `self` is length `1.0` or not. /// /// Uses a precision threshold of `1e-6`. #[inline] #[must_use] pub fn is_normalized(self) -> bool { // TODO: do something with epsilon math::abs(self.length_squared() - 1.0) <= 1e-4 } /// Returns the vector projection of `self` onto `rhs`. /// /// `rhs` must be of non-zero length. /// /// # Panics /// /// Will panic if `rhs` is zero length when `glam_assert` is enabled. #[inline] #[must_use] pub fn project_onto(self, rhs: Self) -> Self { let other_len_sq_rcp = rhs.dot(rhs).recip(); glam_assert!(other_len_sq_rcp.is_finite()); rhs * self.dot(rhs) * other_len_sq_rcp } /// Returns the vector rejection of `self` from `rhs`. /// /// The vector rejection is the vector perpendicular to the projection of `self` onto /// `rhs`, in rhs words the result of `self - self.project_onto(rhs)`. /// /// `rhs` must be of non-zero length. /// /// # Panics /// /// Will panic if `rhs` has a length of zero when `glam_assert` is enabled. #[inline] #[must_use] pub fn reject_from(self, rhs: Self) -> Self { self - self.project_onto(rhs) } /// Returns the vector projection of `self` onto `rhs`. /// /// `rhs` must be normalized. /// /// # Panics /// /// Will panic if `rhs` is not normalized when `glam_assert` is enabled. #[inline] #[must_use] pub fn project_onto_normalized(self, rhs: Self) -> Self { glam_assert!(rhs.is_normalized()); rhs * self.dot(rhs) } /// Returns the vector rejection of `self` from `rhs`. /// /// The vector rejection is the vector perpendicular to the projection of `self` onto /// `rhs`, in rhs words the result of `self - self.project_onto(rhs)`. /// /// `rhs` must be normalized. /// /// # Panics /// /// Will panic if `rhs` is not normalized when `glam_assert` is enabled. #[inline] #[must_use] pub fn reject_from_normalized(self, rhs: Self) -> Self { self - self.project_onto_normalized(rhs) } /// Returns a vector containing the nearest integer to a number for each element of `self`. /// Round half-way cases away from 0.0. #[inline] #[must_use] pub fn round(self) -> Self { Self(unsafe { m128_round(self.0) }) } /// Returns a vector containing the largest integer less than or equal to a number for each /// element of `self`. #[inline] #[must_use] pub fn floor(self) -> Self { Self(unsafe { m128_floor(self.0) }) } /// Returns a vector containing the smallest integer greater than or equal to a number for /// each element of `self`. #[inline] #[must_use] pub fn ceil(self) -> Self { Self(unsafe { m128_ceil(self.0) }) } /// Returns a vector containing the integer part each element of `self`. This means numbers are /// always truncated towards zero. #[inline] #[must_use] pub fn trunc(self) -> Self { Self(unsafe { m128_trunc(self.0) }) } /// Returns a vector containing the fractional part of the vector, e.g. `self - /// self.floor()`. /// /// Note that this is fast but not precise for large numbers. #[inline] #[must_use] pub fn fract(self) -> Self { self - self.floor() } /// Returns a vector containing `e^self` (the exponential function) for each element of /// `self`. #[inline] #[must_use] pub fn exp(self) -> Self { Self::new(math::exp(self.x), math::exp(self.y), math::exp(self.z)) } /// Returns a vector containing each element of `self` raised to the power of `n`. #[inline] #[must_use] pub fn powf(self, n: f32) -> Self { Self::new( math::powf(self.x, n), math::powf(self.y, n), math::powf(self.z, n), ) } /// Returns a vector containing the reciprocal `1.0/n` of each element of `self`. #[inline] #[must_use] pub fn recip(self) -> Self { Self(unsafe { _mm_div_ps(Self::ONE.0, self.0) }) } /// Performs a linear interpolation between `self` and `rhs` based on the value `s`. /// /// When `s` is `0.0`, the result will be equal to `self`. When `s` is `1.0`, the result /// will be equal to `rhs`. When `s` is outside of range `[0, 1]`, the result is linearly /// extrapolated. #[doc(alias = "mix")] #[inline] #[must_use] pub fn lerp(self, rhs: Self, s: f32) -> Self { self + ((rhs - self) * s) } /// Returns true if the absolute difference of all elements between `self` and `rhs` is /// less than or equal to `max_abs_diff`. /// /// This can be used to compare if two vectors contain similar elements. It works best when /// comparing with a known value. The `max_abs_diff` that should be used used depends on /// the values being compared against. /// /// For more see /// [comparing floating point numbers](https://randomascii.wordpress.com/2012/02/25/comparing-floating-point-numbers-2012-edition/). #[inline] #[must_use] pub fn abs_diff_eq(self, rhs: Self, max_abs_diff: f32) -> bool { self.sub(rhs).abs().cmple(Self::splat(max_abs_diff)).all() } /// Returns a vector with a length no less than `min` and no more than `max` /// /// # Panics /// /// Will panic if `min` is greater than `max` when `glam_assert` is enabled. #[inline] #[must_use] pub fn clamp_length(self, min: f32, max: f32) -> Self { glam_assert!(min <= max); let length_sq = self.length_squared(); if length_sq < min * min { min * (self / math::sqrt(length_sq)) } else if length_sq > max * max { max * (self / math::sqrt(length_sq)) } else { self } } /// Returns a vector with a length no more than `max` #[inline] #[must_use] pub fn clamp_length_max(self, max: f32) -> Self { let length_sq = self.length_squared(); if length_sq > max * max { max * (self / math::sqrt(length_sq)) } else { self } } /// Returns a vector with a length no less than `min` #[inline] #[must_use] pub fn clamp_length_min(self, min: f32) -> Self { let length_sq = self.length_squared(); if length_sq < min * min { min * (self / math::sqrt(length_sq)) } else { self } } /// Fused multiply-add. Computes `(self * a) + b` element-wise with only one rounding /// error, yielding a more accurate result than an unfused multiply-add. /// /// Using `mul_add` *may* be more performant than an unfused multiply-add if the target /// architecture has a dedicated fma CPU instruction. However, this is not always true, /// and will be heavily dependant on designing algorithms with specific target hardware in /// mind. #[inline] #[must_use] pub fn mul_add(self, a: Self, b: Self) -> Self { #[cfg(target_feature = "fma")] unsafe { Self(_mm_fmadd_ps(self.0, a.0, b.0)) } #[cfg(not(target_feature = "fma"))] Self::new( math::mul_add(self.x, a.x, b.x), math::mul_add(self.y, a.y, b.y), math::mul_add(self.z, a.z, b.z), ) } /// Returns the angle (in radians) between two vectors. /// /// The inputs do not need to be unit vectors however they must be non-zero. #[inline] #[must_use] pub fn angle_between(self, rhs: Self) -> f32 { math::acos_approx( self.dot(rhs) .div(math::sqrt(self.length_squared().mul(rhs.length_squared()))), ) } /// Returns some vector that is orthogonal to the given one. /// /// The input vector must be finite and non-zero. /// /// The output vector is not necessarily unit length. For that use /// [`Self::any_orthonormal_vector()`] instead. #[inline] #[must_use] pub fn any_orthogonal_vector(&self) -> Self { // This can probably be optimized if math::abs(self.x) > math::abs(self.y) { Self::new(-self.z, 0.0, self.x) // self.cross(Self::Y) } else { Self::new(0.0, self.z, -self.y) // self.cross(Self::X) } } /// Returns any unit vector that is orthogonal to the given one. /// /// The input vector must be unit length. /// /// # Panics /// /// Will panic if `self` is not normalized when `glam_assert` is enabled. #[inline] #[must_use] pub fn any_orthonormal_vector(&self) -> Self { glam_assert!(self.is_normalized()); // From https://graphics.pixar.com/library/OrthonormalB/paper.pdf let sign = math::signum(self.z); let a = -1.0 / (sign + self.z); let b = self.x * self.y * a; Self::new(b, sign + self.y * self.y * a, -self.y) } /// Given a unit vector return two other vectors that together form an orthonormal /// basis. That is, all three vectors are orthogonal to each other and are normalized. /// /// # Panics /// /// Will panic if `self` is not normalized when `glam_assert` is enabled. #[inline] #[must_use] pub fn any_orthonormal_pair(&self) -> (Self, Self) { glam_assert!(self.is_normalized()); // From https://graphics.pixar.com/library/OrthonormalB/paper.pdf let sign = math::signum(self.z); let a = -1.0 / (sign + self.z); let b = self.x * self.y * a; ( Self::new(1.0 + sign * self.x * self.x * a, sign * b, -sign * self.x), Self::new(b, sign + self.y * self.y * a, -self.y), ) } /// Casts all elements of `self` to `f64`. #[inline] #[must_use] pub fn as_dvec3(&self) -> crate::DVec3 { crate::DVec3::new(self.x as f64, self.y as f64, self.z as f64) } /// Casts all elements of `self` to `i16`. #[inline] #[must_use] pub fn as_i16vec3(&self) -> crate::I16Vec3 { crate::I16Vec3::new(self.x as i16, self.y as i16, self.z as i16) } /// Casts all elements of `self` to `u16`. #[inline] #[must_use] pub fn as_u16vec3(&self) -> crate::U16Vec3 { crate::U16Vec3::new(self.x as u16, self.y as u16, self.z as u16) } /// Casts all elements of `self` to `i32`. #[inline] #[must_use] pub fn as_ivec3(&self) -> crate::IVec3 { crate::IVec3::new(self.x as i32, self.y as i32, self.z as i32) } /// Casts all elements of `self` to `u32`. #[inline] #[must_use] pub fn as_uvec3(&self) -> crate::UVec3 { crate::UVec3::new(self.x as u32, self.y as u32, self.z as u32) } /// Casts all elements of `self` to `i64`. #[inline] #[must_use] pub fn as_i64vec3(&self) -> crate::I64Vec3 { crate::I64Vec3::new(self.x as i64, self.y as i64, self.z as i64) } /// Casts all elements of `self` to `u64`. #[inline] #[must_use] pub fn as_u64vec3(&self) -> crate::U64Vec3 { crate::U64Vec3::new(self.x as u64, self.y as u64, self.z as u64) } } impl Default for Vec3A { #[inline(always)] fn default() -> Self { Self::ZERO } } impl PartialEq for Vec3A { #[inline] fn eq(&self, rhs: &Self) -> bool { self.cmpeq(*rhs).all() } } impl Div for Vec3A { type Output = Self; #[inline] fn div(self, rhs: Self) -> Self { Self(unsafe { _mm_div_ps(self.0, rhs.0) }) } } impl DivAssign for Vec3A { #[inline] fn div_assign(&mut self, rhs: Self) { self.0 = unsafe { _mm_div_ps(self.0, rhs.0) }; } } impl Div for Vec3A { type Output = Self; #[inline] fn div(self, rhs: f32) -> Self { Self(unsafe { _mm_div_ps(self.0, _mm_set1_ps(rhs)) }) } } impl DivAssign for Vec3A { #[inline] fn div_assign(&mut self, rhs: f32) { self.0 = unsafe { _mm_div_ps(self.0, _mm_set1_ps(rhs)) }; } } impl Div for f32 { type Output = Vec3A; #[inline] fn div(self, rhs: Vec3A) -> Vec3A { Vec3A(unsafe { _mm_div_ps(_mm_set1_ps(self), rhs.0) }) } } impl Mul for Vec3A { type Output = Self; #[inline] fn mul(self, rhs: Self) -> Self { Self(unsafe { _mm_mul_ps(self.0, rhs.0) }) } } impl MulAssign for Vec3A { #[inline] fn mul_assign(&mut self, rhs: Self) { self.0 = unsafe { _mm_mul_ps(self.0, rhs.0) }; } } impl Mul for Vec3A { type Output = Self; #[inline] fn mul(self, rhs: f32) -> Self { Self(unsafe { _mm_mul_ps(self.0, _mm_set1_ps(rhs)) }) } } impl MulAssign for Vec3A { #[inline] fn mul_assign(&mut self, rhs: f32) { self.0 = unsafe { _mm_mul_ps(self.0, _mm_set1_ps(rhs)) }; } } impl Mul for f32 { type Output = Vec3A; #[inline] fn mul(self, rhs: Vec3A) -> Vec3A { Vec3A(unsafe { _mm_mul_ps(_mm_set1_ps(self), rhs.0) }) } } impl Add for Vec3A { type Output = Self; #[inline] fn add(self, rhs: Self) -> Self { Self(unsafe { _mm_add_ps(self.0, rhs.0) }) } } impl AddAssign for Vec3A { #[inline] fn add_assign(&mut self, rhs: Self) { self.0 = unsafe { _mm_add_ps(self.0, rhs.0) }; } } impl Add for Vec3A { type Output = Self; #[inline] fn add(self, rhs: f32) -> Self { Self(unsafe { _mm_add_ps(self.0, _mm_set1_ps(rhs)) }) } } impl AddAssign for Vec3A { #[inline] fn add_assign(&mut self, rhs: f32) { self.0 = unsafe { _mm_add_ps(self.0, _mm_set1_ps(rhs)) }; } } impl Add for f32 { type Output = Vec3A; #[inline] fn add(self, rhs: Vec3A) -> Vec3A { Vec3A(unsafe { _mm_add_ps(_mm_set1_ps(self), rhs.0) }) } } impl Sub for Vec3A { type Output = Self; #[inline] fn sub(self, rhs: Self) -> Self { Self(unsafe { _mm_sub_ps(self.0, rhs.0) }) } } impl SubAssign for Vec3A { #[inline] fn sub_assign(&mut self, rhs: Vec3A) { self.0 = unsafe { _mm_sub_ps(self.0, rhs.0) }; } } impl Sub for Vec3A { type Output = Self; #[inline] fn sub(self, rhs: f32) -> Self { Self(unsafe { _mm_sub_ps(self.0, _mm_set1_ps(rhs)) }) } } impl SubAssign for Vec3A { #[inline] fn sub_assign(&mut self, rhs: f32) { self.0 = unsafe { _mm_sub_ps(self.0, _mm_set1_ps(rhs)) }; } } impl Sub for f32 { type Output = Vec3A; #[inline] fn sub(self, rhs: Vec3A) -> Vec3A { Vec3A(unsafe { _mm_sub_ps(_mm_set1_ps(self), rhs.0) }) } } impl Rem for Vec3A { type Output = Self; #[inline] fn rem(self, rhs: Self) -> Self { unsafe { let n = m128_floor(_mm_div_ps(self.0, rhs.0)); Self(_mm_sub_ps(self.0, _mm_mul_ps(n, rhs.0))) } } } impl RemAssign for Vec3A { #[inline] fn rem_assign(&mut self, rhs: Self) { *self = self.rem(rhs); } } impl Rem for Vec3A { type Output = Self; #[inline] fn rem(self, rhs: f32) -> Self { self.rem(Self::splat(rhs)) } } impl RemAssign for Vec3A { #[inline] fn rem_assign(&mut self, rhs: f32) { *self = self.rem(Self::splat(rhs)); } } impl Rem for f32 { type Output = Vec3A; #[inline] fn rem(self, rhs: Vec3A) -> Vec3A { Vec3A::splat(self).rem(rhs) } } #[cfg(not(target_arch = "spirv"))] impl AsRef<[f32; 3]> for Vec3A { #[inline] fn as_ref(&self) -> &[f32; 3] { unsafe { &*(self as *const Vec3A as *const [f32; 3]) } } } #[cfg(not(target_arch = "spirv"))] impl AsMut<[f32; 3]> for Vec3A { #[inline] fn as_mut(&mut self) -> &mut [f32; 3] { unsafe { &mut *(self as *mut Vec3A as *mut [f32; 3]) } } } impl Sum for Vec3A { #[inline] fn sum(iter: I) -> Self where I: Iterator, { iter.fold(Self::ZERO, Self::add) } } impl<'a> Sum<&'a Self> for Vec3A { #[inline] fn sum(iter: I) -> Self where I: Iterator, { iter.fold(Self::ZERO, |a, &b| Self::add(a, b)) } } impl Product for Vec3A { #[inline] fn product(iter: I) -> Self where I: Iterator, { iter.fold(Self::ONE, Self::mul) } } impl<'a> Product<&'a Self> for Vec3A { #[inline] fn product(iter: I) -> Self where I: Iterator, { iter.fold(Self::ONE, |a, &b| Self::mul(a, b)) } } impl Neg for Vec3A { type Output = Self; #[inline] fn neg(self) -> Self { Self(unsafe { _mm_xor_ps(_mm_set1_ps(-0.0), self.0) }) } } impl Index for Vec3A { type Output = f32; #[inline] fn index(&self, index: usize) -> &Self::Output { match index { 0 => &self.x, 1 => &self.y, 2 => &self.z, _ => panic!("index out of bounds"), } } } impl IndexMut for Vec3A { #[inline] fn index_mut(&mut self, index: usize) -> &mut Self::Output { match index { 0 => &mut self.x, 1 => &mut self.y, 2 => &mut self.z, _ => panic!("index out of bounds"), } } } #[cfg(not(target_arch = "spirv"))] impl fmt::Display for Vec3A { fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { write!(f, "[{}, {}, {}]", self.x, self.y, self.z) } } #[cfg(not(target_arch = "spirv"))] impl fmt::Debug for Vec3A { fn fmt(&self, fmt: &mut fmt::Formatter<'_>) -> fmt::Result { fmt.debug_tuple(stringify!(Vec3A)) .field(&self.x) .field(&self.y) .field(&self.z) .finish() } } impl From for __m128 { #[inline] fn from(t: Vec3A) -> Self { t.0 } } impl From<__m128> for Vec3A { #[inline] fn from(t: __m128) -> Self { Self(t) } } impl From<[f32; 3]> for Vec3A { #[inline] fn from(a: [f32; 3]) -> Self { Self::new(a[0], a[1], a[2]) } } impl From for [f32; 3] { #[inline] fn from(v: Vec3A) -> Self { use crate::Align16; use core::mem::MaybeUninit; let mut out: MaybeUninit> = MaybeUninit::uninit(); unsafe { _mm_store_ps(out.as_mut_ptr().cast(), v.0); out.assume_init().0 } } } impl From<(f32, f32, f32)> for Vec3A { #[inline] fn from(t: (f32, f32, f32)) -> Self { Self::new(t.0, t.1, t.2) } } impl From for (f32, f32, f32) { #[inline] fn from(v: Vec3A) -> Self { use crate::Align16; use core::mem::MaybeUninit; let mut out: MaybeUninit> = MaybeUninit::uninit(); unsafe { _mm_store_ps(out.as_mut_ptr().cast(), v.0); out.assume_init().0 } } } impl From for Vec3A { #[inline] fn from(v: Vec3) -> Self { Self::new(v.x, v.y, v.z) } } impl From for Vec3A { /// Creates a [`Vec3A`] from the `x`, `y` and `z` elements of `self` discarding `w`. /// /// On architectures where SIMD is supported such as SSE2 on `x86_64` this conversion is a noop. #[inline] fn from(v: Vec4) -> Self { Self(v.0) } } impl From for Vec3 { #[inline] fn from(v: Vec3A) -> Self { use crate::Align16; use core::mem::MaybeUninit; let mut out: MaybeUninit> = MaybeUninit::uninit(); unsafe { _mm_store_ps(out.as_mut_ptr().cast(), v.0); out.assume_init().0 } } } impl From<(Vec2, f32)> for Vec3A { #[inline] fn from((v, z): (Vec2, f32)) -> Self { Self::new(v.x, v.y, z) } } impl Deref for Vec3A { type Target = crate::deref::Vec3; #[inline] fn deref(&self) -> &Self::Target { unsafe { &*(self as *const Self).cast() } } } impl DerefMut for Vec3A { #[inline] fn deref_mut(&mut self) -> &mut Self::Target { unsafe { &mut *(self as *mut Self).cast() } } }