/// Returns a very close approximation of `self.clamp(-1.0, 1.0).acos()`. #[inline] fn acos_approx_f32(v: f32) -> f32 { // Based on https://github.com/microsoft/DirectXMath `XMScalarAcos` // Clamp input to [-1,1]. let nonnegative = v >= 0.0; let x = abs(v); let mut omx = 1.0 - x; if omx < 0.0 { omx = 0.0; } let root = sqrt(omx); // 7-degree minimax approximation #[allow(clippy::approx_constant)] let mut result = ((((((-0.001_262_491_1 * x + 0.006_670_09) * x - 0.017_088_126) * x + 0.030_891_88) * x - 0.050_174_303) * x + 0.088_978_99) * x - 0.214_598_8) * x + 1.570_796_3; result *= root; // acos(x) = pi - acos(-x) when x < 0 if nonnegative { result } else { core::f32::consts::PI - result } } #[cfg(feature = "libm")] mod libm_math { #[inline(always)] pub(crate) fn abs(f: f32) -> f32 { libm::fabsf(f) } #[inline(always)] pub(crate) fn acos_approx(f: f32) -> f32 { super::acos_approx_f32(f) } #[inline(always)] pub(crate) fn asin(f: f32) -> f32 { libm::asinf(f) } #[inline(always)] pub(crate) fn atan2(f: f32, other: f32) -> f32 { libm::atan2f(f, other) } #[allow(unused)] #[inline(always)] pub(crate) fn sin(f: f32) -> f32 { libm::sinf(f) } #[inline(always)] pub(crate) fn sin_cos(f: f32) -> (f32, f32) { libm::sincosf(f) } #[inline(always)] pub(crate) fn tan(f: f32) -> f32 { libm::tanf(f) } #[inline(always)] pub(crate) fn sqrt(f: f32) -> f32 { libm::sqrtf(f) } #[inline(always)] pub(crate) fn copysign(f: f32, sign: f32) -> f32 { libm::copysignf(f, sign) } #[inline(always)] pub(crate) fn signum(f: f32) -> f32 { if f.is_nan() { f32::NAN } else { copysign(1.0, f) } } #[inline(always)] pub(crate) fn round(f: f32) -> f32 { libm::roundf(f) } #[inline(always)] pub(crate) fn trunc(f: f32) -> f32 { libm::truncf(f) } #[inline(always)] pub(crate) fn ceil(f: f32) -> f32 { libm::ceilf(f) } #[inline(always)] pub(crate) fn floor(f: f32) -> f32 { libm::floorf(f) } #[inline(always)] pub(crate) fn exp(f: f32) -> f32 { libm::expf(f) } #[inline(always)] pub(crate) fn powf(f: f32, n: f32) -> f32 { libm::powf(f, n) } #[inline(always)] pub(crate) fn mul_add(a: f32, b: f32, c: f32) -> f32 { libm::fmaf(a, b, c) } #[inline] pub fn div_euclid(a: f32, b: f32) -> f32 { // Based on https://doc.rust-lang.org/src/std/f32.rs.html#293 let q = libm::truncf(a / b); if a % b < 0.0 { return if b > 0.0 { q - 1.0 } else { q + 1.0 }; } q } #[inline] pub fn rem_euclid(a: f32, b: f32) -> f32 { let r = a % b; if r < 0.0 { r + abs(b) } else { r } } } #[cfg(not(feature = "libm"))] mod std_math { #[inline(always)] pub(crate) fn abs(f: f32) -> f32 { f32::abs(f) } #[inline(always)] pub(crate) fn acos_approx(f: f32) -> f32 { super::acos_approx_f32(f) } #[inline(always)] pub(crate) fn asin(f: f32) -> f32 { f32::asin(f) } #[inline(always)] pub(crate) fn atan2(f: f32, other: f32) -> f32 { f32::atan2(f, other) } #[allow(unused)] #[inline(always)] pub(crate) fn sin(f: f32) -> f32 { f32::sin(f) } #[inline(always)] pub(crate) fn sin_cos(f: f32) -> (f32, f32) { f32::sin_cos(f) } #[inline(always)] pub(crate) fn tan(f: f32) -> f32 { f32::tan(f) } #[inline(always)] pub(crate) fn sqrt(f: f32) -> f32 { f32::sqrt(f) } #[inline(always)] pub(crate) fn copysign(f: f32, sign: f32) -> f32 { f32::copysign(f, sign) } #[inline(always)] pub(crate) fn signum(f: f32) -> f32 { f32::signum(f) } #[inline(always)] pub(crate) fn round(f: f32) -> f32 { f32::round(f) } #[inline(always)] pub(crate) fn trunc(f: f32) -> f32 { f32::trunc(f) } #[inline(always)] pub(crate) fn ceil(f: f32) -> f32 { f32::ceil(f) } #[inline(always)] pub(crate) fn floor(f: f32) -> f32 { f32::floor(f) } #[inline(always)] pub(crate) fn exp(f: f32) -> f32 { f32::exp(f) } #[inline(always)] pub(crate) fn powf(f: f32, n: f32) -> f32 { f32::powf(f, n) } #[inline(always)] pub(crate) fn mul_add(a: f32, b: f32, c: f32) -> f32 { f32::mul_add(a, b, c) } #[inline] pub fn div_euclid(a: f32, b: f32) -> f32 { f32::div_euclid(a, b) } #[inline] pub fn rem_euclid(a: f32, b: f32) -> f32 { f32::rem_euclid(a, b) } } #[cfg(feature = "libm")] pub(crate) use libm_math::*; #[cfg(not(feature = "libm"))] pub(crate) use std_math::*;