// Generated from affine.rs.tera template. Edit the template, not the generated file. use crate::{Mat2, Mat3, Mat3A, Vec2, Vec3A}; use core::ops::{Deref, DerefMut, Mul, MulAssign}; /// A 2D affine transform, which can represent translation, rotation, scaling and shear. #[derive(Copy, Clone)] #[repr(C)] pub struct Affine2 { pub matrix2: Mat2, pub translation: Vec2, } impl Affine2 { /// The degenerate zero transform. /// /// This transforms any finite vector and point to zero. /// The zero transform is non-invertible. pub const ZERO: Self = Self { matrix2: Mat2::ZERO, translation: Vec2::ZERO, }; /// The identity transform. /// /// Multiplying a vector with this returns the same vector. pub const IDENTITY: Self = Self { matrix2: Mat2::IDENTITY, translation: Vec2::ZERO, }; /// All NAN:s. pub const NAN: Self = Self { matrix2: Mat2::NAN, translation: Vec2::NAN, }; /// Creates an affine transform from three column vectors. #[inline(always)] #[must_use] pub const fn from_cols(x_axis: Vec2, y_axis: Vec2, z_axis: Vec2) -> Self { Self { matrix2: Mat2::from_cols(x_axis, y_axis), translation: z_axis, } } /// Creates an affine transform from a `[f32; 6]` array stored in column major order. #[inline] #[must_use] pub fn from_cols_array(m: &[f32; 6]) -> Self { Self { matrix2: Mat2::from_cols_slice(&m[0..4]), translation: Vec2::from_slice(&m[4..6]), } } /// Creates a `[f32; 6]` array storing data in column major order. #[inline] #[must_use] pub fn to_cols_array(&self) -> [f32; 6] { let x = &self.matrix2.x_axis; let y = &self.matrix2.y_axis; let z = &self.translation; [x.x, x.y, y.x, y.y, z.x, z.y] } /// Creates an affine transform from a `[[f32; 2]; 3]` /// 2D array stored in column major order. /// If your data is in row major order you will need to `transpose` the returned /// matrix. #[inline] #[must_use] pub fn from_cols_array_2d(m: &[[f32; 2]; 3]) -> Self { Self { matrix2: Mat2::from_cols(m[0].into(), m[1].into()), translation: m[2].into(), } } /// Creates a `[[f32; 2]; 3]` 2D array storing data in /// column major order. /// If you require data in row major order `transpose` the matrix first. #[inline] #[must_use] pub fn to_cols_array_2d(&self) -> [[f32; 2]; 3] { [ self.matrix2.x_axis.into(), self.matrix2.y_axis.into(), self.translation.into(), ] } /// Creates an affine transform from the first 6 values in `slice`. /// /// # Panics /// /// Panics if `slice` is less than 6 elements long. #[inline] #[must_use] pub fn from_cols_slice(slice: &[f32]) -> Self { Self { matrix2: Mat2::from_cols_slice(&slice[0..4]), translation: Vec2::from_slice(&slice[4..6]), } } /// Writes the columns of `self` to the first 6 elements in `slice`. /// /// # Panics /// /// Panics if `slice` is less than 6 elements long. #[inline] pub fn write_cols_to_slice(self, slice: &mut [f32]) { self.matrix2.write_cols_to_slice(&mut slice[0..4]); self.translation.write_to_slice(&mut slice[4..6]); } /// Creates an affine transform that changes scale. /// Note that if any scale is zero the transform will be non-invertible. #[inline] #[must_use] pub fn from_scale(scale: Vec2) -> Self { Self { matrix2: Mat2::from_diagonal(scale), translation: Vec2::ZERO, } } /// Creates an affine transform from the given rotation `angle`. #[inline] #[must_use] pub fn from_angle(angle: f32) -> Self { Self { matrix2: Mat2::from_angle(angle), translation: Vec2::ZERO, } } /// Creates an affine transformation from the given 2D `translation`. #[inline] #[must_use] pub fn from_translation(translation: Vec2) -> Self { Self { matrix2: Mat2::IDENTITY, translation, } } /// Creates an affine transform from a 2x2 matrix (expressing scale, shear and rotation) #[inline] #[must_use] pub fn from_mat2(matrix2: Mat2) -> Self { Self { matrix2, translation: Vec2::ZERO, } } /// Creates an affine transform from a 2x2 matrix (expressing scale, shear and rotation) and a /// translation vector. /// /// Equivalent to /// `Affine2::from_translation(translation) * Affine2::from_mat2(mat2)` #[inline] #[must_use] pub fn from_mat2_translation(matrix2: Mat2, translation: Vec2) -> Self { Self { matrix2, translation, } } /// Creates an affine transform from the given 2D `scale`, rotation `angle` (in radians) and /// `translation`. /// /// Equivalent to `Affine2::from_translation(translation) * /// Affine2::from_angle(angle) * Affine2::from_scale(scale)` #[inline] #[must_use] pub fn from_scale_angle_translation(scale: Vec2, angle: f32, translation: Vec2) -> Self { let rotation = Mat2::from_angle(angle); Self { matrix2: Mat2::from_cols(rotation.x_axis * scale.x, rotation.y_axis * scale.y), translation, } } /// Creates an affine transform from the given 2D rotation `angle` (in radians) and /// `translation`. /// /// Equivalent to `Affine2::from_translation(translation) * Affine2::from_angle(angle)` #[inline] #[must_use] pub fn from_angle_translation(angle: f32, translation: Vec2) -> Self { Self { matrix2: Mat2::from_angle(angle), translation, } } /// The given `Mat3` must be an affine transform, #[inline] #[must_use] pub fn from_mat3(m: Mat3) -> Self { use crate::swizzles::Vec3Swizzles; Self { matrix2: Mat2::from_cols(m.x_axis.xy(), m.y_axis.xy()), translation: m.z_axis.xy(), } } /// The given [`Mat3A`] must be an affine transform, #[inline] #[must_use] pub fn from_mat3a(m: Mat3A) -> Self { use crate::swizzles::Vec3Swizzles; Self { matrix2: Mat2::from_cols(m.x_axis.xy(), m.y_axis.xy()), translation: m.z_axis.xy(), } } /// Extracts `scale`, `angle` and `translation` from `self`. /// /// The transform is expected to be non-degenerate and without shearing, or the output /// will be invalid. /// /// # Panics /// /// Will panic if the determinant `self.matrix2` is zero or if the resulting scale /// vector contains any zero elements when `glam_assert` is enabled. #[inline] #[must_use] pub fn to_scale_angle_translation(self) -> (Vec2, f32, Vec2) { use crate::f32::math; let det = self.matrix2.determinant(); glam_assert!(det != 0.0); let scale = Vec2::new( self.matrix2.x_axis.length() * math::signum(det), self.matrix2.y_axis.length(), ); glam_assert!(scale.cmpne(Vec2::ZERO).all()); let angle = math::atan2(-self.matrix2.y_axis.x, self.matrix2.y_axis.y); (scale, angle, self.translation) } /// Transforms the given 2D point, applying shear, scale, rotation and translation. #[inline] #[must_use] pub fn transform_point2(&self, rhs: Vec2) -> Vec2 { self.matrix2 * rhs + self.translation } /// Transforms the given 2D vector, applying shear, scale and rotation (but NOT /// translation). /// /// To also apply translation, use [`Self::transform_point2()`] instead. #[inline] pub fn transform_vector2(&self, rhs: Vec2) -> Vec2 { self.matrix2 * rhs } /// Returns `true` if, and only if, all elements are finite. /// /// If any element is either `NaN`, positive or negative infinity, this will return /// `false`. #[inline] #[must_use] pub fn is_finite(&self) -> bool { self.matrix2.is_finite() && self.translation.is_finite() } /// Returns `true` if any elements are `NaN`. #[inline] #[must_use] pub fn is_nan(&self) -> bool { self.matrix2.is_nan() || self.translation.is_nan() } /// Returns true if the absolute difference of all elements between `self` and `rhs` /// is less than or equal to `max_abs_diff`. /// /// This can be used to compare if two 3x4 matrices contain similar elements. It works /// best when comparing with a known value. The `max_abs_diff` that should be used used /// depends on the values being compared against. /// /// For more see /// [comparing floating point numbers](https://randomascii.wordpress.com/2012/02/25/comparing-floating-point-numbers-2012-edition/). #[inline] #[must_use] pub fn abs_diff_eq(&self, rhs: Self, max_abs_diff: f32) -> bool { self.matrix2.abs_diff_eq(rhs.matrix2, max_abs_diff) && self.translation.abs_diff_eq(rhs.translation, max_abs_diff) } /// Return the inverse of this transform. /// /// Note that if the transform is not invertible the result will be invalid. #[inline] #[must_use] pub fn inverse(&self) -> Self { let matrix2 = self.matrix2.inverse(); // transform negative translation by the matrix inverse: let translation = -(matrix2 * self.translation); Self { matrix2, translation, } } } impl Default for Affine2 { #[inline(always)] fn default() -> Self { Self::IDENTITY } } impl Deref for Affine2 { type Target = crate::deref::Cols3; #[inline(always)] fn deref(&self) -> &Self::Target { unsafe { &*(self as *const Self as *const Self::Target) } } } impl DerefMut for Affine2 { #[inline(always)] fn deref_mut(&mut self) -> &mut Self::Target { unsafe { &mut *(self as *mut Self as *mut Self::Target) } } } impl PartialEq for Affine2 { #[inline] fn eq(&self, rhs: &Self) -> bool { self.matrix2.eq(&rhs.matrix2) && self.translation.eq(&rhs.translation) } } #[cfg(not(target_arch = "spirv"))] impl core::fmt::Debug for Affine2 { fn fmt(&self, fmt: &mut core::fmt::Formatter<'_>) -> core::fmt::Result { fmt.debug_struct(stringify!(Affine2)) .field("matrix2", &self.matrix2) .field("translation", &self.translation) .finish() } } #[cfg(not(target_arch = "spirv"))] impl core::fmt::Display for Affine2 { fn fmt(&self, f: &mut core::fmt::Formatter<'_>) -> core::fmt::Result { write!( f, "[{}, {}, {}]", self.matrix2.x_axis, self.matrix2.y_axis, self.translation ) } } impl<'a> core::iter::Product<&'a Self> for Affine2 { fn product(iter: I) -> Self where I: Iterator, { iter.fold(Self::IDENTITY, |a, &b| a * b) } } impl Mul for Affine2 { type Output = Affine2; #[inline] fn mul(self, rhs: Affine2) -> Self::Output { Self { matrix2: self.matrix2 * rhs.matrix2, translation: self.matrix2 * rhs.translation + self.translation, } } } impl MulAssign for Affine2 { #[inline] fn mul_assign(&mut self, rhs: Affine2) { *self = self.mul(rhs); } } impl From for Mat3 { #[inline] fn from(m: Affine2) -> Mat3 { Self::from_cols( m.matrix2.x_axis.extend(0.0), m.matrix2.y_axis.extend(0.0), m.translation.extend(1.0), ) } } impl Mul for Affine2 { type Output = Mat3; #[inline] fn mul(self, rhs: Mat3) -> Self::Output { Mat3::from(self) * rhs } } impl Mul for Mat3 { type Output = Mat3; #[inline] fn mul(self, rhs: Affine2) -> Self::Output { self * Mat3::from(rhs) } } impl From for Mat3A { #[inline] fn from(m: Affine2) -> Mat3A { Self::from_cols( Vec3A::from((m.matrix2.x_axis, 0.0)), Vec3A::from((m.matrix2.y_axis, 0.0)), Vec3A::from((m.translation, 1.0)), ) } } impl Mul for Affine2 { type Output = Mat3A; #[inline] fn mul(self, rhs: Mat3A) -> Self::Output { Mat3A::from(self) * rhs } } impl Mul for Mat3A { type Output = Mat3A; #[inline] fn mul(self, rhs: Affine2) -> Self::Output { self * Mat3A::from(rhs) } }