// Copyright 2012-2014 The Rust Project Developers and Eric Kidd. See the // COPYRIGHT-RUST.txt file at the top-level directory of this distribution. // // Licensed under the Apache License, Version 2.0 or the MIT license // , at your // option. This file may not be copied, modified, or distributed except // according to those terms. //! A simple library implementing the [CESU-8 compatibility encoding //! scheme](http://www.unicode.org/reports/tr26/tr26-2.html). This is a //! non-standard variant of UTF-8 that is used internally by some systems //! that need to represent UTF-16 data as 8-bit characters. Yes, this is //! ugly. //! //! Use of this encoding is discouraged by the Unicode Consortium. It's OK //! for working with existing internal APIs, but it should not be used for //! transmitting or storing data. //! //! ``` //! use std::borrow::Cow; //! use cesu8::{from_cesu8, to_cesu8}; //! //! // 16-bit Unicode characters are the same in UTF-8 and CESU-8. //! assert_eq!(Cow::Borrowed("aé日".as_bytes()), //! to_cesu8("aé日")); //! assert_eq!(Cow::Borrowed("aé日"), //! from_cesu8("aé日".as_bytes()).unwrap()); //! //! // This string is CESU-8 data containing a 6-byte surrogate pair, //! // which decodes to a 4-byte UTF-8 string. //! let data = &[0xED, 0xA0, 0x81, 0xED, 0xB0, 0x81]; //! assert_eq!(Cow::Borrowed("\u{10401}"), //! from_cesu8(data).unwrap()); //! ``` //! //! ### A note about security //! //! As a general rule, this library is intended to fail on malformed or //! unexpected input. CESU-8 is supposed to be an internal-only format, //! and if we're seeing malformed data, we assume that it's either a bug in //! somebody's code, or an attacker is trying to improperly encode data to //! evade security checks. //! //! If you have a use case for lossy conversion to UTF-8, or conversion //! from mixed UTF-8/CESU-8 data, please feel free to submit a pull request //! for `from_cesu8_lossy_permissive` with appropriate behavior. //! //! ### Java and U+0000, and other variants //! //! Java uses the CESU-8 encoding as described above, but with one //! difference: The null character U+0000 is represented as an overlong //! UTF-8 sequence `C0 80`. This is supported by the `from_java_cesu8` and //! `to_java_cesu8` methods. //! //! ### Surrogate pairs and UTF-8 //! //! The UTF-16 encoding uses "surrogate pairs" to represent Unicode code //! points in the range from U+10000 to U+10FFFF. These are 16-bit numbers //! in the range 0xD800 to 0xDFFF. //! //! * 0xD800 to 0xDBFF: First half of surrogate pair. When encoded as //! CESU-8, these become **1110**1101 **10**100000 **10**000000 to //! **1110**1101 **10**101111 **10**111111. //! //! * 0xDC00 to 0xDFFF: Second half of surrogate pair. These become //! **1110**1101 **10**110000 **10**000000 to //! **1110**1101 **10**111111 **10**111111. //! //! Wikipedia [explains](http://en.wikipedia.org/wiki/UTF-16) the //! code point to UTF-16 conversion process: //! //! > Consider the encoding of U+10437 (𐐷): //! > //! > * Subtract 0x10000 from 0x10437. The result is 0x00437, 0000 0000 0100 //! > 0011 0111. //! > * Split this into the high 10-bit value and the low 10-bit value: //! > 0000000001 and 0000110111. //! > * Add 0xD800 to the high value to form the high surrogate: 0xD800 + //! > 0x0001 = 0xD801. //! > * Add 0xDC00 to the low value to form the low surrogate: 0xDC00 + //! > 0x0037 = 0xDC37. #![warn(missing_docs)] use std::borrow::Cow; use std::error::Error; use std::fmt; use std::result::Result; use std::slice; use std::str::{from_utf8, from_utf8_unchecked}; use unicode::utf8_char_width; mod unicode; /// Mask of the value bits of a continuation byte. const CONT_MASK: u8 = 0b0011_1111u8; /// Value of the tag bits (tag mask is !CONT_MASK) of a continuation byte. const TAG_CONT_U8: u8 = 0b1000_0000u8; /// The CESU-8 data could not be decoded as valid UTF-8 data. #[derive(Clone, Copy, Debug)] pub struct Cesu8DecodingError; impl Error for Cesu8DecodingError { fn description(&self) -> &str { "decoding error" } fn cause(&self) -> Option<&Error> { None } } impl fmt::Display for Cesu8DecodingError { fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { write!(f, "could not convert CESU-8 data to UTF-8") } } /// Which variant of the encoding are we working with? #[derive(PartialEq, Eq)] enum Variant { /// Regular CESU-8, with '\0' represented by itself. Standard, /// This is technically Java's "Modified UTF-8", which is supposedly /// like CESU-8, except that it UTF-8 encodes the '\0' byte. I'm sure /// it seemed like a good idea at the time. Java, } /// Convert CESU-8 data to a Rust string, re-encoding only if necessary. /// Returns an error if the data cannot be represented as valid UTF-8. /// /// ``` /// use std::borrow::Cow; /// use cesu8::from_cesu8; /// /// // This string is valid as UTF-8 or CESU-8, so it doesn't change, /// // and we can convert it without allocating memory. /// assert_eq!(Cow::Borrowed("aé日"), /// from_cesu8("aé日".as_bytes()).unwrap()); /// /// // This string is CESU-8 data containing a 6-byte surrogate pair, /// // which becomes a 4-byte UTF-8 string. /// let data = &[0xED, 0xA0, 0x81, 0xED, 0xB0, 0x81]; /// assert_eq!(Cow::Borrowed("\u{10401}"), /// from_cesu8(data).unwrap()); /// ``` pub fn from_cesu8(bytes: &[u8]) -> Result, Cesu8DecodingError> { from_cesu8_internal(bytes, Variant::Standard) } /// Convert Java's modified UTF-8 data to a Rust string, re-encoding only if /// necessary. Returns an error if the data cannot be represented as valid /// UTF-8. /// /// ``` /// use std::borrow::Cow; /// use cesu8::from_java_cesu8; /// /// // This string is valid as UTF-8 or modified UTF-8, so it doesn't change, /// // and we can convert it without allocating memory. /// assert_eq!(Cow::Borrowed("aé日"), /// from_java_cesu8("aé日".as_bytes()).unwrap()); /// /// // This string is modified UTF-8 data containing a 6-byte surrogate pair, /// // which becomes a 4-byte UTF-8 string. /// let data = &[0xED, 0xA0, 0x81, 0xED, 0xB0, 0x81]; /// assert_eq!(Cow::Borrowed("\u{10401}"), /// from_java_cesu8(data).unwrap()); /// /// // This string is modified UTF-8 data containing null code-points. /// let data = &[0xC0, 0x80, 0xC0, 0x80]; /// assert_eq!(Cow::Borrowed("\0\0"), /// from_java_cesu8(data).unwrap()); /// ``` pub fn from_java_cesu8(bytes: &[u8]) -> Result, Cesu8DecodingError> { from_cesu8_internal(bytes, Variant::Java) } /// Do the actual work of decoding. fn from_cesu8_internal(bytes: &[u8], variant: Variant) -> Result, Cesu8DecodingError> { match from_utf8(bytes) { Ok(str) => Ok(Cow::Borrowed(str)), _ => { let mut decoded = Vec::with_capacity(bytes.len()); if decode_from_iter(&mut decoded, &mut bytes.iter(), variant) { // Keep this assertion in debug mode only. It's important // that this assertion is true, because Rust assumes that // all UTF-8 strings are valid. debug_assert!(from_utf8(&decoded[..]).is_ok()); Ok(Cow::Owned(unsafe { String::from_utf8_unchecked(decoded) })) } else { Err(Cesu8DecodingError) } } } } #[test] fn test_from_cesu8() { // The surrogate-encoded character below is from the ICU library's // icu/source/test/testdata/conversion.txt test case. let data = &[0x4D, 0xE6, 0x97, 0xA5, 0xED, 0xA0, 0x81, 0xED, 0xB0, 0x81, 0x7F]; assert_eq!(Cow::Borrowed("M日\u{10401}\u{7F}"), from_cesu8(data).unwrap()); // We used to have test data from the CESU-8 specification, but when we // worked it through manually, we got the wrong answer: // // Input: [0xED, 0xAE, 0x80, 0xED, 0xB0, 0x80] // Binary: 11101101 10101110 10000000 11101101 10110000 10000000 // // 0b1101_101110_000000 -> 0xDB80 // 0b1101_110000_000000 -> 0xDC00 // // ((0xDB80 - 0xD800) << 10) | (0xDC00 - 0xDC00) -> 0xE0000 // 0x10000 + 0xE0000 -> 0xF0000 // // The spec claims that we are supposed to get 0x10000, not 0xF0000. // Since I can't reconcile this example data with the text of the // specification, I decided to use a test character from ICU instead. } // Our internal decoder, based on Rust's is_utf8 implementation. fn decode_from_iter( decoded: &mut Vec, iter: &mut slice::Iter, variant: Variant) -> bool { macro_rules! err { () => { return false } } macro_rules! next { () => { match iter.next() { Some(a) => *a, // We needed data, but there was none: error! None => err!() } } } macro_rules! next_cont { () => { { let byte = next!(); if (byte) & !CONT_MASK == TAG_CONT_U8 { byte } else { err!() } } } } loop { let first = match iter.next() { Some(&b) => b, // We're at the end of the iterator and a codepoint boundary at // the same time, so this string is valid. None => return true }; if variant == Variant::Java && first == 0 { // Java's modified UTF-8 should never contain \0 directly. err!(); } else if first < 128 { // Pass ASCII through directly. decoded.push(first); } else if first == 0xc0 && variant == Variant::Java { match next!() { 0x80 => decoded.push(0), _ => err!(), } } else { let w = utf8_char_width(first); let second = next_cont!(); match w { // Two-byte sequences can be used directly. 2 => { decoded.extend([first, second].iter().cloned()); } 3 => { let third = next_cont!(); match (first, second) { // These are valid UTF-8, so pass them through. (0xE0 , 0xA0 ... 0xBF) | (0xE1 ... 0xEC, 0x80 ... 0xBF) | (0xED , 0x80 ... 0x9F) | (0xEE ... 0xEF, 0x80 ... 0xBF) => { decoded.extend([first, second, third].iter() .cloned()) } // First half a surrogate pair, so decode. (0xED , 0xA0 ... 0xAF) => { if next!() != 0xED { err!() } let fifth = next_cont!(); if fifth < 0xB0 || 0xBF < fifth { err!() } let sixth = next_cont!(); let s = dec_surrogates(second, third, fifth, sixth); decoded.extend(s.iter().cloned()); } _ => err!() } } _ => err!() } } } } /// Convert the two trailing bytes from a CESU-8 surrogate to a regular /// surrogate value. fn dec_surrogate(second: u8, third: u8) -> u32 { 0xD000u32 | ((second & CONT_MASK) as u32) << 6 | (third & CONT_MASK) as u32 } /// Convert the bytes from a CESU-8 surrogate pair into a valid UTF-8 /// sequence. Assumes input is valid. fn dec_surrogates(second: u8, third: u8, fifth: u8, sixth: u8) -> [u8; 4] { // Convert to a 32-bit code point. let s1 = dec_surrogate(second, third); let s2 = dec_surrogate(fifth, sixth); let c = 0x10000 + (((s1 - 0xD800) << 10) | (s2 - 0xDC00)); //println!("{:0>8b} {:0>8b} {:0>8b} -> {:0>16b}", 0xEDu8, second, third, s1); //println!("{:0>8b} {:0>8b} {:0>8b} -> {:0>16b}", 0xEDu8, fifth, sixth, s2); //println!("-> {:0>32b}", c); assert!(0x010000 <= c && c <= 0x10FFFF); // Convert to UTF-8. // 11110xxx 10xxxxxx 10xxxxxx 10xxxxxx [0b1111_0000u8 | ((c & 0b1_1100_0000_0000_0000_0000) >> 18) as u8, TAG_CONT_U8 | ((c & 0b0_0011_1111_0000_0000_0000) >> 12) as u8, TAG_CONT_U8 | ((c & 0b0_0000_0000_1111_1100_0000) >> 6) as u8, TAG_CONT_U8 | ((c & 0b0_0000_0000_0000_0011_1111) ) as u8] } /// Convert a Rust `&str` to CESU-8 bytes. /// /// ``` /// use std::borrow::Cow; /// use cesu8::to_cesu8; /// /// // This string is valid as UTF-8 or CESU-8, so it doesn't change, /// // and we can convert it without allocating memory. /// assert_eq!(Cow::Borrowed("aé日".as_bytes()), to_cesu8("aé日")); /// /// // This string is a 4-byte UTF-8 string, which becomes a 6-byte CESU-8 /// // vector. /// assert_eq!(Cow::Borrowed(&[0xED, 0xA0, 0x81, 0xED, 0xB0, 0x81]), /// to_cesu8("\u{10401}")); /// ``` pub fn to_cesu8(text: &str) -> Cow<[u8]> { if is_valid_cesu8(text) { Cow::Borrowed(text.as_bytes()) } else { Cow::Owned(to_cesu8_internal(text, Variant::Standard)) } } /// Convert a Rust `&str` to Java's modified UTF-8 bytes. /// /// ``` /// use std::borrow::Cow; /// use cesu8::to_java_cesu8; /// /// // This string is valid as UTF-8 or CESU-8, so it doesn't change, /// // and we can convert it without allocating memory. /// assert_eq!(Cow::Borrowed("aé日".as_bytes()), to_java_cesu8("aé日")); /// /// // This string is a 4-byte UTF-8 string, which becomes a 6-byte modified /// // UTF-8 vector. /// assert_eq!(Cow::Borrowed(&[0xED, 0xA0, 0x81, 0xED, 0xB0, 0x81]), /// to_java_cesu8("\u{10401}")); /// /// // This string contains null, which becomes 2-byte modified UTF-8 encoding /// assert_eq!(Cow::Borrowed(&[0xC0, 0x80, 0xC0, 0x80]), /// to_java_cesu8("\0\0")); /// ``` pub fn to_java_cesu8(text: &str) -> Cow<[u8]> { if is_valid_java_cesu8(text) { Cow::Borrowed(text.as_bytes()) } else { Cow::Owned(to_cesu8_internal(text, Variant::Java)) } } fn to_cesu8_internal(text: &str, variant: Variant) -> Vec { let bytes = text.as_bytes(); let mut encoded = Vec::with_capacity(bytes.len() + bytes.len() >> 2); let mut i = 0; while i < bytes.len() { let b = bytes[i]; if variant == Variant::Java && b == 0 { encoded.push(0xc0); encoded.push(0x80); i += 1; } else if b < 128 { // Pass ASCII through quickly. encoded.push(b); i += 1; } else { // Figure out how many bytes we need for this character. let w = utf8_char_width(b); assert!(w <= 4); assert!(i + w <= bytes.len()); if w != 4 { // Pass through short UTF-8 sequences unmodified. encoded.extend(bytes[i..i+w].iter().cloned()); } else { // Encode 4-byte sequences as 6 bytes. let s = unsafe { from_utf8_unchecked(&bytes[i..i+w]) }; let c = s.chars().next().unwrap() as u32 - 0x10000; let mut s: [u16; 2] = [0; 2]; s[0] = ((c >> 10) as u16) | 0xD800; s[1] = ((c & 0x3FF) as u16) | 0xDC00; encoded.extend(enc_surrogate(s[0]).iter().cloned()); encoded.extend(enc_surrogate(s[1]).iter().cloned()); } i += w; } } encoded } /// Check whether a Rust string contains valid CESU-8 data. pub fn is_valid_cesu8(text: &str) -> bool { // We rely on the fact that Rust strings are guaranteed to be valid // UTF-8. for b in text.bytes() { if (b & !CONT_MASK) == TAG_CONT_U8 { continue; } if utf8_char_width(b) > 3 { return false; } } true } /// Check whether a Rust string contains valid Java's modified UTF-8 data. pub fn is_valid_java_cesu8(text: &str) -> bool { !text.contains('\0') && is_valid_cesu8(text) } #[test] fn test_valid_cesu8() { assert!(is_valid_cesu8("aé日")); assert!(is_valid_java_cesu8("aé日")); assert!(!is_valid_cesu8("\u{10401}")); assert!(!is_valid_java_cesu8("\u{10401}")); assert!(is_valid_cesu8("\0\0")); assert!(!is_valid_java_cesu8("\0\0")); } /// Encode a single surrogate as CESU-8. fn enc_surrogate(surrogate: u16) -> [u8; 3] { assert!(0xD800 <= surrogate && surrogate <= 0xDFFF); // 1110xxxx 10xxxxxx 10xxxxxx [0b11100000 | ((surrogate & 0b11110000_00000000) >> 12) as u8, TAG_CONT_U8 | ((surrogate & 0b00001111_11000000) >> 6) as u8, TAG_CONT_U8 | ((surrogate & 0b00000000_00111111) ) as u8] }