#pragma once #include #include #include #include #include #include #include #include #include #include #include #include #include #include namespace py = pybind11; // This makes intrusive_ptr to be available as a custom pybind11 holder type, // see // https://pybind11.readthedocs.io/en/stable/advanced/smart_ptrs.html#custom-smart-pointers PYBIND11_DECLARE_HOLDER_TYPE(T, c10::intrusive_ptr, true); PYBIND11_DECLARE_HOLDER_TYPE(T, c10::SingletonOrSharedTypePtr); PYBIND11_DECLARE_HOLDER_TYPE(T, c10::SingletonTypePtr, true); namespace pybind11::detail { // torch.Tensor <-> at::Tensor conversions (without unwrapping) template <> struct TORCH_PYTHON_API type_caster { public: // NOLINTNEXTLINE(cppcoreguidelines-non-private-member-variables-in-classes) PYBIND11_TYPE_CASTER(at::Tensor, _("torch.Tensor")); bool load(handle src, bool); static handle cast( const at::Tensor& src, return_value_policy /* policy */, handle /* parent */); }; // torch._StorageBase <-> at::Storage template <> struct type_caster { public: // NOLINTNEXTLINE(cppcoreguidelines-non-private-member-variables-in-classes) PYBIND11_TYPE_CASTER(at::Storage, _("torch.StorageBase")); bool load(handle src, bool) { PyObject* obj = src.ptr(); if (torch::isStorage(obj)) { value = torch::createStorage(obj); return true; } return false; } static handle cast( const at::Storage& src, return_value_policy /* policy */, handle /* parent */) { return handle(torch::createPyObject(src)); } }; template <> struct type_caster { public: // NOLINTNEXTLINE(cppcoreguidelines-non-private-member-variables-in-classes) PYBIND11_TYPE_CASTER(at::Generator, _("torch.Generator")); bool load(handle src, bool) { PyObject* obj = src.ptr(); if (THPGenerator_Check(obj)) { value = reinterpret_cast(obj)->cdata; return true; } return false; } static handle cast( const at::Generator& src, return_value_policy /* policy */, handle /* parent */) { return handle(THPGenerator_Wrap(src)); } }; template <> struct TORCH_PYTHON_API type_caster { public: // NOLINTNEXTLINE(cppcoreguidelines-non-private-member-variables-in-classes) PYBIND11_TYPE_CASTER(at::IntArrayRef, _("Tuple[int, ...]")); bool load(handle src, bool); static handle cast( at::IntArrayRef src, return_value_policy /* policy */, handle /* parent */); private: std::vector v_value; }; template <> struct TORCH_PYTHON_API type_caster { public: // NOLINTNEXTLINE(cppcoreguidelines-non-private-member-variables-in-classes) PYBIND11_TYPE_CASTER(at::SymIntArrayRef, _("List[int]")); bool load(handle src, bool); static handle cast( at::SymIntArrayRef src, return_value_policy /* policy */, handle /* parent */); private: std::vector v_value; }; template <> struct TORCH_PYTHON_API type_caster> { public: // NOLINTNEXTLINE(cppcoreguidelines-non-private-member-variables-in-classes) PYBIND11_TYPE_CASTER(at::ArrayRef, _("List[SymNode]")); bool load(handle src, bool); static handle cast( at::ArrayRef src, return_value_policy /* policy */, handle /* parent */); private: std::vector v_value; }; template <> struct type_caster { public: // NOLINTNEXTLINE(cppcoreguidelines-non-private-member-variables-in-classes) PYBIND11_TYPE_CASTER(at::MemoryFormat, _("torch.memory_format")); bool load(handle src, bool) { PyObject* obj = src.ptr(); if (THPMemoryFormat_Check(obj)) { value = reinterpret_cast(obj)->memory_format; return true; } return false; } static handle cast( at::MemoryFormat src, return_value_policy /* policy */, handle /* parent */) { return handle(Py_NewRef(torch::utils::getTHPMemoryFormat(src))); } }; template <> struct type_caster { public: // NOLINTNEXTLINE(cppcoreguidelines-non-private-member-variables-in-classes) PYBIND11_TYPE_CASTER(at::Device, _("torch.device")); // PYBIND11_TYPE_CASTER defines a member field called value. Since at::Device // cannot be default-initialized, we provide this constructor to explicitly // initialize that field. The value doesn't matter as it will be overwritten // after a successful call to load. type_caster() : value(c10::kCPU) {} bool load(handle src, bool) { PyObject* obj = src.ptr(); if (THPDevice_Check(obj)) { value = reinterpret_cast(obj)->device; return true; } return false; } static handle cast( const at::Device& src, return_value_policy /* policy */, handle /* parent */) { return handle(THPDevice_New(src)); } }; template <> struct type_caster { public: // NOLINTNEXTLINE(cppcoreguidelines-non-private-member-variables-in-classes) PYBIND11_TYPE_CASTER(at::ScalarType, _("torch.dtype")); // PYBIND11_TYPE_CASTER defines a member field called value. at::ScalarType // cannot be default-initialized, we provide this constructor to explicitly // initialize that field. The value doesn't matter as it will be overwritten // after a successful call to load. type_caster() : value(at::kFloat) {} bool load(handle src, bool) { PyObject* obj = src.ptr(); if (THPDtype_Check(obj)) { value = reinterpret_cast(obj)->scalar_type; return true; } return false; } static handle cast( const at::ScalarType& src, return_value_policy /* policy */, handle /* parent */) { return Py_NewRef(torch::getTHPDtype(src)); } }; template <> struct type_caster { public: // NOLINTNEXTLINE(cppcoreguidelines-non-private-member-variables-in-classes) PYBIND11_TYPE_CASTER(c10::Stream, _("torch.Stream")); // PYBIND11_TYPE_CASTER defines a member field called value. Since c10::Stream // cannot be default-initialized, we provide this constructor to explicitly // initialize that field. The value doesn't matter as it will be overwritten // after a successful call to load. type_caster() : value(c10::Stream::DEFAULT, c10::Device(c10::kCPU, 0)) {} bool load(handle src, bool) { PyObject* obj = src.ptr(); if (THPStream_Check(obj)) { value = c10::Stream::unpack3( ((THPStream*)obj)->stream_id, static_cast(((THPStream*)obj)->device_index), static_cast(((THPStream*)obj)->device_type)); return true; } return false; } static handle cast( const c10::Stream& src, return_value_policy /* policy */, handle /* parent */) { return handle(THPStream_Wrap(src)); } }; template <> struct type_caster : public type_caster_base { using base = type_caster_base; c10::DispatchKey tmp{}; public: bool load(handle src, bool convert) { if (base::load(src, convert)) { return true; } else if (py::isinstance( src, py::module_::import("builtins").attr("str"))) { tmp = c10::parseDispatchKey(py::cast(src)); value = &tmp; return true; } return false; } static handle cast( c10::DispatchKey src, return_value_policy policy, handle parent) { return base::cast(src, policy, parent); } }; template <> struct TORCH_PYTHON_API type_caster { public: PYBIND11_TYPE_CASTER( c10::Scalar, _("Union[Number, torch.SymInt, torch.SymFloat, torch.SymBool]")); bool load(py::handle src, bool); static py::handle cast( const c10::Scalar& si, return_value_policy /* policy */, handle /* parent */); }; template <> struct TORCH_PYTHON_API type_caster { public: PYBIND11_TYPE_CASTER(c10::SymInt, _("Union[int, torch.SymInt]")); bool load(py::handle src, bool); static py::handle cast( const c10::SymInt& si, return_value_policy /* policy */, handle /* parent */); }; template <> struct TORCH_PYTHON_API type_caster { public: PYBIND11_TYPE_CASTER(c10::SymFloat, _("float")); bool load(py::handle src, bool); static py::handle cast( const c10::SymFloat& si, return_value_policy /* policy */, handle /* parent */); }; template <> struct TORCH_PYTHON_API type_caster { public: PYBIND11_TYPE_CASTER(c10::SymBool, _("Union[bool, torch.SymBool]")); bool load(py::handle src, bool); static py::handle cast( const c10::SymBool& si, return_value_policy /* policy */, handle /* parent */); }; template struct type_caster> { public: // NOLINTNEXTLINE(cppcoreguidelines-non-private-member-variables-in-classes) PYBIND11_TYPE_CASTER(c10::complex, _("complex")); bool load(handle src, bool) { PyObject* obj = src.ptr(); // Refered from `THPUtils_unpackComplexDouble` Py_complex py_complex = PyComplex_AsCComplex(obj); if (py_complex.real == -1.0 && PyErr_Occurred()) { return false; } // Python's Complex is always double precision. value = c10::complex(py_complex.real, py_complex.imag); return true; } static handle cast( const c10::complex& complex, return_value_policy /* policy */, handle /* parent */) { // Python only knows double precision complex. return handle(PyComplex_FromDoubles(complex.real(), complex.imag())); } }; } // namespace pybind11::detail namespace torch::impl { // Use this function if you have a C++ object that is used from both C++ // and Python contexts, and you need its GIL to be released when you // destruct it in the Python context. // // This function is a valid shared_ptr destructor and can be used to // conveniently allocate a shared_ptr to an object whose destructor will be run // without the GIL. Pass it as the second argument to shared_ptr, e.g., // // shared_ptr(new T(), destroy_without_gil) // // Attaching the GIL release logic to the holder pointer rather than the // actual destructor of T is helpful when T is Python-agnostic and // shouldn't refer to the PYthon API. // // Note there are limitations to the correctness of code that makes use of this. // In particular, if a shared_ptr is constructed from C++ code without this // destructor and then passed to pybind11, pybind11 will happily take ownership // of the shared_ptr (and be willing to destruct it from a context where it is // holding the GIL). unique_ptr with a type branded deleter is less prone to // this problem, because a stock deleter unique_ptr is not convertible with it. // I plan to mitigate this problem by adding DEBUG-only asserts to the true C++ // destructors that the GIL is not held (using a virtual call to get to the // Python interpreter); alternately, we could use a virtual call to simply // ensure we release the GIL in the C++ destructor, however, this is a layering // violation (why does code that is ostensibly Python agnostic calling into the // GIL). // // Adapted from // https://github.com/pybind/pybind11/issues/1446#issuecomment-406341510 template inline void destroy_without_gil(T* ptr) { // Because the ownership of a shared_ptr is diffuse, it's not possible to // necessarily predict whether or not the last reference to an object will // be destructed from Python or C++. This means that in the destructor here, // we don't necessarily know if we actually have the GIL or not; in fact, // we don't even know if the Python interpreter still exists! Thus, we have // to test for it before releasing the GIL. // // PyGILState_Check is hopefully self explanatory. But Py_IsInitialized or // _PyIsFinalizing? Both get set at the same time during the Python // destruction process: // https://github.com/python/cpython/blob/d92513390a1a0da781bb08c284136f4d7abea36d/Python/pylifecycle.c#L1716-L1717 // so the operant question is whether or not you want to release the GIL after // finalization has completed (and there is just no Python interpreter). // Clearly there is no need to release GIL in that state, so we want // Py_IsInitialized. if (Py_IsInitialized() && PyGILState_Check()) { pybind11::gil_scoped_release nogil; delete ptr; } else { delete ptr; } } } // namespace torch::impl