#include #include #include #include #include #include #include #include #include PyObject *THPException_FatalError, *THPException_LinAlgError, *THPException_OutOfMemoryError, *THPException_DistError, *THPException_DistBackendError, *THPException_DistNetworkError, *THPException_DistStoreError; #define ASSERT_TRUE(cond) \ if (!(cond)) \ return false bool THPException_init(PyObject* module) { // NOLINTNEXTLINE(bugprone-assignment-in-if-condition) ASSERT_TRUE( THPException_FatalError = PyErr_NewException("torch.FatalError", nullptr, nullptr)); // NOLINTNEXTLINE(bugprone-assignment-in-if-condition) ASSERT_TRUE( PyModule_AddObject(module, "FatalError", THPException_FatalError) == 0); // Set the doc string here since _add_docstr throws malloc errors if tp_doc is // modified for an error class. // NOLINTNEXTLINE(bugprone-assignment-in-if-condition) ASSERT_TRUE( THPException_LinAlgError = PyErr_NewExceptionWithDoc( "torch._C._LinAlgError", "Error raised by torch.linalg function when the cause of error is a numerical inconsistency in the data.\n \ For example, you can the torch.linalg.inv function will raise torch.linalg.LinAlgError when it finds that \ a matrix is not invertible.\n \ \n\ Example:\n \ >>> # xdoctest: +REQUIRES(env:TORCH_DOCKTEST_LAPACK)\n \ >>> matrix = torch.eye(3, 3)\n \ >>> matrix[-1, -1] = 0\n \ >>> matrix\n \ tensor([[1., 0., 0.],\n \ [0., 1., 0.],\n \ [0., 0., 0.]])\n \ >>> torch.linalg.inv(matrix)\n \ Traceback (most recent call last):\n \ File \"\", line 1, in \n \ torch._C._LinAlgError: torch.linalg.inv: The diagonal element 3 is zero, the inversion\n \ could not be completed because the input matrix is singular.", PyExc_RuntimeError, nullptr)); ASSERT_TRUE( PyModule_AddObject(module, "_LinAlgError", THPException_LinAlgError) == 0); // NOLINTNEXTLINE(bugprone-assignment-in-if-condition) ASSERT_TRUE( THPException_OutOfMemoryError = PyErr_NewExceptionWithDoc( "torch.OutOfMemoryError", "Exception raised when device is out of memory", PyExc_RuntimeError, nullptr)); PyTypeObject* type = (PyTypeObject*)THPException_OutOfMemoryError; type->tp_name = "torch.OutOfMemoryError"; ASSERT_TRUE( PyModule_AddObject( module, "OutOfMemoryError", THPException_OutOfMemoryError) == 0); // NOLINTNEXTLINE(bugprone-assignment-in-if-condition) ASSERT_TRUE( THPException_DistError = PyErr_NewExceptionWithDoc( "torch.distributed.DistError", "Exception raised when an error occurs in the distributed library", PyExc_RuntimeError, nullptr)); ASSERT_TRUE( PyModule_AddObject(module, "_DistError", THPException_DistError) == 0); // NOLINTNEXTLINE(bugprone-assignment-in-if-condition) ASSERT_TRUE( THPException_DistBackendError = PyErr_NewExceptionWithDoc( "torch.distributed.DistBackendError", "Exception raised when a backend error occurs in distributed", THPException_DistError, nullptr)); ASSERT_TRUE( PyModule_AddObject( module, "_DistBackendError", THPException_DistBackendError) == 0); // NOLINTNEXTLINE(bugprone-assignment-in-if-condition) ASSERT_TRUE( THPException_DistNetworkError = PyErr_NewExceptionWithDoc( "torch.distributed.DistNetworkError", "Exception raised when a network error occurs in distributed", THPException_DistError, nullptr)); ASSERT_TRUE( PyModule_AddObject( module, "_DistNetworkError", THPException_DistNetworkError) == 0); // NOLINTNEXTLINE(bugprone-assignment-in-if-condition) ASSERT_TRUE( THPException_DistStoreError = PyErr_NewExceptionWithDoc( "torch.distributed.DistStoreError", "Exception raised when an error occurs in the distributed store", THPException_DistError, nullptr)); ASSERT_TRUE( PyModule_AddObject( module, "_DistStoreError", THPException_DistStoreError) == 0); return true; } namespace torch { void processErrorMsgInplace(std::string& str) { // Translate Aten types to their respective pytorch ones constexpr std::array, 64> changes{{ // TODO: remove torch.(cuda.|)sparse.*Tensor items? {"Variable[SparseCUDAByteType]", "torch.cuda.sparse.ByteTensor"}, {"Variable[SparseCUDACharType]", "torch.cuda.sparse.CharTensor"}, {"Variable[SparseCUDADoubleType]", "torch.cuda.sparse.DoubleTensor"}, {"Variable[SparseCUDAFloatType]", "torch.cuda.sparse.FloatTensor"}, {"Variable[SparseCUDAIntType]", "torch.cuda.sparse.IntTensor"}, {"Variable[SparseCUDALongType]", "torch.cuda.sparse.LongTensor"}, {"Variable[SparseCUDAShortType]", "torch.cuda.sparse.ShortTensor"}, {"Variable[SparseCUDAHalfType]", "torch.cuda.sparse.HalfTensor"}, {"Variable[SparseCPUByteType]", "torch.sparse.ByteTensor"}, {"Variable[SparseCPUCharType]", "torch.sparse.CharTensor"}, {"Variable[SparseCPUDoubleType]", "torch.sparse.DoubleTensor"}, {"Variable[SparseCPUFloatType]", "torch.sparse.FloatTensor"}, {"Variable[SparseCPUIntType]", "torch.sparse.IntTensor"}, {"Variable[SparseCPULongType]", "torch.sparse.LongTensor"}, {"Variable[SparseCPUShortType]", "torch.sparse.ShortTensor"}, {"Variable[SparseCPUHalfType]", "torch.sparse.HalfTensor"}, {"Variable[CUDAByteType]", "torch.cuda.ByteTensor"}, {"Variable[CUDACharType]", "torch.cuda.CharTensor"}, {"Variable[CUDADoubleType]", "torch.cuda.DoubleTensor"}, {"Variable[CUDAFloatType]", "torch.cuda.FloatTensor"}, {"Variable[CUDAIntType]", "torch.cuda.IntTensor"}, {"Variable[CUDALongType]", "torch.cuda.LongTensor"}, {"Variable[CUDAShortType]", "torch.cuda.ShortTensor"}, {"Variable[CUDAHalfType]", "torch.cuda.HalfTensor"}, {"Variable[CPUByteType]", "torch.ByteTensor"}, {"Variable[CPUCharType]", "torch.CharTensor"}, {"Variable[CPUDoubleType]", "torch.DoubleTensor"}, {"Variable[CPUFloatType]", "torch.FloatTensor"}, {"Variable[CPUIntType]", "torch.IntTensor"}, {"Variable[CPULongType]", "torch.LongTensor"}, {"Variable[CPUShortType]", "torch.ShortTensor"}, {"Variable[CPUHalfType]", "torch.HalfTensor"}, {"SparseCUDAByteType", "torch.cuda.sparse.ByteTensor"}, {"SparseCUDACharType", "torch.cuda.sparse.CharTensor"}, {"SparseCUDADoubleType", "torch.cuda.sparse.DoubleTensor"}, {"SparseCUDAFloatType", "torch.cuda.sparse.FloatTensor"}, {"SparseCUDAIntType", "torch.cuda.sparse.IntTensor"}, {"SparseCUDALongType", "torch.cuda.sparse.LongTensor"}, {"SparseCUDAShortType", "torch.cuda.sparse.ShortTensor"}, {"SparseCUDAHalfType", "torch.cuda.sparse.HalfTensor"}, {"SparseCPUByteType", "torch.sparse.ByteTensor"}, {"SparseCPUCharType", "torch.sparse.CharTensor"}, {"SparseCPUDoubleType", "torch.sparse.DoubleTensor"}, {"SparseCPUFloatType", "torch.sparse.FloatTensor"}, {"SparseCPUIntType", "torch.sparse.IntTensor"}, {"SparseCPULongType", "torch.sparse.LongTensor"}, {"SparseCPUShortType", "torch.sparse.ShortTensor"}, {"SparseCPUHalfType", "torch.sparse.HalfTensor"}, {"CUDAByteType", "torch.cuda.ByteTensor"}, {"CUDACharType", "torch.cuda.CharTensor"}, {"CUDADoubleType", "torch.cuda.DoubleTensor"}, {"CUDAFloatType", "torch.cuda.FloatTensor"}, {"CUDAIntType", "torch.cuda.IntTensor"}, {"CUDALongType", "torch.cuda.LongTensor"}, {"CUDAShortType", "torch.cuda.ShortTensor"}, {"CUDAHalfType", "torch.cuda.HalfTensor"}, {"CPUByteType", "torch.ByteTensor"}, {"CPUCharType", "torch.CharTensor"}, {"CPUDoubleType", "torch.DoubleTensor"}, {"CPUFloatType", "torch.FloatTensor"}, {"CPUIntType", "torch.IntTensor"}, {"CPULongType", "torch.LongTensor"}, {"CPUShortType", "torch.ShortTensor"}, {"CPUHalfType", "torch.HalfTensor"}, }}; // Avoid doing any work if no types need translated if (str.find("Type") == str.npos) { return; } for (const auto& it : changes) { c10::ReplaceAll(str, it.first, it.second); } } std::string processErrorMsg(std::string str) { processErrorMsgInplace(str); return str; } static std::string formatMessage(const char* format, va_list fmt_args) { static const size_t ERROR_BUF_SIZE = 1024; // NOLINTNEXTLINE(modernize-avoid-c-arrays,cppcoreguidelines-avoid-c-arrays) char error_buf[ERROR_BUF_SIZE]; vsnprintf(error_buf, ERROR_BUF_SIZE, format, fmt_args); // Ensure that the string is null terminated error_buf[sizeof(error_buf) / sizeof(*error_buf) - 1] = 0; return std::string(error_buf); } void translate_exception_to_python(const std::exception_ptr& e_ptr) { try { TORCH_INTERNAL_ASSERT( e_ptr, "translate_exception_to_python " "called with invalid exception pointer"); std::rethrow_exception(e_ptr); } CATCH_ALL_ERRORS(return) } TypeError::TypeError(const char* format, ...) { va_list fmt_args{}; va_start(fmt_args, format); msg = formatMessage(format, fmt_args); va_end(fmt_args); } AttributeError::AttributeError(const char* format, ...) { va_list fmt_args{}; va_start(fmt_args, format); msg = formatMessage(format, fmt_args); va_end(fmt_args); } void PyWarningHandler::InternalHandler::process(const c10::Warning& warning) { warning_buffer_.push_back(warning); } PyWarningHandler::PyWarningHandler() noexcept(true) : prev_handler_(c10::WarningUtils::get_warning_handler()), in_exception_(false) { c10::WarningUtils::set_warning_handler(&internal_handler_); } // Get the Python warning type for a warning PyObject* map_warning_to_python_type(const c10::Warning& warning) { struct Visitor { PyObject* operator()(const c10::UserWarning&) const { return PyExc_UserWarning; } PyObject* operator()(const c10::DeprecationWarning&) const { return PyExc_DeprecationWarning; } }; return std::visit(Visitor(), warning.type()); } /// See NOTE [ Conversion Cpp Python Warning ] for noexcept justification /// NOLINTNEXTLINE(bugprone-exception-escape) PyWarningHandler::~PyWarningHandler() noexcept(false) { c10::WarningUtils::set_warning_handler(prev_handler_); auto& warning_buffer = internal_handler_.warning_buffer_; if (!warning_buffer.empty()) { PyObject *type = nullptr, *value = nullptr, *traceback = nullptr; pybind11::gil_scoped_acquire gil; auto result = 0; if (in_exception_) { // This (combined with PyErr_Restore below) also works when no python // error has been set yet PyErr_Fetch(&type, &value, &traceback); } for (const auto& warning : warning_buffer) { auto source_location = warning.source_location(); auto msg = warning.msg(); processErrorMsgInplace(msg); if (source_location.file == nullptr) { result = PyErr_WarnEx(map_warning_to_python_type(warning), msg.c_str(), 1); } else if (warning.verbatim()) { // Sets the source location from the warning // Note: PyErr_WarnExplicit will disregard Python's warning filter // and always appear. This is in contrast to PyErr_WarnEx, // which respects the warning filter. result = PyErr_WarnExplicit( /*category=*/map_warning_to_python_type(warning), /*message=*/msg.c_str(), /*filename=*/source_location.file, /*lineno=*/static_cast(source_location.line), /*module=*/nullptr, /*registry=*/nullptr); } else { // Lets Python set the source location and puts the C++ warning // location into the message. auto buf = fmt::format( "{} (Triggered internally at {}:{}.)", msg, source_location.file, source_location.line); result = PyErr_WarnEx(map_warning_to_python_type(warning), buf.c_str(), 1); } if (result < 0) { if (in_exception_) { // PyErr_Print prints the traceback to sys.stderr and // clears the error indicator PyErr_Print(); } else { break; } } } warning_buffer.clear(); if ((result < 0) && (!in_exception_)) { /// A warning raised an error, we need to force the parent /// function to return an error code. throw python_error(); } if (in_exception_) { PyErr_Restore(type, value, traceback); } } } } // namespace torch