# mypy: ignore-errors # Owner(s): ["module: numpy"] import sys from itertools import product import numpy as np import torch from torch.testing import make_tensor from torch.testing._internal.common_device_type import ( dtypes, instantiate_device_type_tests, onlyCPU, skipMeta, ) from torch.testing._internal.common_dtype import all_types_and_complex_and from torch.testing._internal.common_utils import run_tests, skipIfTorchDynamo, TestCase # For testing handling NumPy objects and sending tensors to / accepting # arrays from NumPy. class TestNumPyInterop(TestCase): # Note: the warning this tests for only appears once per program, so # other instances of this warning should be addressed to avoid # the tests depending on the order in which they're run. @onlyCPU def test_numpy_non_writeable(self, device): arr = np.zeros(5) arr.flags["WRITEABLE"] = False self.assertWarns(UserWarning, lambda: torch.from_numpy(arr)) @onlyCPU def test_numpy_unresizable(self, device) -> None: x = np.zeros((2, 2)) y = torch.from_numpy(x) with self.assertRaises(ValueError): x.resize((5, 5)) z = torch.randn(5, 5) w = z.numpy() with self.assertRaises(RuntimeError): z.resize_(10, 10) with self.assertRaises(ValueError): w.resize((10, 10)) @onlyCPU def test_to_numpy(self, device) -> None: def get_castable_tensor(shape, dtype): if dtype.is_floating_point: dtype_info = torch.finfo(dtype) # can't directly use min and max, because for double, max - min # is greater than double range and sampling always gives inf. low = max(dtype_info.min, -1e10) high = min(dtype_info.max, 1e10) t = torch.empty(shape, dtype=torch.float64).uniform_(low, high) else: # can't directly use min and max, because for int64_t, max - min # is greater than int64_t range and triggers UB. low = max(torch.iinfo(dtype).min, int(-1e10)) high = min(torch.iinfo(dtype).max, int(1e10)) t = torch.empty(shape, dtype=torch.int64).random_(low, high) return t.to(dtype) dtypes = [ torch.uint8, torch.int8, torch.short, torch.int, torch.half, torch.float, torch.double, torch.long, ] for dtp in dtypes: # 1D sz = 10 x = get_castable_tensor(sz, dtp) y = x.numpy() for i in range(sz): self.assertEqual(x[i], y[i]) # 1D > 0 storage offset xm = get_castable_tensor(sz * 2, dtp) x = xm.narrow(0, sz - 1, sz) self.assertTrue(x.storage_offset() > 0) y = x.numpy() for i in range(sz): self.assertEqual(x[i], y[i]) def check2d(x, y): for i in range(sz1): for j in range(sz2): self.assertEqual(x[i][j], y[i][j]) # empty x = torch.tensor([]).to(dtp) y = x.numpy() self.assertEqual(y.size, 0) # contiguous 2D sz1 = 3 sz2 = 5 x = get_castable_tensor((sz1, sz2), dtp) y = x.numpy() check2d(x, y) self.assertTrue(y.flags["C_CONTIGUOUS"]) # with storage offset xm = get_castable_tensor((sz1 * 2, sz2), dtp) x = xm.narrow(0, sz1 - 1, sz1) y = x.numpy() self.assertTrue(x.storage_offset() > 0) check2d(x, y) self.assertTrue(y.flags["C_CONTIGUOUS"]) # non-contiguous 2D x = get_castable_tensor((sz2, sz1), dtp).t() y = x.numpy() check2d(x, y) self.assertFalse(y.flags["C_CONTIGUOUS"]) # with storage offset xm = get_castable_tensor((sz2 * 2, sz1), dtp) x = xm.narrow(0, sz2 - 1, sz2).t() y = x.numpy() self.assertTrue(x.storage_offset() > 0) check2d(x, y) # non-contiguous 2D with holes xm = get_castable_tensor((sz2 * 2, sz1 * 2), dtp) x = xm.narrow(0, sz2 - 1, sz2).narrow(1, sz1 - 1, sz1).t() y = x.numpy() self.assertTrue(x.storage_offset() > 0) check2d(x, y) if dtp != torch.half: # check writeable x = get_castable_tensor((3, 4), dtp) y = x.numpy() self.assertTrue(y.flags.writeable) y[0][1] = 3 self.assertTrue(x[0][1] == 3) y = x.t().numpy() self.assertTrue(y.flags.writeable) y[0][1] = 3 self.assertTrue(x[0][1] == 3) def test_to_numpy_bool(self, device) -> None: x = torch.tensor([True, False], dtype=torch.bool) self.assertEqual(x.dtype, torch.bool) y = x.numpy() self.assertEqual(y.dtype, np.bool_) for i in range(len(x)): self.assertEqual(x[i], y[i]) x = torch.tensor([True], dtype=torch.bool) self.assertEqual(x.dtype, torch.bool) y = x.numpy() self.assertEqual(y.dtype, np.bool_) self.assertEqual(x[0], y[0]) @skipIfTorchDynamo("conj bit not implemented in TensorVariable yet") def test_to_numpy_force_argument(self, device) -> None: for force in [False, True]: for requires_grad in [False, True]: for sparse in [False, True]: for conj in [False, True]: data = [[1 + 2j, -2 + 3j], [-1 - 2j, 3 - 2j]] x = torch.tensor( data, requires_grad=requires_grad, device=device ) y = x if sparse: if requires_grad: continue x = x.to_sparse() if conj: x = x.conj() y = x.resolve_conj() expect_error = ( requires_grad or sparse or conj or not device == "cpu" ) error_msg = r"Use (t|T)ensor\..*(\.numpy\(\))?" if not force and expect_error: self.assertRaisesRegex( (RuntimeError, TypeError), error_msg, lambda: x.numpy() ) self.assertRaisesRegex( (RuntimeError, TypeError), error_msg, lambda: x.numpy(force=False), ) elif force and sparse: self.assertRaisesRegex( TypeError, error_msg, lambda: x.numpy(force=True) ) else: self.assertEqual(x.numpy(force=force), y) def test_from_numpy(self, device) -> None: dtypes = [ np.double, np.float64, np.float16, np.complex64, np.complex128, np.int64, np.int32, np.int16, np.int8, np.uint8, np.longlong, np.bool_, ] complex_dtypes = [ np.complex64, np.complex128, ] for dtype in dtypes: array = np.array([1, 2, 3, 4], dtype=dtype) tensor_from_array = torch.from_numpy(array) # TODO: change to tensor equality check once HalfTensor # implements `==` for i in range(len(array)): self.assertEqual(tensor_from_array[i], array[i]) # ufunc 'remainder' not supported for complex dtypes if dtype not in complex_dtypes: # This is a special test case for Windows # https://github.com/pytorch/pytorch/issues/22615 array2 = array % 2 tensor_from_array2 = torch.from_numpy(array2) for i in range(len(array2)): self.assertEqual(tensor_from_array2[i], array2[i]) # Test unsupported type array = np.array(["foo", "bar"], dtype=np.dtype(np.str_)) with self.assertRaises(TypeError): tensor_from_array = torch.from_numpy(array) # check storage offset x = np.linspace(1, 125, 125) x.shape = (5, 5, 5) x = x[1] expected = torch.arange(1, 126, dtype=torch.float64).view(5, 5, 5)[1] self.assertEqual(torch.from_numpy(x), expected) # check noncontiguous x = np.linspace(1, 25, 25) x.shape = (5, 5) expected = torch.arange(1, 26, dtype=torch.float64).view(5, 5).t() self.assertEqual(torch.from_numpy(x.T), expected) # check noncontiguous with holes x = np.linspace(1, 125, 125) x.shape = (5, 5, 5) x = x[:, 1] expected = torch.arange(1, 126, dtype=torch.float64).view(5, 5, 5)[:, 1] self.assertEqual(torch.from_numpy(x), expected) # check zero dimensional x = np.zeros((0, 2)) self.assertEqual(torch.from_numpy(x).shape, (0, 2)) x = np.zeros((2, 0)) self.assertEqual(torch.from_numpy(x).shape, (2, 0)) # check ill-sized strides raise exception x = np.array([3.0, 5.0, 8.0]) x.strides = (3,) self.assertRaises(ValueError, lambda: torch.from_numpy(x)) @skipIfTorchDynamo("No need to test invalid dtypes that should fail by design.") def test_from_numpy_no_leak_on_invalid_dtype(self): # This used to leak memory as the `from_numpy` call raised an exception and didn't decref the temporary # object. See https://github.com/pytorch/pytorch/issues/121138 x = np.array("value".encode("ascii")) for _ in range(1000): try: torch.from_numpy(x) except TypeError: pass self.assertTrue(sys.getrefcount(x) == 2) @skipMeta def test_from_list_of_ndarray_warning(self, device): warning_msg = ( r"Creating a tensor from a list of numpy.ndarrays is extremely slow" ) with self.assertWarnsOnceRegex(UserWarning, warning_msg): torch.tensor([np.array([0]), np.array([1])], device=device) def test_ctor_with_invalid_numpy_array_sequence(self, device): # Invalid list of numpy array with self.assertRaisesRegex(ValueError, "expected sequence of length"): torch.tensor( [np.random.random(size=(3, 3)), np.random.random(size=(3, 0))], device=device, ) # Invalid list of list of numpy array with self.assertRaisesRegex(ValueError, "expected sequence of length"): torch.tensor( [[np.random.random(size=(3, 3)), np.random.random(size=(3, 2))]], device=device, ) with self.assertRaisesRegex(ValueError, "expected sequence of length"): torch.tensor( [ [np.random.random(size=(3, 3)), np.random.random(size=(3, 3))], [np.random.random(size=(3, 3)), np.random.random(size=(3, 2))], ], device=device, ) # expected shape is `[1, 2, 3]`, hence we try to iterate over 0-D array # leading to type error : not a sequence. with self.assertRaisesRegex(TypeError, "not a sequence"): torch.tensor( [[np.random.random(size=(3)), np.random.random()]], device=device ) # list of list or numpy array. with self.assertRaisesRegex(ValueError, "expected sequence of length"): torch.tensor([[1, 2, 3], np.random.random(size=(2,))], device=device) @onlyCPU def test_ctor_with_numpy_scalar_ctor(self, device) -> None: dtypes = [ np.double, np.float64, np.float16, np.int64, np.int32, np.int16, np.uint8, np.bool_, ] for dtype in dtypes: self.assertEqual(dtype(42), torch.tensor(dtype(42)).item()) @onlyCPU def test_numpy_index(self, device): i = np.array([0, 1, 2], dtype=np.int32) x = torch.randn(5, 5) for idx in i: self.assertFalse(isinstance(idx, int)) self.assertEqual(x[idx], x[int(idx)]) @onlyCPU def test_numpy_index_multi(self, device): for dim_sz in [2, 8, 16, 32]: i = np.zeros((dim_sz, dim_sz, dim_sz), dtype=np.int32) i[: dim_sz // 2, :, :] = 1 x = torch.randn(dim_sz, dim_sz, dim_sz) self.assertTrue(x[i == 1].numel() == np.sum(i)) @onlyCPU def test_numpy_array_interface(self, device): types = [ torch.DoubleTensor, torch.FloatTensor, torch.HalfTensor, torch.LongTensor, torch.IntTensor, torch.ShortTensor, torch.ByteTensor, ] dtypes = [ np.float64, np.float32, np.float16, np.int64, np.int32, np.int16, np.uint8, ] for tp, dtype in zip(types, dtypes): # Only concrete class can be given where "Type[number[_64Bit]]" is expected if np.dtype(dtype).kind == "u": # type: ignore[misc] # .type expects a XxxTensor, which have no type hints on # purpose, so ignore during mypy type checking x = torch.tensor([1, 2, 3, 4]).type(tp) # type: ignore[call-overload] array = np.array([1, 2, 3, 4], dtype=dtype) else: x = torch.tensor([1, -2, 3, -4]).type(tp) # type: ignore[call-overload] array = np.array([1, -2, 3, -4], dtype=dtype) # Test __array__ w/o dtype argument asarray = np.asarray(x) self.assertIsInstance(asarray, np.ndarray) self.assertEqual(asarray.dtype, dtype) for i in range(len(x)): self.assertEqual(asarray[i], x[i]) # Test __array_wrap__, same dtype abs_x = np.abs(x) abs_array = np.abs(array) self.assertIsInstance(abs_x, tp) for i in range(len(x)): self.assertEqual(abs_x[i], abs_array[i]) # Test __array__ with dtype argument for dtype in dtypes: x = torch.IntTensor([1, -2, 3, -4]) asarray = np.asarray(x, dtype=dtype) self.assertEqual(asarray.dtype, dtype) # Only concrete class can be given where "Type[number[_64Bit]]" is expected if np.dtype(dtype).kind == "u": # type: ignore[misc] wrapped_x = np.array([1, -2, 3, -4], dtype=dtype) for i in range(len(x)): self.assertEqual(asarray[i], wrapped_x[i]) else: for i in range(len(x)): self.assertEqual(asarray[i], x[i]) # Test some math functions with float types float_types = [torch.DoubleTensor, torch.FloatTensor] float_dtypes = [np.float64, np.float32] for tp, dtype in zip(float_types, float_dtypes): x = torch.tensor([1, 2, 3, 4]).type(tp) # type: ignore[call-overload] array = np.array([1, 2, 3, 4], dtype=dtype) for func in ["sin", "sqrt", "ceil"]: ufunc = getattr(np, func) res_x = ufunc(x) res_array = ufunc(array) self.assertIsInstance(res_x, tp) for i in range(len(x)): self.assertEqual(res_x[i], res_array[i]) # Test functions with boolean return value for tp, dtype in zip(types, dtypes): x = torch.tensor([1, 2, 3, 4]).type(tp) # type: ignore[call-overload] array = np.array([1, 2, 3, 4], dtype=dtype) geq2_x = np.greater_equal(x, 2) geq2_array = np.greater_equal(array, 2).astype("uint8") self.assertIsInstance(geq2_x, torch.ByteTensor) for i in range(len(x)): self.assertEqual(geq2_x[i], geq2_array[i]) @onlyCPU def test_multiplication_numpy_scalar(self, device) -> None: for np_dtype in [ np.float32, np.float64, np.int32, np.int64, np.int16, np.uint8, ]: for t_dtype in [torch.float, torch.double]: # mypy raises an error when np.floatXY(2.0) is called # even though this is valid code np_sc = np_dtype(2.0) # type: ignore[abstract, arg-type] t = torch.ones(2, requires_grad=True, dtype=t_dtype) r1 = t * np_sc self.assertIsInstance(r1, torch.Tensor) self.assertTrue(r1.dtype == t_dtype) self.assertTrue(r1.requires_grad) r2 = np_sc * t self.assertIsInstance(r2, torch.Tensor) self.assertTrue(r2.dtype == t_dtype) self.assertTrue(r2.requires_grad) @onlyCPU @skipIfTorchDynamo() def test_parse_numpy_int_overflow(self, device): # assertRaises uses a try-except which dynamo has issues with # Only concrete class can be given where "Type[number[_64Bit]]" is expected self.assertRaisesRegex( RuntimeError, "(Overflow|an integer is required)", lambda: torch.mean(torch.randn(1, 1), np.uint64(-1)), ) # type: ignore[call-overload] @onlyCPU def test_parse_numpy_int(self, device): # https://github.com/pytorch/pytorch/issues/29252 for nptype in [np.int16, np.int8, np.uint8, np.int32, np.int64]: scalar = 3 np_arr = np.array([scalar], dtype=nptype) np_val = np_arr[0] # np integral type can be treated as a python int in native functions with # int parameters: self.assertEqual(torch.ones(5).diag(scalar), torch.ones(5).diag(np_val)) self.assertEqual( torch.ones([2, 2, 2, 2]).mean(scalar), torch.ones([2, 2, 2, 2]).mean(np_val), ) # numpy integral type parses like a python int in custom python bindings: self.assertEqual(torch.Storage(np_val).size(), scalar) # type: ignore[attr-defined] tensor = torch.tensor([2], dtype=torch.int) tensor[0] = np_val self.assertEqual(tensor[0], np_val) # Original reported issue, np integral type parses to the correct # PyTorch integral type when passed for a `Scalar` parameter in # arithmetic operations: t = torch.from_numpy(np_arr) self.assertEqual((t + np_val).dtype, t.dtype) self.assertEqual((np_val + t).dtype, t.dtype) def test_has_storage_numpy(self, device): for dtype in [np.float32, np.float64, np.int64, np.int32, np.int16, np.uint8]: arr = np.array([1], dtype=dtype) self.assertIsNotNone( torch.tensor(arr, device=device, dtype=torch.float32).storage() ) self.assertIsNotNone( torch.tensor(arr, device=device, dtype=torch.double).storage() ) self.assertIsNotNone( torch.tensor(arr, device=device, dtype=torch.int).storage() ) self.assertIsNotNone( torch.tensor(arr, device=device, dtype=torch.long).storage() ) self.assertIsNotNone( torch.tensor(arr, device=device, dtype=torch.uint8).storage() ) @dtypes(*all_types_and_complex_and(torch.half, torch.bfloat16, torch.bool)) def test_numpy_scalar_cmp(self, device, dtype): if dtype.is_complex: tensors = ( torch.tensor(complex(1, 3), dtype=dtype, device=device), torch.tensor([complex(1, 3), 0, 2j], dtype=dtype, device=device), torch.tensor( [[complex(3, 1), 0], [-1j, 5]], dtype=dtype, device=device ), ) else: tensors = ( torch.tensor(3, dtype=dtype, device=device), torch.tensor([1, 0, -3], dtype=dtype, device=device), torch.tensor([[3, 0, -1], [3, 5, 4]], dtype=dtype, device=device), ) for tensor in tensors: if dtype == torch.bfloat16: with self.assertRaises(TypeError): np_array = tensor.cpu().numpy() continue np_array = tensor.cpu().numpy() for t, a in product( (tensor.flatten()[0], tensor.flatten()[0].item()), (np_array.flatten()[0], np_array.flatten()[0].item()), ): self.assertEqual(t, a) if ( dtype == torch.complex64 and torch.is_tensor(t) and type(a) == np.complex64 ): # TODO: Imaginary part is dropped in this case. Need fix. # https://github.com/pytorch/pytorch/issues/43579 self.assertFalse(t == a) else: self.assertTrue(t == a) @onlyCPU @dtypes(*all_types_and_complex_and(torch.half, torch.bool)) def test___eq__(self, device, dtype): a = make_tensor((5, 7), dtype=dtype, device=device, low=-9, high=9) b = a.clone().detach() b_np = b.numpy() # Check all elements equal res_check = torch.ones_like(a, dtype=torch.bool) self.assertEqual(a == b_np, res_check) self.assertEqual(b_np == a, res_check) # Check one element unequal if dtype == torch.bool: b[1][3] = not b[1][3] else: b[1][3] += 1 res_check[1][3] = False self.assertEqual(a == b_np, res_check) self.assertEqual(b_np == a, res_check) # Check random elements unequal rand = torch.randint(0, 2, a.shape, dtype=torch.bool) res_check = rand.logical_not() b.copy_(a) if dtype == torch.bool: b[rand] = b[rand].logical_not() else: b[rand] += 1 self.assertEqual(a == b_np, res_check) self.assertEqual(b_np == a, res_check) # Check all elements unequal if dtype == torch.bool: b.copy_(a.logical_not()) else: b.copy_(a + 1) res_check.fill_(False) self.assertEqual(a == b_np, res_check) self.assertEqual(b_np == a, res_check) @onlyCPU def test_empty_tensors_interop(self, device): x = torch.rand((), dtype=torch.float16) y = torch.tensor(np.random.rand(0), dtype=torch.float16) # Same can be achieved by running # y = torch.empty_strided((0,), (0,), dtype=torch.float16) # Regression test for https://github.com/pytorch/pytorch/issues/115068 self.assertEqual(torch.true_divide(x, y).shape, y.shape) # Regression test for https://github.com/pytorch/pytorch/issues/115066 self.assertEqual(torch.mul(x, y).shape, y.shape) # Regression test for https://github.com/pytorch/pytorch/issues/113037 self.assertEqual(torch.div(x, y, rounding_mode="floor").shape, y.shape) instantiate_device_type_tests(TestNumPyInterop, globals()) if __name__ == "__main__": run_tests()