# Owner(s): ["module: onnx"] import unittest import pytorch_test_common from model_defs.dcgan import _netD, _netG, bsz, imgsz, nz, weights_init from model_defs.emb_seq import EmbeddingNetwork1, EmbeddingNetwork2 from model_defs.mnist import MNIST from model_defs.op_test import ConcatNet, DummyNet, FakeQuantNet, PermuteNet, PReluNet from model_defs.squeezenet import SqueezeNet from model_defs.srresnet import SRResNet from model_defs.super_resolution import SuperResolutionNet from pytorch_test_common import skipIfUnsupportedMinOpsetVersion, skipScriptTest from torchvision.models import shufflenet_v2_x1_0 from torchvision.models.alexnet import alexnet from torchvision.models.densenet import densenet121 from torchvision.models.googlenet import googlenet from torchvision.models.inception import inception_v3 from torchvision.models.mnasnet import mnasnet1_0 from torchvision.models.mobilenet import mobilenet_v2 from torchvision.models.resnet import resnet50 from torchvision.models.segmentation import deeplabv3_resnet101, fcn_resnet101 from torchvision.models.vgg import vgg16, vgg16_bn, vgg19, vgg19_bn from torchvision.models.video import mc3_18, r2plus1d_18, r3d_18 from verify import verify import torch from torch.ao import quantization from torch.autograd import Variable from torch.onnx import OperatorExportTypes from torch.testing._internal import common_utils from torch.testing._internal.common_utils import skipIfNoLapack if torch.cuda.is_available(): def toC(x): return x.cuda() else: def toC(x): return x BATCH_SIZE = 2 class TestModels(pytorch_test_common.ExportTestCase): opset_version = 9 # Caffe2 doesn't support the default. keep_initializers_as_inputs = False def exportTest(self, model, inputs, rtol=1e-2, atol=1e-7, **kwargs): import caffe2.python.onnx.backend as backend with torch.onnx.select_model_mode_for_export( model, torch.onnx.TrainingMode.EVAL ): graph = torch.onnx.utils._trace(model, inputs, OperatorExportTypes.ONNX) torch._C._jit_pass_lint(graph) verify( model, inputs, backend, rtol=rtol, atol=atol, opset_version=self.opset_version, ) def test_ops(self): x = Variable(torch.randn(BATCH_SIZE, 3, 224, 224).fill_(1.0)) self.exportTest(toC(DummyNet()), toC(x)) def test_prelu(self): x = Variable(torch.randn(BATCH_SIZE, 3, 224, 224).fill_(1.0)) self.exportTest(PReluNet(), x) @skipScriptTest() def test_concat(self): input_a = Variable(torch.randn(BATCH_SIZE, 3)) input_b = Variable(torch.randn(BATCH_SIZE, 3)) inputs = ((toC(input_a), toC(input_b)),) self.exportTest(toC(ConcatNet()), inputs) def test_permute(self): x = Variable(torch.randn(BATCH_SIZE, 3, 10, 12)) self.exportTest(PermuteNet(), x) @skipScriptTest() def test_embedding_sequential_1(self): x = Variable(torch.randint(0, 10, (BATCH_SIZE, 3))) self.exportTest(EmbeddingNetwork1(), x) @skipScriptTest() def test_embedding_sequential_2(self): x = Variable(torch.randint(0, 10, (BATCH_SIZE, 3))) self.exportTest(EmbeddingNetwork2(), x) @unittest.skip("This model takes too much memory") def test_srresnet(self): x = Variable(torch.randn(1, 3, 224, 224).fill_(1.0)) self.exportTest( toC(SRResNet(rescale_factor=4, n_filters=64, n_blocks=8)), toC(x) ) @skipIfNoLapack def test_super_resolution(self): x = Variable(torch.randn(BATCH_SIZE, 1, 224, 224).fill_(1.0)) self.exportTest(toC(SuperResolutionNet(upscale_factor=3)), toC(x), atol=1e-6) def test_alexnet(self): x = Variable(torch.randn(BATCH_SIZE, 3, 224, 224).fill_(1.0)) self.exportTest(toC(alexnet()), toC(x)) def test_mnist(self): x = Variable(torch.randn(BATCH_SIZE, 1, 28, 28).fill_(1.0)) self.exportTest(toC(MNIST()), toC(x)) @unittest.skip("This model takes too much memory") def test_vgg16(self): # VGG 16-layer model (configuration "D") x = Variable(torch.randn(BATCH_SIZE, 3, 224, 224).fill_(1.0)) self.exportTest(toC(vgg16()), toC(x)) @unittest.skip("This model takes too much memory") def test_vgg16_bn(self): # VGG 16-layer model (configuration "D") with batch normalization x = Variable(torch.randn(BATCH_SIZE, 3, 224, 224).fill_(1.0)) self.exportTest(toC(vgg16_bn()), toC(x)) @unittest.skip("This model takes too much memory") def test_vgg19(self): # VGG 19-layer model (configuration "E") x = Variable(torch.randn(BATCH_SIZE, 3, 224, 224).fill_(1.0)) self.exportTest(toC(vgg19()), toC(x)) @unittest.skip("This model takes too much memory") def test_vgg19_bn(self): # VGG 19-layer model (configuration "E") with batch normalization x = Variable(torch.randn(BATCH_SIZE, 3, 224, 224).fill_(1.0)) self.exportTest(toC(vgg19_bn()), toC(x)) def test_resnet(self): # ResNet50 model x = Variable(torch.randn(BATCH_SIZE, 3, 224, 224).fill_(1.0)) self.exportTest(toC(resnet50()), toC(x), atol=1e-6) # This test is numerically unstable. Sporadic single element mismatch occurs occasionally. def test_inception(self): x = Variable(torch.randn(BATCH_SIZE, 3, 299, 299)) self.exportTest(toC(inception_v3()), toC(x), acceptable_error_percentage=0.01) def test_squeezenet(self): # SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and # <0.5MB model size x = Variable(torch.randn(BATCH_SIZE, 3, 224, 224).fill_(1.0)) sqnet_v1_0 = SqueezeNet(version=1.1) self.exportTest(toC(sqnet_v1_0), toC(x)) # SqueezeNet 1.1 has 2.4x less computation and slightly fewer params # than SqueezeNet 1.0, without sacrificing accuracy. x = Variable(torch.randn(BATCH_SIZE, 3, 224, 224).fill_(1.0)) sqnet_v1_1 = SqueezeNet(version=1.1) self.exportTest(toC(sqnet_v1_1), toC(x)) def test_densenet(self): # Densenet-121 model x = Variable(torch.randn(BATCH_SIZE, 3, 224, 224).fill_(1.0)) self.exportTest(toC(densenet121()), toC(x), rtol=1e-2, atol=1e-5) @skipScriptTest() def test_dcgan_netD(self): netD = _netD(1) netD.apply(weights_init) input = Variable(torch.empty(bsz, 3, imgsz, imgsz).normal_(0, 1)) self.exportTest(toC(netD), toC(input)) @skipScriptTest() def test_dcgan_netG(self): netG = _netG(1) netG.apply(weights_init) input = Variable(torch.empty(bsz, nz, 1, 1).normal_(0, 1)) self.exportTest(toC(netG), toC(input)) @skipIfUnsupportedMinOpsetVersion(10) def test_fake_quant(self): x = Variable(torch.randn(BATCH_SIZE, 3, 224, 224).fill_(1.0)) self.exportTest(toC(FakeQuantNet()), toC(x)) @skipIfUnsupportedMinOpsetVersion(10) def test_qat_resnet_pertensor(self): # Quantize ResNet50 model x = Variable(torch.randn(BATCH_SIZE, 3, 224, 224).fill_(1.0)) qat_resnet50 = resnet50() # Use per tensor for weight. Per channel support will come with opset 13 qat_resnet50.qconfig = quantization.QConfig( activation=quantization.default_fake_quant, weight=quantization.default_fake_quant, ) quantization.prepare_qat(qat_resnet50, inplace=True) qat_resnet50.apply(torch.ao.quantization.enable_observer) qat_resnet50.apply(torch.ao.quantization.enable_fake_quant) _ = qat_resnet50(x) for module in qat_resnet50.modules(): if isinstance(module, quantization.FakeQuantize): module.calculate_qparams() qat_resnet50.apply(torch.ao.quantization.disable_observer) self.exportTest(toC(qat_resnet50), toC(x)) @skipIfUnsupportedMinOpsetVersion(13) def test_qat_resnet_per_channel(self): # Quantize ResNet50 model x = torch.randn(BATCH_SIZE, 3, 224, 224).fill_(1.0) qat_resnet50 = resnet50() qat_resnet50.qconfig = quantization.QConfig( activation=quantization.default_fake_quant, weight=quantization.default_per_channel_weight_fake_quant, ) quantization.prepare_qat(qat_resnet50, inplace=True) qat_resnet50.apply(torch.ao.quantization.enable_observer) qat_resnet50.apply(torch.ao.quantization.enable_fake_quant) _ = qat_resnet50(x) for module in qat_resnet50.modules(): if isinstance(module, quantization.FakeQuantize): module.calculate_qparams() qat_resnet50.apply(torch.ao.quantization.disable_observer) self.exportTest(toC(qat_resnet50), toC(x)) @skipScriptTest(skip_before_opset_version=15, reason="None type in outputs") def test_googlenet(self): x = Variable(torch.randn(BATCH_SIZE, 3, 224, 224).fill_(1.0)) self.exportTest(toC(googlenet()), toC(x), rtol=1e-3, atol=1e-5) def test_mnasnet(self): x = Variable(torch.randn(BATCH_SIZE, 3, 224, 224).fill_(1.0)) self.exportTest(toC(mnasnet1_0()), toC(x), rtol=1e-3, atol=1e-5) def test_mobilenet(self): x = Variable(torch.randn(BATCH_SIZE, 3, 224, 224).fill_(1.0)) self.exportTest(toC(mobilenet_v2()), toC(x), rtol=1e-3, atol=1e-5) @skipScriptTest() # prim_data def test_shufflenet(self): x = Variable(torch.randn(BATCH_SIZE, 3, 224, 224).fill_(1.0)) self.exportTest(toC(shufflenet_v2_x1_0()), toC(x), rtol=1e-3, atol=1e-5) @skipIfUnsupportedMinOpsetVersion(11) def test_fcn(self): x = Variable(torch.randn(BATCH_SIZE, 3, 224, 224).fill_(1.0)) self.exportTest( toC(fcn_resnet101(weights=None, weights_backbone=None)), toC(x), rtol=1e-3, atol=1e-5, ) @skipIfUnsupportedMinOpsetVersion(11) def test_deeplab(self): x = Variable(torch.randn(BATCH_SIZE, 3, 224, 224).fill_(1.0)) self.exportTest( toC(deeplabv3_resnet101(weights=None, weights_backbone=None)), toC(x), rtol=1e-3, atol=1e-5, ) def test_r3d_18_video(self): x = Variable(torch.randn(1, 3, 4, 112, 112).fill_(1.0)) self.exportTest(toC(r3d_18()), toC(x), rtol=1e-3, atol=1e-5) def test_mc3_18_video(self): x = Variable(torch.randn(1, 3, 4, 112, 112).fill_(1.0)) self.exportTest(toC(mc3_18()), toC(x), rtol=1e-3, atol=1e-5) def test_r2plus1d_18_video(self): x = Variable(torch.randn(1, 3, 4, 112, 112).fill_(1.0)) self.exportTest(toC(r2plus1d_18()), toC(x), rtol=1e-3, atol=1e-5) if __name__ == "__main__": common_utils.run_tests()