# Owner(s): ["module: nn"] import pickle import unittest import unittest.mock as mock import torch import torch.nn as nn import torch.nn.utils.prune as prune from torch.testing._internal.common_nn import NNTestCase from torch.testing._internal.common_utils import ( instantiate_parametrized_tests, run_tests, TemporaryFileName, TEST_NUMPY, ) class TestPruningNN(NNTestCase): _do_cuda_memory_leak_check = True _do_cuda_non_default_stream = True # torch/nn/utils/prune.py @unittest.skipIf(not TEST_NUMPY, "numpy not found") def test_validate_pruning_amount_init(self): r"""Test the first util function that validates the pruning amount requested by the user the moment the pruning method is initialized. This test checks that the expected errors are raised whenever the amount is invalid. The original function runs basic type checking + value range checks. It doesn't check the validity of the pruning amount with respect to the size of the tensor to prune. That's left to `_validate_pruning_amount`, tested below. """ # neither float not int should raise TypeError with self.assertRaises(TypeError): prune._validate_pruning_amount_init(amount="I'm a string") # float not in [0, 1] should raise ValueError with self.assertRaises(ValueError): prune._validate_pruning_amount_init(amount=1.1) with self.assertRaises(ValueError): prune._validate_pruning_amount_init(amount=20.0) # negative int should raise ValueError with self.assertRaises(ValueError): prune._validate_pruning_amount_init(amount=-10) # all these should pass without errors because they're valid amounts prune._validate_pruning_amount_init(amount=0.34) prune._validate_pruning_amount_init(amount=1500) prune._validate_pruning_amount_init(amount=0) prune._validate_pruning_amount_init(amount=0.0) prune._validate_pruning_amount_init(amount=1) prune._validate_pruning_amount_init(amount=1.0) self.assertTrue(True) @unittest.skipIf(not TEST_NUMPY, "numpy not found") def test_validate_pruning_amount(self): r"""Tests the second util function that validates the pruning amount requested by the user, this time with respect to the size of the tensor to prune. The rationale is that if the pruning amount, converted to absolute value of units to prune, is larger than the number of units in the tensor, then we expect the util function to raise a value error. """ # if amount is int and amount > tensor_size, raise ValueError with self.assertRaises(ValueError): prune._validate_pruning_amount(amount=20, tensor_size=19) # amount is a float so this should not raise an error prune._validate_pruning_amount(amount=0.3, tensor_size=0) # this is okay prune._validate_pruning_amount(amount=19, tensor_size=20) prune._validate_pruning_amount(amount=0, tensor_size=0) prune._validate_pruning_amount(amount=1, tensor_size=1) self.assertTrue(True) @unittest.skipIf(not TEST_NUMPY, "numpy not found") def test_compute_nparams_to_prune(self): r"""Test that requested pruning `amount` gets translated into the correct absolute number of units to prune. """ self.assertEqual(prune._compute_nparams_toprune(amount=0, tensor_size=15), 0) self.assertEqual(prune._compute_nparams_toprune(amount=10, tensor_size=15), 10) # if 1 is int, means 1 unit self.assertEqual(prune._compute_nparams_toprune(amount=1, tensor_size=15), 1) # if 1. is float, means 100% of units self.assertEqual(prune._compute_nparams_toprune(amount=1.0, tensor_size=15), 15) self.assertEqual(prune._compute_nparams_toprune(amount=0.4, tensor_size=17), 7) def test_random_pruning_sizes(self): r"""Test that the new parameters and buffers created by the pruning method have the same size as the input tensor to prune. These, in fact, correspond to the pruned version of the tensor itself, its mask, and its original copy, so the size must match. """ # fixturize test # TODO: add other modules modules = [nn.Linear(5, 7), nn.Conv3d(2, 2, 2)] names = ["weight", "bias"] for m in modules: for name in names: with self.subTest(m=m, name=name): original_tensor = getattr(m, name) prune.random_unstructured(m, name=name, amount=0.1) # mask has the same size as tensor being pruned self.assertEqual( original_tensor.size(), getattr(m, name + "_mask").size() ) # 'orig' tensor has the same size as the original tensor self.assertEqual( original_tensor.size(), getattr(m, name + "_orig").size() ) # new tensor has the same size as the original tensor self.assertEqual(original_tensor.size(), getattr(m, name).size()) def test_random_pruning_orig(self): r"""Test that original tensor is correctly stored in 'orig' after pruning is applied. Important to make sure we don't lose info about the original unpruned parameter. """ # fixturize test # TODO: add other modules modules = [nn.Linear(5, 7), nn.Conv3d(2, 2, 2)] names = ["weight", "bias"] for m in modules: for name in names: with self.subTest(m=m, name=name): # tensor prior to pruning original_tensor = getattr(m, name) prune.random_unstructured(m, name=name, amount=0.1) self.assertEqual(original_tensor, getattr(m, name + "_orig")) def test_random_pruning_new_weight(self): r"""Test that module.name now contains a pruned version of the original tensor obtained from multiplying it by the mask. """ # fixturize test # TODO: add other modules modules = [nn.Linear(5, 7), nn.Conv3d(2, 2, 2)] names = ["weight", "bias"] for m in modules: for name in names: with self.subTest(m=m, name=name): # tensor prior to pruning original_tensor = getattr(m, name) prune.random_unstructured(m, name=name, amount=0.1) # weight = weight_orig * weight_mask self.assertEqual( getattr(m, name), getattr(m, name + "_orig") * getattr(m, name + "_mask").to(dtype=original_tensor.dtype), ) def test_identity_pruning(self): r"""Test that a mask of 1s does not change forward or backward.""" input_ = torch.ones(1, 5) m = nn.Linear(5, 2) y_prepruning = m(input_) # output prior to pruning # compute grad pre-pruning and check it's equal to all ones y_prepruning.sum().backward() old_grad_weight = m.weight.grad.clone() # don't grab pointer! self.assertEqual(old_grad_weight, torch.ones_like(m.weight)) old_grad_bias = m.bias.grad.clone() self.assertEqual(old_grad_bias, torch.ones_like(m.bias)) # remove grads m.zero_grad() # force the mask to be made of all 1s prune.identity(m, name="weight") # with mask of 1s, output should be identical to no mask y_postpruning = m(input_) self.assertEqual(y_prepruning, y_postpruning) # with mask of 1s, grad should be identical to no mask y_postpruning.sum().backward() self.assertEqual(old_grad_weight, m.weight_orig.grad) self.assertEqual(old_grad_bias, m.bias.grad) # calling forward twice in a row shouldn't change output y1 = m(input_) y2 = m(input_) self.assertEqual(y1, y2) def test_random_pruning_0perc(self): r"""Test that a mask of 1s does not change forward or backward.""" input_ = torch.ones(1, 5) m = nn.Linear(5, 2) y_prepruning = m(input_) # output prior to pruning # compute grad pre-pruning and check it's equal to all ones y_prepruning.sum().backward() old_grad_weight = m.weight.grad.clone() # don't grab pointer! self.assertEqual(old_grad_weight, torch.ones_like(m.weight)) old_grad_bias = m.bias.grad.clone() self.assertEqual(old_grad_bias, torch.ones_like(m.bias)) # remove grads m.zero_grad() # force the mask to be made of all 1s with mock.patch( "torch.nn.utils.prune.RandomUnstructured.compute_mask" ) as compute_mask: compute_mask.return_value = torch.ones_like(m.weight) prune.random_unstructured( m, name="weight", amount=0.9 ) # amount won't count # with mask of 1s, output should be identical to no mask y_postpruning = m(input_) self.assertEqual(y_prepruning, y_postpruning) # with mask of 1s, grad should be identical to no mask y_postpruning.sum().backward() self.assertEqual(old_grad_weight, m.weight_orig.grad) self.assertEqual(old_grad_bias, m.bias.grad) # calling forward twice in a row shouldn't change output y1 = m(input_) y2 = m(input_) self.assertEqual(y1, y2) def test_random_pruning(self): input_ = torch.ones(1, 5) m = nn.Linear(5, 2) # define custom mask to assign with mock mask = torch.ones_like(m.weight) mask[1, 0] = 0 mask[0, 3] = 0 # check grad is zero for masked weights with mock.patch( "torch.nn.utils.prune.RandomUnstructured.compute_mask" ) as compute_mask: compute_mask.return_value = mask prune.random_unstructured(m, name="weight", amount=0.9) y_postpruning = m(input_) y_postpruning.sum().backward() # weight_orig is the parameter, so it's the tensor that will accumulate the grad self.assertEqual(m.weight_orig.grad, mask) # all 1s, except for masked units self.assertEqual(m.bias.grad, torch.ones_like(m.bias)) # make sure that weight_orig update doesn't modify [1, 0] and [0, 3] old_weight_orig = m.weight_orig.clone() # update weights learning_rate = 1.0 for p in m.parameters(): p.data.sub_(p.grad.data * learning_rate) # since these are pruned, they should not be updated self.assertEqual(old_weight_orig[1, 0], m.weight_orig[1, 0]) self.assertEqual(old_weight_orig[0, 3], m.weight_orig[0, 3]) def test_random_pruning_forward(self): r"""check forward with mask (by hand).""" input_ = torch.ones(1, 5) m = nn.Linear(5, 2) # define custom mask to assign with mock mask = torch.zeros_like(m.weight) mask[1, 0] = 1 mask[0, 3] = 1 with mock.patch( "torch.nn.utils.prune.RandomUnstructured.compute_mask" ) as compute_mask: compute_mask.return_value = mask prune.random_unstructured(m, name="weight", amount=0.9) yhat = m(input_) self.assertEqual(yhat[0, 0], m.weight_orig[0, 3] + m.bias[0]) self.assertEqual(yhat[0, 1], m.weight_orig[1, 0] + m.bias[1]) def test_remove_pruning_forward(self): r"""Remove pruning and check forward is unchanged from previous pruned state. """ input_ = torch.ones(1, 5) m = nn.Linear(5, 2) # define custom mask to assign with mock mask = torch.ones_like(m.weight) mask[1, 0] = 0 mask[0, 3] = 0 # check grad is zero for masked weights with mock.patch( "torch.nn.utils.prune.RandomUnstructured.compute_mask" ) as compute_mask: compute_mask.return_value = mask prune.random_unstructured(m, name="weight", amount=0.9) y_postpruning = m(input_) prune.remove(m, "weight") y_postremoval = m(input_) self.assertEqual(y_postpruning, y_postremoval) def test_pruning_id_consistency(self): r"""Test that pruning doesn't change the id of the parameters, which would otherwise introduce issues with pre-existing optimizers that point to old parameters. """ m = nn.Linear(5, 2, bias=False) tensor_id = id(next(iter(m.parameters()))) prune.random_unstructured(m, name="weight", amount=0.9) self.assertEqual(tensor_id, id(next(iter(m.parameters())))) prune.remove(m, "weight") self.assertEqual(tensor_id, id(next(iter(m.parameters())))) def test_random_pruning_pickle(self): modules = [nn.Linear(5, 7), nn.Conv3d(2, 2, 2)] names = ["weight", "bias"] for m in modules: for name in names: with self.subTest(m=m, name=name): prune.random_unstructured(m, name=name, amount=0.1) m_new = pickle.loads(pickle.dumps(m)) self.assertIsInstance(m_new, type(m)) def test_multiple_pruning_calls(self): # if you call pruning twice, the hook becomes a PruningContainer m = nn.Conv3d(2, 2, 2) prune.l1_unstructured(m, name="weight", amount=0.1) weight_mask0 = m.weight_mask # save it for later sanity check # prune again prune.ln_structured(m, name="weight", amount=0.3, n=2, dim=0) hook = next(iter(m._forward_pre_hooks.values())) self.assertIsInstance(hook, torch.nn.utils.prune.PruningContainer) # check that container._tensor_name is correctly set no matter how # many pruning methods are in the container self.assertEqual(hook._tensor_name, "weight") # check that the pruning container has the right length # equal to the number of pruning iters self.assertEqual(len(hook), 2) # m.weight has been pruned twice # check that the entries of the pruning container are of the expected # type and in the expected order self.assertIsInstance(hook[0], torch.nn.utils.prune.L1Unstructured) self.assertIsInstance(hook[1], torch.nn.utils.prune.LnStructured) # check that all entries that are 0 in the 1st mask are 0 in the # 2nd mask too self.assertTrue(torch.all(m.weight_mask[weight_mask0 == 0] == 0)) # prune again prune.ln_structured(m, name="weight", amount=0.1, n=float("inf"), dim=1) # check that container._tensor_name is correctly set no matter how # many pruning methods are in the container hook = next(iter(m._forward_pre_hooks.values())) self.assertEqual(hook._tensor_name, "weight") def test_pruning_container(self): # create an empty container container = prune.PruningContainer() container._tensor_name = "test" self.assertEqual(len(container), 0) p = prune.L1Unstructured(amount=2) p._tensor_name = "test" # test adding a pruning method to a container container.add_pruning_method(p) # test error raised if tensor name is different q = prune.L1Unstructured(amount=2) q._tensor_name = "another_test" with self.assertRaises(ValueError): container.add_pruning_method(q) # test that adding a non-pruning method object to a pruning container # raises a TypeError with self.assertRaises(TypeError): container.add_pruning_method(10) with self.assertRaises(TypeError): container.add_pruning_method("ugh") def test_pruning_container_compute_mask(self): r"""Test `compute_mask` of pruning container with a known `t` and `default_mask`. Indirectly checks that Ln structured pruning is acting on the right axis. """ # create an empty container container = prune.PruningContainer() container._tensor_name = "test" # 1) test unstructured pruning # create a new pruning method p = prune.L1Unstructured(amount=2) p._tensor_name = "test" # add the pruning method to the container container.add_pruning_method(p) # create tensor to be pruned t = torch.tensor([[1, 2, 3, 4], [5, 6, 7, 8]]).to(dtype=torch.float32) # create prior mask by hand default_mask = torch.tensor([[1, 1, 1, 0], [1, 1, 0, 1]]) # since we are pruning the two lowest magnitude units, the outcome of # the calculation should be this: expected_mask = torch.tensor([[0, 0, 1, 0], [1, 1, 0, 1]], dtype=torch.float32) computed_mask = container.compute_mask(t, default_mask) self.assertEqual(expected_mask, computed_mask) # 2) test structured pruning q = prune.LnStructured(amount=1, n=2, dim=0) q._tensor_name = "test" container.add_pruning_method(q) # since we are pruning the lowest magnitude one of the two rows, the # outcome of the calculation should be this: expected_mask = torch.tensor([[0, 0, 0, 0], [1, 1, 0, 1]], dtype=torch.float32) computed_mask = container.compute_mask(t, default_mask) self.assertEqual(expected_mask, computed_mask) # 2) test structured pruning, along another axis r = prune.LnStructured(amount=1, n=2, dim=1) r._tensor_name = "test" container.add_pruning_method(r) # since we are pruning the lowest magnitude of the four columns, the # outcome of the calculation should be this: expected_mask = torch.tensor([[0, 1, 1, 0], [0, 1, 0, 1]], dtype=torch.float32) computed_mask = container.compute_mask(t, default_mask) self.assertEqual(expected_mask, computed_mask) def test_l1_unstructured_pruning(self): r"""Test that l1 unstructured pruning actually removes the lowest entries by l1 norm (by hand). It also checks that applying l1 unstructured pruning more than once respects the previous mask. """ m = nn.Linear(4, 2) # modify its weight matrix by hand m.weight = torch.nn.Parameter( torch.tensor([[1, 2, 3, 4], [-4, -3, -2, -1]], dtype=torch.float32) ) prune.l1_unstructured(m, "weight", amount=2) expected_weight = torch.tensor( [[0, 2, 3, 4], [-4, -3, -2, 0]], dtype=m.weight.dtype ) self.assertEqual(expected_weight, m.weight) # check that pruning again removes the next two smallest entries prune.l1_unstructured(m, "weight", amount=2) expected_weight = torch.tensor( [[0, 0, 3, 4], [-4, -3, 0, 0]], dtype=m.weight.dtype ) self.assertEqual(expected_weight, m.weight) def test_l1_unstructured_pruning_with_importance_scores(self): r"""Test that l1 unstructured pruning actually removes the lowest entries of importance scores and not the parameter by l1 norm (by hand). It also checks that applying l1 unstructured pruning more than once respects the previous mask. """ m = nn.Linear(4, 2) # modify its weight matrix by hand m.weight = torch.nn.Parameter( torch.tensor([[1, 2, 3, 4], [-4, -3, -2, -1]], dtype=torch.float32) ) importance_scores = torch.tensor( [[4, 2, 1, 3], [-3, -1, -2, -4]], dtype=torch.float32 ) prune.l1_unstructured( m, "weight", amount=2, importance_scores=importance_scores ) expected_weight = torch.tensor( [[1, 2, 0, 4], [-4, 0, -2, -1]], dtype=m.weight.dtype ) self.assertEqual(expected_weight, m.weight) # check that pruning again removes two entries of m.weight that are colocated with # the next two smallest absolute values of importance scores. prune.l1_unstructured( m, "weight", amount=2, importance_scores=importance_scores ) expected_weight = torch.tensor( [[1, 0, 0, 4], [-4, 0, 0, -1]], dtype=m.weight.dtype ) self.assertEqual(expected_weight, m.weight) def test_unstructured_pruning_same_magnitude(self): r"""Since it may happen that the tensor to prune has entries with the same exact magnitude, it is important to check that pruning happens consistenly based on the bottom % of weights, and not by threshold, which would instead kill off *all* units with magnitude = threshold. """ AMOUNT = 0.2 p = prune.L1Unstructured(amount=AMOUNT) # create a random tensors with entries in {-2, 0, 2} t = 2 * torch.randint(low=-1, high=2, size=(10, 7)) nparams_toprune = prune._compute_nparams_toprune(AMOUNT, t.nelement()) computed_mask = p.compute_mask(t, default_mask=torch.ones_like(t)) nparams_pruned = torch.sum(computed_mask == 0) self.assertEqual(nparams_toprune, nparams_pruned) def test_random_structured_pruning_amount(self): AMOUNT = 0.6 AXIS = 2 p = prune.RandomStructured(amount=AMOUNT, dim=AXIS) t = 2 * torch.randint(low=-1, high=2, size=(5, 4, 2)).to(dtype=torch.float32) nparams_toprune = prune._compute_nparams_toprune(AMOUNT, t.shape[AXIS]) computed_mask = p.compute_mask(t, default_mask=torch.ones_like(t)) # check that 1 column is fully prune, the others are left untouched remaining_axes = [_ for _ in range(len(t.shape)) if _ != AXIS] per_column_sums = sorted(torch.sum(computed_mask == 0, axis=remaining_axes)) assert per_column_sums == [0, 20] def test_ln_structured_pruning(self): r"""Check Ln structured pruning by hand.""" m = nn.Conv2d(3, 1, 2) m.weight.data = torch.tensor( [ [ [[1.0, 2.0], [1.0, 2.5]], [[0.5, 1.0], [0.1, 0.1]], [[-3.0, -5.0], [0.1, -1.0]], ] ] ) # expected effect of pruning 1 of the 3 channels by L2-norm expected_mask_axis1 = torch.ones_like(m.weight) expected_mask_axis1[:, 1] = 0.0 prune.ln_structured(m, "weight", amount=1, n=2, dim=1) self.assertEqual(expected_mask_axis1, m.weight_mask) # expected effect of pruning 1 of the 2 columns along axis -1 by L1-norm expected_mask_axis3 = expected_mask_axis1 expected_mask_axis3[:, :, :, 0] = 0.0 prune.ln_structured(m, "weight", amount=1, n=1, dim=-1) self.assertEqual(expected_mask_axis3, m.weight_mask) def test_ln_structured_pruning_importance_scores(self): r"""Check Ln structured pruning by hand.""" m = nn.Conv2d(3, 1, 2) m.weight.data = torch.tensor( [ [ [[1.0, 2.0], [1.0, 2.5]], [[0.5, 1.0], [0.1, 0.1]], [[-3.0, -5.0], [0.1, -1.0]], ] ] ) importance_scores = torch.tensor( [ [ [[10.0, 1.0], [10.0, 1.0]], [[30.0, 3.0], [30.0, 3.0]], [[-20.0, -2.0], [-20.0, -2.0]], ] ] ) # expected effect of pruning 1 of the 3 channels by L2-norm expected_mask_axis1 = torch.ones_like(m.weight) expected_mask_axis1[:, 0] = 0.0 prune.ln_structured( m, "weight", amount=1, n=2, dim=1, importance_scores=importance_scores ) self.assertEqual(expected_mask_axis1, m.weight_mask) # expected effect of pruning 1 of the 2 columns along axis -1 by L1-norm expected_mask_axis3 = expected_mask_axis1 expected_mask_axis3[:, :, :, 1] = 0.0 prune.ln_structured( m, "weight", amount=1, n=1, dim=-1, importance_scores=importance_scores ) self.assertEqual(expected_mask_axis3, m.weight_mask) def test_remove_pruning(self): r"""`prune.remove` removes the hook and the reparametrization and makes the pruning final in the original parameter. """ modules = [nn.Linear(5, 7), nn.Conv3d(2, 2, 2)] names = ["weight", "bias"] for m in modules: for name in names: with self.subTest(m=m, name=name): # first prune prune.random_unstructured(m, name, amount=0.5) self.assertIn(name + "_orig", dict(m.named_parameters())) self.assertIn(name + "_mask", dict(m.named_buffers())) self.assertNotIn(name, dict(m.named_parameters())) self.assertTrue(hasattr(m, name)) pruned_t = getattr(m, name) # then remove pruning prune.remove(m, name) self.assertIn(name, dict(m.named_parameters())) self.assertNotIn(name + "_orig", dict(m.named_parameters())) self.assertNotIn(name + "_mask", dict(m.named_buffers())) final_t = getattr(m, name) self.assertEqual(pruned_t, final_t) def test_remove_pruning_exception(self): r"""Removing from an unpruned tensor throws an assertion error""" modules = [nn.Linear(5, 7), nn.Conv3d(2, 2, 2)] names = ["weight", "bias"] for m in modules: for name in names: with self.subTest(m=m, name=name): # check that the module isn't pruned self.assertFalse(prune.is_pruned(m)) # since it isn't pruned, pruning can't be removed from it with self.assertRaises(ValueError): prune.remove(m, name) def test_global_pruning(self): r"""Test that global l1 unstructured pruning over 2 parameters removes the `amount=4` smallest global weights across the 2 parameters. """ m = nn.Linear(4, 2) n = nn.Linear(3, 1) # modify the weight matrices by hand m.weight = torch.nn.Parameter( torch.tensor([[1, 2, 3, 4], [-4, -3, -2, -1]]).to(dtype=torch.float32) ) n.weight = torch.nn.Parameter( torch.tensor([[0, 0.1, -2]]).to(dtype=torch.float32) ) params_to_prune = ( (m, "weight"), (n, "weight"), ) # prune the 4 smallest weights globally by L1 magnitude prune.global_unstructured( params_to_prune, pruning_method=prune.L1Unstructured, amount=4 ) expected_mweight = torch.tensor( [[0, 2, 3, 4], [-4, -3, -2, 0]], dtype=m.weight.dtype ) self.assertEqual(expected_mweight, m.weight) expected_nweight = torch.tensor([[0, 0, -2]]).to(dtype=n.weight.dtype) self.assertEqual(expected_nweight, n.weight) def test_global_pruning_importance_scores(self): r"""Test that global l1 unstructured pruning over 2 parameters removes the `amount=4` smallest global weights across the 2 parameters. """ m = nn.Linear(4, 2) n = nn.Linear(3, 1) # modify the weight matrices by hand m.weight = torch.nn.Parameter( torch.tensor([[1, 2, 3, 4], [-4, -3, -2, -1]]).to(dtype=torch.float32) ) m_importance_scores = torch.tensor( [[4, 2, 1, 3], [-3, -1, -2, -4]], dtype=torch.float32 ) n.weight = torch.nn.Parameter( torch.tensor([[0, 0.1, -2]]).to(dtype=torch.float32) ) n_importance_scores = torch.tensor([[0, 10.0, -0.2]]).to(dtype=torch.float32) params_to_prune = ( (m, "weight"), (n, "weight"), ) importance_scores = { (m, "weight"): m_importance_scores, (n, "weight"): n_importance_scores, } # prune the 4 smallest weights globally by L1 magnitude prune.global_unstructured( params_to_prune, pruning_method=prune.L1Unstructured, amount=4, importance_scores=importance_scores, ) expected_m_weight = torch.tensor( [[1, 2, 0, 4], [-4, 0, -2, -1]], dtype=m.weight.dtype ) self.assertEqual(expected_m_weight, m.weight) expected_n_weight = torch.tensor([[0, 0.1, 0]]).to(dtype=n.weight.dtype) self.assertEqual(expected_n_weight, n.weight) def test_custom_from_mask_pruning(self): r"""Test that the CustomFromMask is capable of receiving as input at instantiation time a custom mask, and combining it with the previous default mask to generate the correct final mask. """ # new mask mask = torch.tensor([[0, 1, 1, 0], [0, 0, 1, 1]]) # old mask default_mask = torch.tensor([[0, 0, 0, 0], [1, 1, 1, 1]]) # some tensor (not actually used) t = torch.rand_like(mask.to(dtype=torch.float32)) p = prune.CustomFromMask(mask=mask) computed_mask = p.compute_mask(t, default_mask) expected_mask = torch.tensor( [[0, 0, 0, 0], [0, 0, 1, 1]], dtype=computed_mask.dtype ) self.assertEqual(computed_mask, expected_mask) def test_pruning_rollback(self): r"""Test that if something fails when the we try to compute the mask, then the model isn't left in some intermediate half-pruned state. The try/except statement in `apply` should handle rolling back to the previous state before pruning began. """ modules = [nn.Linear(5, 7), nn.Conv3d(2, 2, 2)] names = ["weight", "bias"] for m in modules: for name in names: with self.subTest(m=m, name=name): with mock.patch( "torch.nn.utils.prune.L1Unstructured.compute_mask" ) as compute_mask: compute_mask.side_effect = Exception("HA!") with self.assertRaises(Exception): prune.l1_unstructured(m, name=name, amount=0.9) self.assertTrue(name in dict(m.named_parameters())) self.assertFalse(name + "_mask" in dict(m.named_buffers())) self.assertFalse(name + "_orig" in dict(m.named_parameters())) def test_pruning_serialization_model(self): # create a model model = torch.nn.Sequential( torch.nn.Linear(10, 10), torch.nn.ReLU(), torch.nn.Linear(10, 1), ) # check that everything looks normal before pruning self.assertNotIn("0.weight_orig", model.state_dict()) self.assertNotIn("0.weight_mask", model.state_dict()) self.assertIn("0.weight", model.state_dict()) # prune one of its parameters prune.l1_unstructured(module=model[0], name="weight", amount=0.9) # check that the original weight and the new mask are present self.assertIn("0.weight_orig", model.state_dict()) self.assertIn("0.weight_mask", model.state_dict()) self.assertNotIn("0.weight", model.state_dict()) self.assertTrue(hasattr(model[0], "weight")) pruned_weight = model[0].weight with TemporaryFileName() as fname: torch.save(model, fname) # weights_only=False as this is legacy code that saves the model new_model = torch.load(fname, weights_only=False) # check that the original weight and the new mask are present self.assertIn("0.weight_orig", new_model.state_dict()) self.assertIn("0.weight_mask", new_model.state_dict()) self.assertNotIn("0.weight", new_model.state_dict()) self.assertTrue(hasattr(new_model[0], "weight")) self.assertEqual(pruned_weight, new_model[0].weight) def test_pruning_serialization_state_dict(self): # create a model model = torch.nn.Sequential( torch.nn.Linear(10, 10), torch.nn.ReLU(), torch.nn.Linear(10, 1), ) # check that everything looks normal before pruning self.assertNotIn("0.weight_orig", model.state_dict()) self.assertNotIn("0.weight_mask", model.state_dict()) self.assertIn("0.weight", model.state_dict()) # prune one of its parameters prune.l1_unstructured(module=model[0], name="weight", amount=0.9) # check that the original weight and the new mask are present self.assertIn("0.weight_orig", model.state_dict()) self.assertIn("0.weight_mask", model.state_dict()) self.assertNotIn("0.weight", model.state_dict()) self.assertTrue(hasattr(model[0], "weight")) pruned_weight = model[0].weight # make pruning permanent and restore parameter names as in base # architecture prune.remove(module=model[0], name="weight") # check that the original weight and the new mask are no longer present self.assertNotIn("0.weight_orig", model.state_dict()) self.assertNotIn("0.weight_mask", model.state_dict()) self.assertIn("0.weight", model.state_dict()) # save the state dict of model and reload it into new_model new_model = torch.nn.Sequential( torch.nn.Linear(10, 10), torch.nn.ReLU(), torch.nn.Linear(10, 1), ) with TemporaryFileName() as fname: torch.save(model.state_dict(), fname) new_model.load_state_dict(torch.load(fname)) # check that the original weight and the new mask are not present in # new_model either. self.assertNotIn("0.weight_orig", new_model.state_dict()) self.assertNotIn("0.weight_mask", new_model.state_dict()) self.assertIn("0.weight", new_model.state_dict()) self.assertEqual(pruned_weight, new_model[0].weight) def test_prune(self): # create a new pruning method p = prune.L1Unstructured(amount=2) # create tensor to be pruned t = torch.tensor([[1, 2, 3, 4], [5, 6, 7, 8]]).to(dtype=torch.float32) # create prior mask by hand default_mask = torch.tensor([[1, 1, 1, 0], [1, 1, 0, 1]]) # since we are pruning the two lowest magnitude units, the outcome of # the calculation should be this: expected_mask = torch.tensor([[0, 0, 1, 0], [1, 1, 0, 1]]) pruned_tensor = p.prune(t, default_mask) self.assertEqual(t * expected_mask, pruned_tensor) def test_prune_importance_scores(self): # create a new pruning method p = prune.L1Unstructured(amount=2) # create tensor to be pruned t = torch.tensor([[1, 2, 3, 4], [5, 6, 7, 8]]).to(dtype=torch.float32) importance_scores = torch.tensor([[1, 2, 3, 4], [1.5, 1.6, 1.7, 1.8]]).to( dtype=torch.float32 ) # create prior mask by hand default_mask = torch.tensor([[1, 1, 1, 0], [1, 1, 0, 1]]) # since we are pruning the two lowest magnitude units, the outcome of # the calculation should be this: expected_mask = torch.tensor([[0, 1, 1, 0], [0, 1, 0, 1]]) pruned_tensor = p.prune(t, default_mask, importance_scores=importance_scores) self.assertEqual(t * expected_mask, pruned_tensor) def test_prune_importance_scores_mimic_default(self): # create a new pruning method p = prune.L1Unstructured(amount=2) # create tensor to be pruned t = torch.tensor([[1, 2, 3, 4], [5, 6, 7, 8]]).to(dtype=torch.float32) # create prior mask by hand default_mask = torch.tensor([[1, 1, 1, 0], [1, 1, 0, 1]]) # since we are pruning the two lowest magnitude units, the outcome of # the calculation should be this: expected_mask = torch.tensor([[0, 0, 1, 0], [1, 1, 0, 1]]) pruned_tensor_without_importance_scores = p.prune(t, default_mask) pruned_tensor_with_importance_scores = p.prune( t, default_mask, importance_scores=t ) self.assertEqual( pruned_tensor_without_importance_scores, pruned_tensor_with_importance_scores, ) self.assertEqual(t * expected_mask, pruned_tensor_without_importance_scores) def test_rnn_pruning(self): l = torch.nn.LSTM(32, 32) # This Module has 4 parameters called: # 'weight_ih_l0', 'weight_hh_l0', 'bias_ih_l0', 'bias_hh_l0' # Pruning one of them causes one of the weights to become a tensor prune.l1_unstructured(l, "weight_ih_l0", 0.5) assert sum(isinstance(p, torch.nn.Parameter) for p in l._flat_weights) == 3 # Removing the pruning reparametrization restores the Parameter prune.remove(l, "weight_ih_l0") assert sum(isinstance(p, torch.nn.Parameter) for p in l._flat_weights) == 4 # Make sure that, upon removal of the reparametrization, the # `._parameters` and `.named_parameters` contain the right params. # Specifically, the original weight ('weight_ih_l0') should be placed # back in the parameters, while the reparametrization component # ('weight_ih_l0_orig') should be removed. assert "weight_ih_l0" in l._parameters assert l._parameters["weight_ih_l0"] is not None assert "weight_ih_l0_orig" not in l._parameters assert "weight_ih_l0" in dict(l.named_parameters()) assert dict(l.named_parameters())["weight_ih_l0"] is not None assert "weight_ih_l0_orig" not in dict(l.named_parameters()) instantiate_parametrized_tests(TestPruningNN) if __name__ == "__main__": run_tests()