# Owner(s): ["module: inductor"] import functools import unittest import torch from torch import Tensor from torch._inductor import utils from torch._inductor.test_case import run_tests, TestCase from torch.testing._internal.common_cuda import PLATFORM_SUPPORTS_FP8, SM90OrLater from torch.testing._internal.common_utils import ( instantiate_parametrized_tests, parametrize, TEST_WITH_ROCM, ) from torch.testing._internal.inductor_utils import HAS_CUDA torch.set_float32_matmul_precision("high") f8_msg = "FP8 is only supported on H100+ and sm_89 and MI300+ devices" # define the e4m3/e5m2 constants E4M3_MAX_POS = torch.finfo(torch.float8_e4m3fn).max E5M2_MAX_POS = torch.finfo(torch.float8_e5m2).max E4M3FNUZ_MAX_POS = torch.finfo(torch.float8_e4m3fnuz).max E5M2FNUZ_MAX_POS = torch.finfo(torch.float8_e5m2fnuz).max FP16_MAX_POS: float = torch.finfo(torch.float16).max EPS: float = 1e-12 def _to_fp8_saturated(x: Tensor, float8_dtype: torch.dtype) -> Tensor: # The default behavior in PyTorch for casting to `float8_e4m3fn` # and `e5m2` is to not saturate. In this context, we should saturate. # A common case where we want to saturate is when the history of a # tensor has a maximum value of `amax1`, and the current amax value # is `amax2`, where `amax1 < amax2`. This is common when using delayed # scaling. if float8_dtype == torch.float8_e4m3fn: x = x.clamp(min=-1 * E4M3_MAX_POS, max=E4M3_MAX_POS) elif float8_dtype == torch.float8_e5m2: x = x.clamp(min=-1 * E5M2_MAX_POS, max=E5M2_MAX_POS) elif float8_dtype == torch.float8_e4m3fnuz: x = x.clamp(min=-1 * E4M3FNUZ_MAX_POS, max=E4M3FNUZ_MAX_POS) elif float8_dtype == torch.float8_e5m2fnuz: x = x.clamp(min=-1 * E5M2FNUZ_MAX_POS, max=E5M2FNUZ_MAX_POS) else: raise TypeError(f"Unsupported float8_dtype: {float8_dtype}") return x.to(float8_dtype) @torch.no_grad() def _amax_to_scale( amax: torch.Tensor, float8_dtype: torch.dtype, orig_dtype: torch.dtype ) -> torch.Tensor: # To make scale dtype to be fp32 for accuracy amax = amax.float() if float8_dtype == torch.float8_e4m3fn: res = E4M3_MAX_POS / torch.clamp(amax, min=EPS) else: # e5m2 res = E5M2_MAX_POS / torch.clamp(amax, min=EPS) # Ensure that the scale is representable in float16, # this helps when amax is small. We are assuming that we don't need # to care about this for float32/bfloat16. if orig_dtype is torch.float16: res = torch.clamp(res, max=FP16_MAX_POS) return res def _quantize_tensorwise(x: Tensor, float8_dtype: torch.dtype): amax = torch.max(torch.abs(x)) scale = _amax_to_scale(amax, float8_dtype, x.dtype) x_fp8 = _to_fp8_saturated(x * scale, float8_dtype) inverse_scale = scale.reciprocal() return x_fp8, inverse_scale def _quantize_rowwise(x: Tensor, float8_dtype: torch.dtype): amax = torch.max(torch.abs(x), dim=1, keepdim=True).values scale = _amax_to_scale(amax, float8_dtype, x.dtype) x_fp8 = _to_fp8_saturated(x * scale, float8_dtype) inverse_scale = scale.reciprocal() return x_fp8, inverse_scale @instantiate_parametrized_tests class TestFP8Types(TestCase): @unittest.skipIf(not PLATFORM_SUPPORTS_FP8, f8_msg) @unittest.skipIf(TEST_WITH_ROCM, "Not supported yet") @parametrize("dtype", (torch.float16, torch.bfloat16)) def test_eager_fallback(self, dtype: torch.dtype): weight_shape = (32, 16) e4m3_type = ( torch.float8_e4m3fn if torch.version.hip is None else torch.float8_e4m3fnuz ) def fp8_matmul_unwrapped(x): a_scale = torch.Tensor([1.0]).to(device="cuda") b_scale = torch.Tensor([1.0]).to(device="cuda") output_scale = None input_bias = torch.rand(32, device="cuda", dtype=dtype) weight = torch.rand(*weight_shape, device="cuda", dtype=dtype).T.to( e4m3_type ) a_inverse_scale = 1 / a_scale b_inverse_scale = 1 / b_scale output = torch._scaled_mm( x, weight, bias=input_bias, out_dtype=dtype, scale_a=a_inverse_scale, scale_b=b_inverse_scale, scale_result=output_scale, ) return output compiled_fp8_matmul = torch.compile( fp8_matmul_unwrapped, backend="inductor", dynamic=True ) x_shape = (16, 16) x = torch.rand(*x_shape, device="cuda", dtype=dtype).to(e4m3_type) y_fp8 = compiled_fp8_matmul(x) x_shape = (15, 16) x = torch.rand(*x_shape, device="cuda", dtype=dtype).to(e4m3_type) y_fp8 = compiled_fp8_matmul(x) @unittest.skipIf(not PLATFORM_SUPPORTS_FP8, f8_msg) @parametrize("dtype", (torch.float16, torch.bfloat16, torch.float)) @parametrize("shape", ("15,3,13", "4,2048,4096")) @parametrize( "dst_types", [(torch.float8_e4m3fn, torch.float8_e5m2)] if torch.version.hip is None else [(torch.float8_e4m3fnuz, torch.float8_e5m2fnuz)], ) def test_valid_cast(self, dtype: torch.dtype, shape: str, dst_types: tuple): e4m3, e5m2 = dst_types def fp8_cast(x): y0 = x.to(dtype=e4m3).to(dtype) y1 = x.to(dtype=e5m2).to(dtype) return y0, y1 compiled_fp8_cast = torch.compile(fp8_cast, backend="inductor", dynamic=True) shape = [int(dim) for dim in shape.split(",")] x = torch.rand(*shape, device="cuda", dtype=dtype) y0_fp8, y1_fp8 = compiled_fp8_cast(x) torch.testing.assert_close(y0_fp8, x, rtol=5e-1, atol=5e-1) torch.testing.assert_close(y1_fp8, x, rtol=5e-1, atol=5e-1) @unittest.skipIf(not PLATFORM_SUPPORTS_FP8, f8_msg) def test_bad_cast(self): def fp8_cast(x, dtype): return x.to(dtype=dtype) compiled_fp8_cast = torch.compile(fp8_cast, backend="inductor", dynamic=True) x_shape = (16, 16, 16) with self.assertRaisesRegex( torch._dynamo.exc.BackendCompilerFailed, "Conversions between float8_e5m2 and float8_e4m3fn is not supported!", ): x = torch.rand(*x_shape, device="cuda").to(dtype=torch.float8_e4m3fn) y = compiled_fp8_cast(x, torch.float8_e5m2) with self.assertRaisesRegex( torch._dynamo.exc.BackendCompilerFailed, "Conversions between float8_e5m2 and float8_e4m3fn is not supported!", ): x = torch.rand(*x_shape, device="cuda").to(dtype=torch.float8_e5m2) y = compiled_fp8_cast(x, torch.float8_e4m3fn) @unittest.skipIf(not PLATFORM_SUPPORTS_FP8, f8_msg) @parametrize("src_dtype", (torch.float16, torch.bfloat16, torch.float)) @parametrize( "dst_dtype", (torch.float8_e4m3fn, torch.float8_e5m2) if torch.version.hip is None else (torch.float8_e4m3fnuz, torch.float8_e5m2fnuz), ) @parametrize("shape", ("16,16,16", "4,2048,4096")) def test_to_fp8_saturated( self, src_dtype: torch.dtype, dst_dtype: torch.dtype, shape: str ): def fp8_saturated(x, dtype): return _to_fp8_saturated(x, dtype) compiled_fp8_cast = torch.compile( fp8_saturated, backend="inductor", dynamic=True ) shape = [int(dim) for dim in shape.split(",")] x = torch.rand(*shape, device="cuda", dtype=src_dtype) y_compiled = compiled_fp8_cast(x, dst_dtype) y = fp8_saturated(x, dst_dtype) torch.testing.assert_close(y_compiled.half(), y.half(), rtol=5e-1, atol=5e-1) @unittest.skipIf(TEST_WITH_ROCM, "ROCm fails with accuracy issue") @unittest.skipIf(not SM90OrLater, "FP8 is only supported on H100+") @parametrize( "float8_dtype", (torch.float8_e4m3fn, torch.float8_e5m2) if torch.version.hip is None else (torch.float8_e4m3fnuz, torch.float8_e5m2fnuz), ) @parametrize("shape", ("1,1,15", "1,10,15", "1,10,512", "1,10,4096", "4,2048,4096")) def test_amax_fp8_quant(self, float8_dtype: torch.dtype, shape: str): shape = [int(dim) for dim in shape.split(",")] batch_size, sequence_length, hidden_size = shape def amax_fp8(x: Tensor, scale: Tensor): y = torch.amax(torch.abs(x)) y_scaled = y.to(dtype=torch.float) * scale bits_fp8 = _to_fp8_saturated(y_scaled, float8_dtype) return bits_fp8 compiled_amax_fp8_quant = torch.compile(amax_fp8, backend="inductor") x_shape = (batch_size, sequence_length, hidden_size) x = torch.rand(*x_shape, device="cuda", dtype=torch.half) scale = torch.tensor(0.2, device="cuda", dtype=torch.float) y_compiled = compiled_amax_fp8_quant(x, scale) y = amax_fp8(x, scale) torch.testing.assert_close(y_compiled.half(), y.half(), rtol=1e-2, atol=1e-2) @unittest.skipIf(not PLATFORM_SUPPORTS_FP8, f8_msg) @parametrize( "float8_dtype", (torch.float8_e4m3fn, torch.float8_e5m2) if torch.version.hip is None else (torch.float8_e4m3fnuz, torch.float8_e5m2fnuz), ) @parametrize("shape", ("1,1,15", "1,10,15", "1,10,512", "1,10,4096", "4,2048,4096")) def test_amax_along_with_fp8_quant(self, float8_dtype: torch.dtype, shape: str): shape = [int(dim) for dim in shape.split(",")] batch_size, sequence_length, hidden_size = shape def amax_fp8(x: Tensor, scale: Tensor, amax_buffer: Tensor): amax_buffer.fill_(torch.amax(torch.abs(x))) x_scaled = x.to(dtype=torch.float) * scale bits_fp8 = _to_fp8_saturated(x_scaled, float8_dtype) return bits_fp8 compiled_amax_fp8_quant = torch.compile(amax_fp8, backend="inductor") x_shape = (batch_size, sequence_length, hidden_size) x = torch.rand(*x_shape, device="cuda", dtype=torch.half) scale = torch.tensor(1.0, device="cuda", dtype=torch.float) amax_buffer_compiled = torch.zeros((1), device="cuda", dtype=torch.half) y_compiled = compiled_amax_fp8_quant(x, scale, amax_buffer_compiled) amax_buffer = torch.zeros((1), device="cuda", dtype=torch.half) y = amax_fp8(x, scale, amax_buffer) torch.testing.assert_close(y_compiled.half(), y.half(), rtol=1e-1, atol=1e-1) torch.testing.assert_close( amax_buffer_compiled, amax_buffer, rtol=1e-2, atol=1e-2 ) @unittest.skipIf(TEST_WITH_ROCM, "ROCm fails with accuracy issue") @unittest.skipIf(not SM90OrLater, "FP8 is only supported on H100+") @parametrize( "float8_dtype", (torch.float8_e4m3fn, torch.float8_e5m2) if torch.version.hip is None else (torch.float8_e4m3fnuz, torch.float8_e5m2fnuz), ) @parametrize("amax_keep_dim", (True, False)) @parametrize("shape", ("1,1,15", "1,10,15", "1,10,512", "1,10,4096", "4,2048,4096")) def test_layernorm_fp8_quant( self, float8_dtype: torch.dtype, amax_keep_dim: bool, shape: str ): shape = [int(dim) for dim in shape.split(",")] batch_size, sequence_length, hidden_size = shape def ln_fp8(x: Tensor, scale: Tensor, amax_buffer: Tensor): x = torch.nn.functional.layer_norm( x.to(dtype=torch.float), [hidden_size], weight=None, bias=None, eps=1e-05, ) amax_buffer.fill_( torch.amax(torch.abs(x), keepdim=amax_keep_dim).reshape(-1)[0] ) x_scaled = x * scale bits_fp8 = _to_fp8_saturated(x_scaled, float8_dtype) return bits_fp8 compiled_ln_fp8_quant = torch.compile(ln_fp8, backend="inductor") x_shape = (batch_size, sequence_length, hidden_size) x = torch.rand(*x_shape, device="cuda", dtype=torch.half) scale = torch.tensor(0.2, device="cuda", dtype=torch.float) amax_buffer_compiled = torch.zeros((1), device="cuda", dtype=torch.half) y_compiled = compiled_ln_fp8_quant(x, scale, amax_buffer_compiled) amax_buffer = torch.zeros((1), device="cuda", dtype=torch.half) y = ln_fp8(x, scale, amax_buffer) torch.testing.assert_close(y_compiled.half(), y.half(), rtol=1e-1, atol=1e-1) torch.testing.assert_close( amax_buffer_compiled, amax_buffer, rtol=1e-2, atol=1e-2 ) @unittest.skipIf(not PLATFORM_SUPPORTS_FP8, f8_msg) @parametrize( "float8_dtype", (torch.float8_e4m3fn, torch.float8_e5m2) if torch.version.hip is None else (torch.float8_e4m3fnuz, torch.float8_e5m2fnuz), ) @parametrize("shape", ("4,2048,4096",)) @parametrize("keepdim", (False, True)) def test_layernorm_fp8_quant_benchmark( self, float8_dtype: torch.dtype, shape: str, keepdim: bool, ): shape = [int(dim) for dim in shape.split(",")] batch_size, sequence_length, hidden_size = shape def ln(x: Tensor): x = torch.nn.functional.layer_norm( x.to(dtype=torch.float), [hidden_size], weight=None, bias=None, eps=1e-05, ) return x def ln_fp8(x: Tensor, scale: Tensor, amax_buffer: Tensor): x = torch.nn.functional.layer_norm( x.to(dtype=torch.float), [hidden_size], weight=None, bias=None, eps=1e-05, ) amax = torch.amax(torch.abs(x), keepdim=keepdim) amax_buffer.view_as(amax).copy_(amax) x_scaled = x * scale bits_fp8 = _to_fp8_saturated(x_scaled, float8_dtype) return bits_fp8 compiled_ln_fp8_quant = torch.compile(ln_fp8, backend="inductor") x_shape = (batch_size, sequence_length, hidden_size) x = torch.rand(*x_shape, device="cuda", dtype=torch.half) scale = torch.tensor(0.2, device="cuda", dtype=torch.float) amax_buffer_compiled = torch.zeros((1), device="cuda", dtype=torch.half) amax_buffer = torch.zeros((1), device="cuda", dtype=torch.half) _ = compiled_ln_fp8_quant(x, scale, amax_buffer_compiled) compiled_latency = utils.do_bench_using_profiling( functools.partial(compiled_ln_fp8_quant, x, scale, amax_buffer_compiled) ) eager_latency = utils.do_bench_using_profiling( functools.partial(ln_fp8, x, scale, amax_buffer) ) compiled_ln = torch.compile(ln, backend="inductor") _ = compiled_ln(x) ln_latency = utils.do_bench_using_profiling(functools.partial(compiled_ln, x)) print( f"Config: {float8_dtype=}, {shape=}, {keepdim=}. " f"Benchmark results: Inductor: {compiled_latency}ms, Eager: {eager_latency}ms, " f"LN only Inductor: {ln_latency}ms." ) @instantiate_parametrized_tests class TestFP8Lowering(TestCase): @unittest.skipIf(TEST_WITH_ROCM, "FP8 is not supported on ROCM") @unittest.skipIf(not SM90OrLater, "FP8 is only supported on H100+") @parametrize("dtype", (torch.bfloat16, torch.float32)) @parametrize("shape", ("16,16,32", "1024,1024,512")) @parametrize("has_bias", (False, True)) @parametrize("use_fast_accum", (False, True)) def test_tensorwise_scaling( self, dtype: torch.dtype, shape: str, has_bias: bool, use_fast_accum: bool ): if dtype is torch.float32 and has_bias: self.skipTest("bias is not supported when output dtype is float32") device = "cuda" dtype_float8 = torch.float8_e4m3fn shape = [int(dim) for dim in shape.split(",")] M, K, N = shape # Matmul Y = X [M, K] x W [N, K] # input and output dtypes of _scaled_mm do not need to be the same, but # typically in a model they are x = torch.randn(M, K, dtype=dtype, device=device) w = torch.randn(N, K, dtype=dtype, device=device) bias = None if has_bias: bias = torch.randn(N, device=device, dtype=torch.bfloat16) # quantize weight (prior to inference) w_fp8, w_inverse_scale = _quantize_tensorwise(w, dtype_float8) w_t_fp8 = w_fp8.t() # quantize input x x_fp8, x_inverse_scale = _quantize_tensorwise(x, dtype_float8) def linear(x_fp8, x_inverse_scale, w_t_fp8, w_inverse_scale, bias): y = torch._scaled_mm( x_fp8, w_t_fp8, x_inverse_scale, w_inverse_scale, bias, out_dtype=dtype, use_fast_accum=use_fast_accum, ) return y y_eager = linear( x_fp8, x_inverse_scale, w_t_fp8, w_inverse_scale, bias, ) linear_compiled = torch.compile(linear, backend="inductor", mode="max-autotune") y_compiled = linear_compiled( x_fp8, x_inverse_scale, w_t_fp8, w_inverse_scale, bias, ) self.assertEqual(y_eager.dtype, dtype) self.assertEqual(y_compiled.dtype, dtype) # depending on the kernel config (BLOCK_M size, etc) selected during Inductor # autotuning for the compiled case, the results can be different because of # the way blocks of results are accumulated (float addition not associative), so # setting a small absolute tolerance in these tests torch.testing.assert_close(y_eager, y_compiled, rtol=1e-2, atol=0.05) @unittest.skipIf(TEST_WITH_ROCM, "FP8 is not supported on ROCM") @unittest.skipIf(not SM90OrLater, "FP8 is only supported on H100+") @parametrize("shape", ("16,16,32", "1024,1024,512")) @parametrize("has_bias", (False, True)) @parametrize("use_fast_accum", (False, True)) def test_rowwise_scaling(self, shape: str, has_bias: bool, use_fast_accum: bool): # Only bf16 output type is supported for row-wise scaling, not fp32 dtype: torch.dtype = torch.bfloat16 device = "cuda" dtype_float8 = torch.float8_e4m3fn shape = [int(dim) for dim in shape.split(",")] M, K, N = shape # Matmul Y = X [M, K] x W [N, K] x = torch.randn(M, K, dtype=dtype, device=device) w = torch.randn(N, K, dtype=dtype, device=device) bias = None if has_bias: bias = torch.randn(N, device=device, dtype=torch.bfloat16) # quantize weight (prior to inference) w_fp8, w_inverse_scale = _quantize_rowwise(w, dtype_float8) w_t_fp8 = w_fp8.t() w_inverse_scale = w_inverse_scale.t() # scale_b should be (1, N) # quantize input x x_fp8, x_inverse_scale = _quantize_rowwise(x, dtype_float8) def linear(x_fp8, x_inverse_scale, w_t_fp8, w_inverse_scale, bias): y = torch._scaled_mm( x_fp8, w_t_fp8, x_inverse_scale, w_inverse_scale, bias, out_dtype=dtype, use_fast_accum=use_fast_accum, ) return y y_eager = linear( x_fp8, x_inverse_scale, w_t_fp8, w_inverse_scale, bias, ) linear_compiled = torch.compile(linear, backend="inductor", mode="max-autotune") y_compiled = linear_compiled( x_fp8, x_inverse_scale, w_t_fp8, w_inverse_scale, bias, ) self.assertEqual(y_eager.dtype, dtype) self.assertEqual(y_compiled.dtype, dtype) torch.testing.assert_close(y_eager, y_compiled, rtol=1e-2, atol=0.05) @unittest.skipIf(TEST_WITH_ROCM, "FP8 is not supported on ROCM") @unittest.skipIf(not SM90OrLater, "FP8 is only supported on H100+") @parametrize("M", (1, 3, 33, 257, 1024)) @parametrize("K", (16, 1024)) @parametrize("N", (16, 2048)) def test_tensorwise_scaling_acceptable_input_dims(self, M: int, K: int, N: int): # alignment requirements: K and N divisible by 16 dtype: torch.dtype = torch.bfloat16 use_fast_accum = True device = "cuda" dtype_float8 = torch.float8_e4m3fn x = torch.randn(M, K, dtype=dtype, device=device) w = torch.randn(N, K, dtype=dtype, device=device) bias = None w_fp8, w_inverse_scale = _quantize_tensorwise(w, dtype_float8) w_t_fp8 = w_fp8.t() x_fp8, x_inverse_scale = _quantize_tensorwise(x, dtype_float8) def linear(x_fp8, x_inverse_scale, w_t_fp8, w_inverse_scale, bias): y = torch._scaled_mm( x_fp8, w_t_fp8, x_inverse_scale, w_inverse_scale, bias, out_dtype=dtype, use_fast_accum=use_fast_accum, ) return y y_eager = linear( x_fp8, x_inverse_scale, w_t_fp8, w_inverse_scale, bias, ) linear_compiled = torch.compile(linear, backend="inductor", mode="max-autotune") y_compiled = linear_compiled( x_fp8, x_inverse_scale, w_t_fp8, w_inverse_scale, bias, ) self.assertEqual(y_eager.dtype, dtype) self.assertEqual(y_compiled.dtype, dtype) torch.testing.assert_close(y_eager, y_compiled, rtol=1e-2, atol=0.07) @unittest.skipIf(TEST_WITH_ROCM, "FP8 is not supported on ROCM") @unittest.skipIf(not SM90OrLater, "FP8 is only supported on H100+") @parametrize("M", (1, 3, 33, 257, 1024)) @parametrize("K", (16, 1024)) @parametrize("N", (16, 2048)) def test_rowwise_scaling_acceptable_input_dims(self, M: int, K: int, N: int): dtype: torch.dtype = torch.bfloat16 use_fast_accum = True device = "cuda" dtype_float8 = torch.float8_e4m3fn x = torch.randn(M, K, dtype=dtype, device=device) w = torch.randn(N, K, dtype=dtype, device=device) bias = torch.randn(N, device=device, dtype=torch.bfloat16) w_fp8, w_inverse_scale = _quantize_rowwise(w, dtype_float8) w_t_fp8 = w_fp8.t() w_inverse_scale = w_inverse_scale.t() # scale_b should be (1, N) x_fp8, x_inverse_scale = _quantize_rowwise(x, dtype_float8) def linear(x_fp8, x_inverse_scale, w_t_fp8, w_inverse_scale, bias): y = torch._scaled_mm( x_fp8, w_t_fp8, x_inverse_scale, w_inverse_scale, bias, out_dtype=dtype, use_fast_accum=use_fast_accum, ) return y y_eager = linear( x_fp8, x_inverse_scale, w_t_fp8, w_inverse_scale, bias, ) linear_compiled = torch.compile(linear, backend="inductor", mode="max-autotune") y_compiled = linear_compiled( x_fp8, x_inverse_scale, w_t_fp8, w_inverse_scale, bias, ) self.assertEqual(y_eager.dtype, dtype) self.assertEqual(y_compiled.dtype, dtype) torch.testing.assert_close(y_eager, y_compiled, rtol=1e-2, atol=0.07) @unittest.skipIf(TEST_WITH_ROCM, "FP8 is not supported on ROCM") @unittest.skipIf(not SM90OrLater, "FP8 is only supported on H100+") def test_unacceptable_input_dims(self): # for compiled ops, type checking is in torch/_meta_registrations.py dtype: torch.dtype = torch.bfloat16 device = "cuda" dtype_float8 = torch.float8_e4m3fn M, K, N = 64, 15, 2048 # K needs to be a multiple of 16 x = torch.randn(M, K, dtype=dtype, device=device) w = torch.randn(N, K, dtype=dtype, device=device) bias = torch.randn(N, device=device, dtype=torch.bfloat16) w_fp8, w_inverse_scale = _quantize_tensorwise(w, dtype_float8) w_t_fp8 = w_fp8.t() def linear(x, w_t_fp8, w_inverse_scale, bias): x_fp8, x_inverse_scale = _quantize_tensorwise(x, dtype_float8) y = torch._scaled_mm( x_fp8, w_t_fp8, x_inverse_scale, w_inverse_scale, bias, out_dtype=dtype, use_fast_accum=True, ) return y linear_compiled = torch.compile(linear, backend="inductor", mode="max-autotune") with self.assertRaises(torch._dynamo.exc.TorchRuntimeError) as cm: y_compiled = linear_compiled( x, w_t_fp8, w_inverse_scale, bias, ) self.assertTrue( f"Expected self.size(1) to be divisible by 16, but got self.size(1)={K}" in str(cm.exception) ) @unittest.skipIf(TEST_WITH_ROCM, "FP8 is not supported on ROCM") @unittest.skipIf(not SM90OrLater, "FP8 is only supported on H100+") def test_unacceptable_scale_dims_rowwise_scaling(self): dtype: torch.dtype = torch.bfloat16 device = "cuda" dtype_float8 = torch.float8_e4m3fn M, K, N = 233, 32, 128 x = torch.randn(M, K, dtype=dtype, device=device) w = torch.randn(N, K, dtype=dtype, device=device) bias = torch.randn(N, device=device, dtype=torch.bfloat16) w_fp8, w_inverse_scale = _quantize_rowwise(w, dtype_float8) w_t_fp8 = w_fp8.t() def linear(x, w_t_fp8, w_inverse_scale, bias): x_fp8, x_inverse_scale = _quantize_rowwise(x, dtype_float8) y = torch._scaled_mm( x_fp8, w_t_fp8, w_inverse_scale.t(), # testing with w and x scales switched x_inverse_scale, bias, out_dtype=dtype, use_fast_accum=True, ) return y linear_compiled = torch.compile(linear, backend="inductor", mode="max-autotune") with self.assertRaises(torch._dynamo.exc.TorchRuntimeError) as cm: y_compiled = linear_compiled( x, w_t_fp8, w_inverse_scale, bias, ) self.assertTrue("Invalid scaling configuration." in str(cm.exception)) if __name__ == "__main__": if HAS_CUDA: run_tests()