# Owner(s): ["module: dynamo"] import torch import torch._dynamo import torch._dynamo.test_case @torch._dynamo.config.patch("capture_scalar_outputs", True) class ViewTests(torch._dynamo.test_case.TestCase): def test_view_to_2d(self): @torch.compile(fullgraph=True, backend="eager") def f(t, _u0): u0 = t[0].item() u1 = t[1].item() torch._check_is_size(u0) torch._check_is_size(u1) n = u0 * u1 a = torch.randn(n) return a.view(-1, _u0) t = torch.tensor([2, 4], dtype=torch.int32) f(t, 2) def test_view_to_1d(self): @torch.compile(fullgraph=True, backend="eager") def f(t, _n): u0 = t[0].item() u1 = t[1].item() torch._check_is_size(u0) torch._check_is_size(u1) a = torch.randn(u0, u1) return a.view(_n) t = torch.tensor([2, 4], dtype=torch.int32) f(t, 8) if __name__ == "__main__": from torch._dynamo.test_case import run_tests run_tests()