# Owner(s): ["module: dynamo"] import unittest import torch._dynamo from torch._dynamo.test_minifier_common import MinifierTestBase from torch.testing._internal.common_utils import skipIfNNModuleInlined requires_cuda = unittest.skipUnless(torch.cuda.is_available(), "requires cuda") class MinifierTests(MinifierTestBase): # Test that compile, runtime, and accuracy errors after dynamo can be repro'd (both CPU and CUDA) def _test_after_dynamo(self, device, backend, expected_error): run_code = f"""\ @torch._dynamo.optimize({backend!r}) def inner(x): for _ in range(10): x = torch.sin(x) x = torch.relu(x) for _ in range(10): x = torch.cos(x) return x inner(torch.randn(20, 20).to("{device}")) """ self._run_full_test(run_code, "dynamo", expected_error, isolate=False) def test_after_dynamo_cpu_compile_error(self): self._test_after_dynamo( "cpu", "relu_compile_error_TESTING_ONLY", "ReluCompileError" ) def test_after_dynamo_cpu_runtime_error(self): self._test_after_dynamo( "cpu", "relu_runtime_error_TESTING_ONLY", "ReluRuntimeError" ) def test_after_dynamo_cpu_accuracy_error(self): self._test_after_dynamo( "cpu", "relu_accuracy_error_TESTING_ONLY", "AccuracyError" ) @requires_cuda def test_after_dynamo_cuda_compile_error(self): self._test_after_dynamo( "cuda", "relu_compile_error_TESTING_ONLY", "ReluCompileError" ) @requires_cuda def test_after_dynamo_cuda_runtime_error(self): self._test_after_dynamo( "cuda", "relu_runtime_error_TESTING_ONLY", "ReluRuntimeError" ) @requires_cuda def test_after_dynamo_cuda_accuracy_error(self): self._test_after_dynamo( "cuda", "relu_accuracy_error_TESTING_ONLY", "AccuracyError" ) def test_after_dynamo_non_leaf_compile_error(self): run_code = """\ @torch._dynamo.optimize("non_leaf_compile_error_TESTING_ONLY") def inner(x): return x + 1 inner(torch.randn(20, 20, requires_grad=True) + 1) """ self._run_full_test( run_code, "dynamo", "TestingOnlyCompileError", isolate=False ) # Ensure that the testing backends pass when relu is not present. def _test_after_dynamo_backend_passes(self, device, backend): @torch._dynamo.optimize(backend) def inner(x): for _ in range(10): x = torch.sin(x) for _ in range(10): x = torch.cos(x) return x inner(torch.randn(20, 20).to(device)) def test_after_dynamo_cpu_compile_backend_passes(self): self._test_after_dynamo_backend_passes("cpu", "relu_compile_error_TESTING_ONLY") def test_after_dynamo_cpu_runtime_backend_passes(self): self._test_after_dynamo_backend_passes("cpu", "relu_runtime_error_TESTING_ONLY") def test_after_dynamo_cpu_accuracy_backend_passes(self): self._test_after_dynamo_backend_passes( "cpu", "relu_accuracy_error_TESTING_ONLY" ) @requires_cuda def test_after_dynamo_cuda_compile_backend_passes(self): self._test_after_dynamo_backend_passes( "cuda", "relu_compile_error_TESTING_ONLY" ) @requires_cuda def test_after_dynamo_cuda_runtime_backend_passes(self): self._test_after_dynamo_backend_passes( "cuda", "relu_runtime_error_TESTING_ONLY" ) @requires_cuda def test_after_dynamo_cuda_accuracy_backend_passes(self): self._test_after_dynamo_backend_passes( "cuda", "relu_accuracy_error_TESTING_ONLY" ) # Test that a module with mixed cpu/cuda parts with an error after dynamo can be repro'd @skipIfNNModuleInlined() @requires_cuda def test_cpu_cuda_module_after_dynamo(self): backend_name = "relu_compile_error_TESTING_ONLY" run_code = f"""\ class CpuCudaModule(torch.nn.Module): def __init__(self) -> None: super().__init__() self.m_x = torch.nn.Linear(20, 20).cuda() self.m_y = torch.nn.Linear(20, 20) self.p_x = torch.nn.Parameter(torch.randn(20, 20).cuda()) self.p_y = torch.nn.Parameter(torch.randn(20, 20)) self.b_x = torch.nn.Buffer(torch.ones(20, 20).cuda()) self.b_y = torch.nn.Buffer(torch.ones(20, 20)) def forward(self, x, y): return self.m_x(x) + self.p_x + self.b_x, self.m_y(y) + self.p_y + self.b_y mod = CpuCudaModule() @torch._dynamo.optimize({backend_name!r}) def inner(x1, y1): x2 = torch.randn(20, 20).cuda() y2 = torch.randn(20, 20) x3, y3 = mod(x1 + x2, y1 + y2) return torch.relu(x3.cpu() + y3) inner(torch.randn(20, 20).cuda(), torch.randn(20, 20)) """ res = self._run_full_test(run_code, "dynamo", "ReluCompileError", isolate=False) self.assertExpectedInline( res.minifier_module(), """\ class Repro(torch.nn.Module): def __init__(self) -> None: super().__init__() self.G__mod___m_x = Linear(in_features=20, out_features=20, bias=True).cuda() self.G__mod___m_y = Linear(in_features=20, out_features=20, bias=True) self.register_buffer('G__mod___b_x', torch.randn([20, 20], dtype=torch.float32).cuda()) self.register_buffer('G__mod___b_y', torch.randn([20, 20], dtype=torch.float32)) self.G__mod___p_x = torch.nn.Parameter(torch.randn([20, 20], dtype=torch.float32, device="cuda")) self.G__mod___p_y = torch.nn.Parameter(torch.randn([20, 20], dtype=torch.float32)) def forward(self, L_x1_ : torch.Tensor, L_y1_ : torch.Tensor): l_x1_ = L_x1_ l_y1_ = L_y1_ randn = torch.randn(20, 20) x2 = randn.cuda(); randn = None y2 = torch.randn(20, 20) add = l_x1_ + x2; l_x1_ = x2 = None add_1 = l_y1_ + y2; l_y1_ = y2 = None g__mod___m_x = self.G__mod___m_x(add); add = None g__mod___p_x = self.G__mod___p_x add_2 = g__mod___m_x + g__mod___p_x; g__mod___m_x = g__mod___p_x = None g__mod___b_x = self.G__mod___b_x x3 = add_2 + g__mod___b_x; add_2 = g__mod___b_x = None g__mod___m_y = self.G__mod___m_y(add_1); add_1 = None g__mod___p_y = self.G__mod___p_y add_4 = g__mod___m_y + g__mod___p_y; g__mod___m_y = g__mod___p_y = None g__mod___b_y = self.G__mod___b_y y3 = add_4 + g__mod___b_y; add_4 = g__mod___b_y = None cpu = x3.cpu(); x3 = None add_6 = cpu + y3; cpu = y3 = None relu = torch.relu(add_6); add_6 = None return (relu,)""", ) # Test if we can actually get a minified graph def test_if_graph_minified(self): backend_name = "relu_compile_error_TESTING_ONLY" run_code = f"""\ @torch._dynamo.optimize({backend_name!r}) def inner(x): for _ in range(20): x = torch.sin(x) x = torch.relu(x) for _ in range(20): x = torch.cos(x) return x inner(torch.randn(20, 20)) """ res = self._run_full_test(run_code, "dynamo", "ReluCompileError", isolate=False) self.assertExpectedInline( res.repro_module(), """\ class Repro(torch.nn.Module): def __init__(self) -> None: super().__init__() def forward(self, x_19): x_20 = torch.relu(x_19); x_19 = None return (x_20,)""", ) if __name__ == "__main__": from torch._dynamo.test_case import run_tests run_tests()