#include #include #include #include #include #include namespace torch { namespace jit { /** \brief Parse IR from \p S, print the parsed graph and verify that the output * string matches the original string. * * The function is sensitive to value naming and whitespace, so it should be * used with care. Nevertheless, it helps to keep tests more compact. */ static void checkRoundtrip(const std::string& s) { auto graph = std::make_shared(); parseIR(s, &*graph); std::ostringstream ss; ss << *graph; std::string parsed = ss.str(); // Skip whitespace in the beginning of the input string. int i = 0; for (char c : s) { if (!isspace(c)) { break; } i++; } std::string original = s.substr(i, s.size()); if (original != parsed) { std::cerr << "Input:" << std::endl << original << std::endl; std::cerr << "Parsed:" << std::endl << parsed << std::endl; } AT_ASSERT(original == parsed); } TEST(IRParserTest, Basic) { auto graph = std::make_shared(); std::unordered_map vmap; parseIR( R"IR( graph(%0 : Tensor, %1 : Tensor): %2 : Tensor = foo::add(%0, %1) %res, %3 = foo::mul(%0, %2) %x, %y = foo::combine(%res, %2, %3) return (%x, %y, %res))IR", &*graph, vmap); AT_ASSERT(graph->inputs().size() == 2); AT_ASSERT(graph->outputs().size() == 3); Value* x = graph->outputs()[0]; Value* y = graph->outputs()[1]; Value* res = graph->outputs()[2]; Value* t0 = graph->inputs()[0]; Value* t1 = graph->inputs()[1]; AT_ASSERT(vmap["x"] == x); AT_ASSERT(vmap["y"] == y); AT_ASSERT(vmap["res"] == res); AT_ASSERT(vmap["0"] == t0); AT_ASSERT(vmap["1"] == t1); AT_ASSERT(x->node() == y->node()); Node* comb = x->node(); Value* t2 = comb->inputs()[1]; Value* t3 = comb->inputs()[2]; AT_ASSERT(vmap["2"] == t2); AT_ASSERT(vmap["3"] == t3); AT_ASSERT(comb->kind().toQualString() == std::string("foo::combine")); AT_ASSERT(comb->outputs() == std::vector({x, y})); AT_ASSERT(comb->inputs() == std::vector({res, t2, t3})); Node* mul = res->node(); AT_ASSERT(mul->kind().toQualString() == std::string("foo::mul")); AT_ASSERT(mul->inputs() == std::vector({t0, t2})); AT_ASSERT(mul->outputs() == std::vector({res, t3})); Node* add = t2->node(); AT_ASSERT(add->kind().toQualString() == std::string("foo::add")); AT_ASSERT(add->inputs() == std::vector({t0, t1})); AT_ASSERT(add->outputs() == std::vector({t2})); } TEST(IRParserTest, NestedBlock) { checkRoundtrip(R"IR( graph(): %0 : Tensor = a::a() block0(): %1 : Tensor = b::b() block0(): %2 : Tensor = c::c() -> () -> () %3 : Tensor = d::d() return (%3) )IR"); } TEST(IRParserTest, If) { checkRoundtrip(R"IR( graph(%0 : Tensor, %1 : Tensor, %2 : Tensor): %3 : int = prim::Constant[value=1]() %4 : Tensor = aten::add(%0, %1, %3) %5 : Tensor = prim::If(%2) block0(): %6 : int = prim::Constant[value=1]() %7 : Tensor = aten::add(%1, %3, %6) %8 : int = prim::Constant[value=1]() %9 : Tensor = aten::add(%7, %3, %8) -> (%9) %10 : int = prim::Constant[value=1]() %11 : Tensor = aten::add(%5, %3, %10) return (%11) )IR"); } TEST(IRParserTest, If2) { checkRoundtrip(R"IR( graph(%0 : Tensor, %1 : Tensor, %2 : Tensor): %3 : int = prim::Constant[value=-1]() %4 : Tensor = aten::add(%0, %1, %3) %5 : Tensor = prim::If(%2) block0(): %6 : int = prim::Constant[value=1]() %7 : Tensor = aten::add(%1, %3, %6) %8 : int = prim::Constant[value=1]() %9 : Tensor = aten::add(%7, %3, %8) -> (%9) %10 : int = prim::Constant[value=-987]() %11 : Tensor = aten::add(%5, %3, %10) return (%11) )IR"); } TEST(IRParserTest, InferredTypeIsTensor) { auto graph = std::make_shared(); parseIR( R"IR( graph(%a): return (%a))IR", &*graph); AT_ASSERT(graph->inputs()[0]->type()->isSubtypeOf(*TensorType::get())); } TEST(IRParserTest, ValueReuse) { // Check that parser correctly handles values reusing the same name. auto graph = std::make_shared(); parseIR( R"IR( graph(%x): %x = a::a(%x) %x = b::b(%x) return (%x))IR", &*graph); Value* x0 = graph->inputs()[0]; Value* x2 = graph->outputs()[0]; Node* b = x2->node(); Value* x1 = b->inputs()[0]; Node* a = x1->node(); AT_ASSERT(a->inputs() == std::vector({x0})); AT_ASSERT(a->outputs() == std::vector({x1})); AT_ASSERT(b->inputs() == std::vector({x1})); AT_ASSERT(b->outputs() == std::vector({x2})); } TEST(IRParserTest, Attributes) { // Check that parser handles attributes and types. checkRoundtrip( R"IR( graph(%0 : Tensor, %1 : Tensor, %2 : Tensor): %3 : int, %4 : Tensor = qqq::qqq[i_asdf=2, f_asdf=3., s_asdf="hello", ss_asdf=["hello world", "bye bye"]](%0) %5 : int, %6 : Tensor = ppp::ppp[i_asdf=2, f_asdf=3., s_asdf="\"\"\"\"\nhe\"llo", q=[3, 2, 4]](%0) %7 : float = vvv::vvv[s_asdf="hello"](%0) %8 : string = z::z() return (%7) )IR"); } TEST(IRParserTest, OptionalTypes) { checkRoundtrip( R"IR( graph(%0 : Tensor, %1 : Tensor, %2 : Tensor): %3 : int? = prim::Constant() return (%3) )IR"); } TEST(IRParserTest, StarTensor) { checkRoundtrip( R"IR( graph(%0 : Tensor, %1 : Tensor, %2 : Tensor): %3 : Float(*, *, *) = prim::Constant() return (%3) )IR"); } TEST(IRParserTest, UnshapedTensor) { checkRoundtrip( R"IR( graph(%0 : Tensor, %1 : Tensor, %2 : Tensor): %3 : Long() = prim::Constant() return (%3) )IR"); } TEST(IRParserTest, ShapedTensor) { checkRoundtrip( R"IR( graph(%0 : Tensor, %1 : Tensor, %2 : Tensor): %3 : Double(4, 4, 5) = prim::Constant() return (%3) )IR"); } TEST(IRParserTest, NestedContrainer) { checkRoundtrip( R"IR( graph(): %0 : float[] = prim::Constant[value=[1., 2., 3.]]() %1 : str[] = prim::Constant[value=["ab", "cd", "ef"]]() %2 : (float[], str[]) = prim::TupleConstruct(%0, %1) return (%2) )IR"); } TEST(IRParserTest, MalformedShapeAnnotation) { // NOLINTNEXTLINE(cppcoreguidelines-avoid-goto,hicpp-avoid-goto) EXPECT_ANY_THROW(checkRoundtrip( R"IR( graph(%0 : Tensor, %1 : Tensor, %2 : Tensor): %3 : Double(4!, 4, 5) = prim::Constant() return (%3) )IR")); } TEST(IRParserTest, FileCheck) { auto graph = std::make_shared(); const std::string& text = R"IR( graph(%a): # CHECK: return return (%a))IR"; parseIR(text, &*graph); AT_ASSERT(graph->inputs()[0]->type()->isSubtypeOf(*TensorType::get())); torch::jit::testing::FileCheck().run(text, *graph); } TEST(IRParserTest, Strides) { auto graph = std::make_shared(); std::unordered_map vmap; parseIR( R"IR( graph(%a : Float(4, 5), %b : Float(4, 5, strides=[5, 1]), %c : Double(*, *)): return (%a) )IR", &*graph, vmap); Value* a = graph->inputs()[0]; Value* b = graph->inputs()[1]; Value* c = graph->inputs()[2]; auto a_type = a->type()->cast(); auto a_sizes = *a_type->sizes().concrete_sizes(); auto a_strides = a_type->strides().concrete_sizes(); AT_ASSERT(a_sizes[0] == 4 && a_sizes[1] == 5); AT_ASSERT(a_strides == std::nullopt); auto b_type = b->type()->cast(); auto b_sizes = *b_type->sizes().concrete_sizes(); auto b_strides = *(b_type->strides().sizes()); AT_ASSERT(b_sizes[0] == 4 && b_sizes[1] == 5); AT_ASSERT(*b_strides[0] == 5 && *b_strides[1] == 1); auto c_type = c->type()->cast(); AT_ASSERT(*c_type->sizes().size() == 2); AT_ASSERT(c_type->sizes().concrete_sizes() == std::nullopt); AT_ASSERT(c_type->strides().concrete_sizes() == std::nullopt); } TEST(IRParserTest, MalformedStrides) { auto graph = std::make_shared(); std::unordered_map vmap; // NOLINTNEXTLINE(cppcoreguidelines-avoid-goto,hicpp-avoid-goto) EXPECT_ANY_THROW(parseIR( R"IR( graph(%a : Float(4, strides=[5], 5)): return (%a) )IR", &*graph, vmap)); } TEST(IRParserTest, TensorShapes) { checkRoundtrip( R"IR( graph(%a : Float(4, 5), %b : Float(4, 5, strides=[5, 1]), %c : Double(*, *)): return (%a) )IR"); } TEST(IRParserTest, DeviceAndRequiresGradTensors) { checkRoundtrip( R"IR( graph(%a : Float(*, *, device=cpu), %b : Float(*, *, requires_grad=1), %c : Long(5, 10, requires_grad=1, device=cpu), %d : Float(5, requires_grad=0, device=cuda:2), %e : Long(4, 3, 1, strides=[6, 2, 1], requires_grad=0, device=cuda:1), %f : Float(), %g : Float(device=cpu), %h : Float(requires_grad=1), %i : Float(requires_grad=0, device=cuda:1), %j : Double(*, *, requires_grad=0)): return (%a) )IR"); } TEST(IRParserTest, ListConstant) { auto graph = std::make_shared(); parseIR( R"IR( graph(): %d : int[] = prim::Constant[value=[1,2,3]]() return (%d) )IR", &*graph); Node* n = graph->outputs()[0]->node(); AT_ASSERT(n->kind() == prim::Constant); AT_ASSERT(n->kindOf(attr::value) == AttributeKind::ival); const auto& genericList = n->ival(attr::value).toList(); std::vector int_vals; // NOLINTNEXTLINE(performance-implicit-conversion-in-loop) for (const IValue& ival : genericList) { int_vals.push_back(ival.toInt()); } AT_ASSERT(int_vals.size() == 3); AT_ASSERT(int_vals[0] == 1 && int_vals[1] == 2 && int_vals[2] == 3); } TEST(IRParserTest, PartialStarTensor) { checkRoundtrip( R"IR( graph(%x : Float(10, *, 10)): return (%x) )IR"); } TEST(IRParserTest, ComplexTensorAttributes) { checkRoundtrip( R"IR( graph(%x : Double(*, 200, *, requires_grad=1, device=cuda:1), %b : Float(5, *, requires_grad=1), %c : Long(*, 10, device=cpu)): return (%x) )IR"); } } // namespace jit } // namespace torch