#include #include #include #include #include #include #include using namespace torch::nn; using namespace torch::test; struct SequentialTest : torch::test::SeedingFixture {}; TEST_F(SequentialTest, CanContainThings) { Sequential sequential(Linear(3, 4), ReLU(), BatchNorm1d(3)); } TEST_F(SequentialTest, ConstructsFromSharedPointer) { struct M : torch::nn::Module { explicit M(int value_) : value(value_) {} int value; int forward() { return value; } }; Sequential sequential( std::make_shared(1), std::make_shared(2), std::make_shared(3)); ASSERT_EQ(sequential->size(), 3); Sequential sequential_named( {{"m1", std::make_shared(1)}, {std::string("m2"), std::make_shared(2)}, {"m3", std::make_shared(3)}}); ASSERT_EQ(sequential->size(), 3); } TEST_F(SequentialTest, ConstructsFromConcreteType) { static int copy_count; struct M : torch::nn::Module { explicit M(int value_) : value(value_) {} // NOLINTNEXTLINE(cppcoreguidelines-pro-type-member-init) M(const M& other) : torch::nn::Module(other) { copy_count++; } int value; int forward() { return value; } }; copy_count = 0; Sequential sequential(M(1), M(2), M(3)); ASSERT_EQ(sequential->size(), 3); // NOTE: The current implementation expects each module to be copied exactly // once, which happens when the module is passed into `std::make_shared()`. // TODO: Find a way to avoid copying, and then delete the copy constructor of // `M`. ASSERT_EQ(copy_count, 3); copy_count = 0; Sequential sequential_named( {{"m1", M(1)}, {std::string("m2"), M(2)}, {"m3", M(3)}}); ASSERT_EQ(sequential->size(), 3); ASSERT_EQ(copy_count, 3); } TEST_F(SequentialTest, ConstructsFromModuleHolder) { struct MImpl : torch::nn::Module { explicit MImpl(int value_) : value(value_) {} int forward() { return value; } int value; }; struct M : torch::nn::ModuleHolder { using torch::nn::ModuleHolder::ModuleHolder; using torch::nn::ModuleHolder::get; }; Sequential sequential(M(1), M(2), M(3)); ASSERT_EQ(sequential->size(), 3); Sequential sequential_named( {{"m1", M(1)}, {std::string("m2"), M(2)}, {"m3", M(3)}}); ASSERT_EQ(sequential->size(), 3); } TEST_F(SequentialTest, PushBackAddsAnElement) { struct M : torch::nn::Module { explicit M(int value_) : value(value_) {} int forward() { return value; } int value; }; // Test unnamed submodules Sequential sequential; ASSERT_EQ(sequential->size(), 0); ASSERT_TRUE(sequential->is_empty()); sequential->push_back(Linear(3, 4)); ASSERT_EQ(sequential->size(), 1); sequential->push_back(std::make_shared(1)); ASSERT_EQ(sequential->size(), 2); sequential->push_back(M(2)); ASSERT_EQ(sequential->size(), 3); // Mix named and unnamed submodules Sequential sequential_named; ASSERT_EQ(sequential_named->size(), 0); ASSERT_TRUE(sequential_named->is_empty()); sequential_named->push_back(Linear(3, 4)); ASSERT_EQ(sequential_named->size(), 1); ASSERT_EQ(sequential_named->named_children()[0].key(), "0"); sequential_named->push_back(std::string("linear2"), Linear(3, 4)); ASSERT_EQ(sequential_named->size(), 2); ASSERT_EQ(sequential_named->named_children()[1].key(), "linear2"); sequential_named->push_back("shared_m1", std::make_shared(1)); ASSERT_EQ(sequential_named->size(), 3); ASSERT_EQ(sequential_named->named_children()[2].key(), "shared_m1"); sequential_named->push_back(std::make_shared(1)); ASSERT_EQ(sequential_named->size(), 4); ASSERT_EQ(sequential_named->named_children()[3].key(), "3"); sequential_named->push_back(M(1)); ASSERT_EQ(sequential_named->size(), 5); ASSERT_EQ(sequential_named->named_children()[4].key(), "4"); sequential_named->push_back(std::string("m2"), M(1)); ASSERT_EQ(sequential_named->size(), 6); ASSERT_EQ(sequential_named->named_children()[5].key(), "m2"); // named and unnamed AnyModule's Sequential sequential_any; auto a = torch::nn::AnyModule(torch::nn::Linear(1, 2)); ASSERT_EQ(sequential_any->size(), 0); ASSERT_TRUE(sequential_any->is_empty()); sequential_any->push_back(a); ASSERT_EQ(sequential_any->size(), 1); ASSERT_EQ(sequential_any->named_children()[0].key(), "0"); sequential_any->push_back("fc", a); ASSERT_EQ(sequential_any->size(), 2); ASSERT_EQ(sequential_any->named_children()[1].key(), "fc"); } TEST_F(SequentialTest, AccessWithAt) { struct M : torch::nn::Module { explicit M(int value_) : value(value_) {} int forward() { return value; } int value; }; std::vector> modules = { std::make_shared(1), std::make_shared(2), std::make_shared(3)}; Sequential sequential; for (auto& module : modules) { sequential->push_back(module); } ASSERT_EQ(sequential->size(), 3); // returns the correct module for a given index for (const auto i : c10::irange(modules.size())) { ASSERT_EQ(&sequential->at(i), modules[i].get()); } // throws for a bad index ASSERT_THROWS_WITH( sequential->at(modules.size() + 1), "Index out of range"); ASSERT_THROWS_WITH( sequential->at(modules.size() + 1000000), "Index out of range"); } TEST_F(SequentialTest, AccessWithPtr) { struct M : torch::nn::Module { explicit M(int value_) : value(value_) {} int forward() { return value; } int value; }; std::vector> modules = { std::make_shared(1), std::make_shared(2), std::make_shared(3)}; Sequential sequential; for (auto& module : modules) { sequential->push_back(module); } ASSERT_EQ(sequential->size(), 3); // returns the correct module for a given index for (const auto i : c10::irange(modules.size())) { ASSERT_EQ(sequential->ptr(i).get(), modules[i].get()); ASSERT_EQ(sequential[i].get(), modules[i].get()); ASSERT_EQ(sequential->ptr(i).get(), modules[i].get()); } // throws for a bad index ASSERT_THROWS_WITH(sequential->ptr(modules.size() + 1), "Index out of range"); ASSERT_THROWS_WITH( sequential->ptr(modules.size() + 1000000), "Index out of range"); } TEST_F(SequentialTest, CallingForwardOnEmptySequentialIsDisallowed) { Sequential empty; ASSERT_THROWS_WITH( empty->forward(), "Cannot call forward() on an empty Sequential"); } TEST_F(SequentialTest, CallingForwardChainsCorrectly) { struct MockModule : torch::nn::Module { explicit MockModule(int value) : expected(value) {} int expected; int forward(int value) { assert(value == expected); return value + 1; } }; Sequential sequential(MockModule{1}, MockModule{2}, MockModule{3}); ASSERT_EQ(sequential->forward(1), 4); } TEST_F(SequentialTest, CallingForwardWithTheWrongReturnTypeThrows) { struct M : public torch::nn::Module { int forward() { return 5; } }; Sequential sequential(M{}); ASSERT_EQ(sequential->forward(), 5); ASSERT_THROWS_WITH( sequential->forward(), "The type of the return value is int, but you asked for type float"); } TEST_F(SequentialTest, TheReturnTypeOfForwardDefaultsToTensor) { struct M : public torch::nn::Module { torch::Tensor forward(torch::Tensor v) { return v; } }; Sequential sequential(M{}); auto variable = torch::ones({3, 3}, torch::requires_grad()); ASSERT_TRUE(sequential->forward(variable).equal(variable)); } TEST_F(SequentialTest, ForwardReturnsTheLastValue) { torch::manual_seed(0); Sequential sequential(Linear(10, 3), Linear(3, 5), Linear(5, 100)); auto x = torch::randn({1000, 10}, torch::requires_grad()); auto y = sequential->forward(x); ASSERT_EQ(y.ndimension(), 2); ASSERT_EQ(y.size(0), 1000); ASSERT_EQ(y.size(1), 100); } TEST_F(SequentialTest, SanityCheckForHoldingStandardModules) { Sequential sequential( Linear(10, 3), Conv2d(1, 2, 3), Dropout(0.5), BatchNorm2d(5), Embedding(4, 10), LSTM(4, 5)); } TEST_F(SequentialTest, ExtendPushesModulesFromOtherSequential) { struct A : torch::nn::Module { int forward(int x) { return x; } }; struct B : torch::nn::Module { int forward(int x) { return x; } }; struct C : torch::nn::Module { int forward(int x) { return x; } }; struct D : torch::nn::Module { int forward(int x) { return x; } }; Sequential a(A{}, B{}); Sequential b(C{}, D{}); a->extend(*b); ASSERT_EQ(a->size(), 4); ASSERT_TRUE(a[0]->as()); ASSERT_TRUE(a[1]->as()); ASSERT_TRUE(a[2]->as()); ASSERT_TRUE(a[3]->as()); ASSERT_EQ(b->size(), 2); ASSERT_TRUE(b[0]->as()); ASSERT_TRUE(b[1]->as()); std::vector> c = { std::make_shared(), std::make_shared()}; b->extend(c); ASSERT_EQ(b->size(), 4); ASSERT_TRUE(b[0]->as()); ASSERT_TRUE(b[1]->as()); ASSERT_TRUE(b[2]->as()); ASSERT_TRUE(b[3]->as()); } TEST_F(SequentialTest, HasReferenceSemantics) { Sequential first(Linear(2, 3), Linear(4, 4), Linear(4, 5)); Sequential second(first); ASSERT_EQ(first.get(), second.get()); ASSERT_EQ(first->size(), second->size()); ASSERT_TRUE(std::equal( first->begin(), first->end(), second->begin(), [](const AnyModule& first, const AnyModule& second) { return &first == &second; })); } TEST_F(SequentialTest, IsCloneable) { Sequential sequential(Linear(3, 4), Functional(torch::relu), BatchNorm1d(3)); Sequential clone = std::dynamic_pointer_cast(sequential->clone()); ASSERT_EQ(sequential->size(), clone->size()); for (size_t i = 0; i < sequential->size(); ++i) { // The modules should be the same kind (type). ASSERT_EQ(sequential[i]->name(), clone[i]->name()); // But not pointer-equal (distinct objects). ASSERT_NE(sequential[i], clone[i]); } // Verify that the clone is deep, i.e. parameters of modules are cloned too. torch::NoGradGuard no_grad; auto params1 = sequential->named_parameters(); auto params2 = clone->named_parameters(); ASSERT_EQ(params1.size(), params2.size()); for (auto& param : params1) { ASSERT_FALSE(pointer_equal(param.value(), params2[param.key()])); ASSERT_EQ(param->device(), params2[param.key()].device()); ASSERT_TRUE(param->allclose(params2[param.key()])); param->add_(2); } for (auto& param : params1) { ASSERT_FALSE(param->allclose(params2[param.key()])); } } TEST_F(SequentialTest, RegistersElementsAsSubmodules) { Sequential sequential(Linear(10, 3), Conv2d(1, 2, 3), Dropout2d(0.5)); auto modules = sequential->children(); ASSERT_TRUE(modules[0]->as()); ASSERT_TRUE(modules[1]->as()); ASSERT_TRUE(modules[2]->as()); } TEST_F(SequentialTest, CloneToDevice_CUDA) { Sequential sequential(Linear(3, 4), Functional(torch::relu), BatchNorm1d(3)); torch::Device device(torch::kCUDA, 0); Sequential clone = std::dynamic_pointer_cast(sequential->clone(device)); for (const auto& p : clone->parameters()) { ASSERT_EQ(p.device(), device); } for (const auto& b : clone->buffers()) { ASSERT_EQ(b.device(), device); } } TEST_F(SequentialTest, PrettyPrintSequential) { Sequential sequential( Linear(10, 3), Conv2d(1, 2, 3), Dropout(0.5), BatchNorm2d(5), Embedding(4, 10), LSTM(4, 5)); ASSERT_EQ( c10::str(sequential), "torch::nn::Sequential(\n" " (0): torch::nn::Linear(in_features=10, out_features=3, bias=true)\n" " (1): torch::nn::Conv2d(1, 2, kernel_size=[3, 3], stride=[1, 1])\n" " (2): torch::nn::Dropout(p=0.5, inplace=false)\n" " (3): torch::nn::BatchNorm2d(5, eps=1e-05, momentum=0.1, affine=true, track_running_stats=true)\n" " (4): torch::nn::Embedding(num_embeddings=4, embedding_dim=10)\n" " (5): torch::nn::LSTM(input_size=4, hidden_size=5, num_layers=1, bias=true, batch_first=false, dropout=0, bidirectional=false)\n" ")"); Sequential sequential_named( {{"linear", Linear(10, 3)}, {"conv2d", Conv2d(1, 2, 3)}, {"dropout", Dropout(0.5)}, {"batchnorm2d", BatchNorm2d(5)}, {"embedding", Embedding(4, 10)}, {"lstm", LSTM(4, 5)}}); ASSERT_EQ( c10::str(sequential_named), "torch::nn::Sequential(\n" " (linear): torch::nn::Linear(in_features=10, out_features=3, bias=true)\n" " (conv2d): torch::nn::Conv2d(1, 2, kernel_size=[3, 3], stride=[1, 1])\n" " (dropout): torch::nn::Dropout(p=0.5, inplace=false)\n" " (batchnorm2d): torch::nn::BatchNorm2d(5, eps=1e-05, momentum=0.1, affine=true, track_running_stats=true)\n" " (embedding): torch::nn::Embedding(num_embeddings=4, embedding_dim=10)\n" " (lstm): torch::nn::LSTM(input_size=4, hidden_size=5, num_layers=1, bias=true, batch_first=false, dropout=0, bidirectional=false)\n" ")"); } TEST_F(SequentialTest, ModuleForwardMethodOptionalArg) { { Sequential sequential( Identity(), ConvTranspose1d(ConvTranspose1dOptions(3, 2, 3).stride(1).bias(false))); std::dynamic_pointer_cast(sequential[1]) ->weight.set_data(torch::arange(18.).reshape({3, 2, 3})); auto x = torch::arange(30.).reshape({2, 3, 5}); auto y = sequential->forward(x); auto expected = torch::tensor( {{{150., 333., 552., 615., 678., 501., 276.}, {195., 432., 714., 804., 894., 654., 357.}}, {{420., 918., 1497., 1560., 1623., 1176., 636.}, {600., 1287., 2064., 2154., 2244., 1599., 852.}}}); ASSERT_TRUE(torch::allclose(y, expected)); } { Sequential sequential( Identity(), ConvTranspose2d(ConvTranspose2dOptions(3, 2, 3).stride(1).bias(false))); std::dynamic_pointer_cast(sequential[1]) ->weight.set_data(torch::arange(54.).reshape({3, 2, 3, 3})); auto x = torch::arange(75.).reshape({1, 3, 5, 5}); auto y = sequential->forward(x); auto expected = torch::tensor( {{{{2250., 4629., 7140., 7311., 7482., 5133., 2640.}, {4995., 10272., 15837., 16206., 16575., 11364., 5841.}, {8280., 17019., 26226., 26820., 27414., 18783., 9648.}, {9225., 18954., 29196., 29790., 30384., 20808., 10683.}, {10170., 20889., 32166., 32760., 33354., 22833., 11718.}, {7515., 15420., 23721., 24144., 24567., 16800., 8613.}, {4140., 8487., 13044., 13269., 13494., 9219., 4722.}}, {{2925., 6006., 9246., 9498., 9750., 6672., 3423.}, {6480., 13296., 20454., 20985., 21516., 14712., 7542.}, {10710., 21960., 33759., 34596., 35433., 24210., 12402.}, {12060., 24705., 37944., 38781., 39618., 27045., 13842.}, {13410., 27450., 42129., 42966., 43803., 29880., 15282.}, {9810., 20064., 30768., 31353., 31938., 21768., 11124.}, {5355., 10944., 16770., 17076., 17382., 11838., 6045.}}}}); ASSERT_TRUE(torch::allclose(y, expected)); } { Sequential sequential( Identity(), ConvTranspose3d(ConvTranspose3dOptions(2, 2, 2).stride(1).bias(false))); std::dynamic_pointer_cast(sequential[1]) ->weight.set_data(torch::arange(32.).reshape({2, 2, 2, 2, 2})); auto x = torch::arange(16.).reshape({1, 2, 2, 2, 2}); auto y = sequential->forward(x); auto expected = torch::tensor( {{{{{128., 280., 154.}, {304., 664., 364.}, {184., 400., 218.}}, {{352., 768., 420.}, {832., 1808., 984.}, {496., 1072., 580.}}, {{256., 552., 298.}, {592., 1272., 684.}, {344., 736., 394.}}}, {{{192., 424., 234.}, {464., 1016., 556.}, {280., 608., 330.}}, {{544., 1184., 644.}, {1280., 2768., 1496.}, {752., 1616., 868.}}, {{384., 824., 442.}, {880., 1880., 1004.}, {504., 1072., 570.}}}}}); ASSERT_TRUE(torch::allclose(y, expected)); } { auto weight = torch::tensor({{1., 2.3, 3.}, {4., 5.1, 6.3}}); Sequential sequential(Identity(), EmbeddingBag::from_pretrained(weight)); auto x = torch::tensor({{1, 0}}, torch::kLong); auto y = sequential->forward(x); auto expected = torch::tensor({2.5000, 3.7000, 4.6500}); ASSERT_TRUE(torch::allclose(y, expected)); } { torch::manual_seed(0); int64_t embed_dim = 8; int64_t num_heads = 4; int64_t batch_size = 8; int64_t src_len = 3; int64_t tgt_len = 1; auto query = torch::ones({batch_size, tgt_len, embed_dim}); auto key = torch::ones({batch_size, src_len, embed_dim}); // NOLINTNEXTLINE(performance-unnecessary-copy-initialization) auto value = key; Sequential sequential(MultiheadAttention(embed_dim, num_heads)); auto output = sequential->forward>( query.transpose(0, 1), key.transpose(0, 1), value.transpose(0, 1)); auto attn_output = std::get<0>(output); auto attn_output_expected = torch::tensor( {{{0.0674, -0.0056, 0.1324, 0.0922, 0.0160, -0.0934, -0.1700, 0.1663}, {0.0674, -0.0056, 0.1324, 0.0922, 0.0160, -0.0934, -0.1700, 0.1663}, {0.0674, -0.0056, 0.1324, 0.0922, 0.0160, -0.0934, -0.1700, 0.1663}, {0.0674, -0.0056, 0.1324, 0.0922, 0.0160, -0.0934, -0.1700, 0.1663}, {0.0674, -0.0056, 0.1324, 0.0922, 0.0160, -0.0934, -0.1700, 0.1663}, {0.0674, -0.0056, 0.1324, 0.0922, 0.0160, -0.0934, -0.1700, 0.1663}, {0.0674, -0.0056, 0.1324, 0.0922, 0.0160, -0.0934, -0.1700, 0.1663}, {0.0674, -0.0056, 0.1324, 0.0922, 0.0160, -0.0934, -0.1700, 0.1663}}}); ASSERT_TRUE( torch::allclose(attn_output, attn_output_expected, 1e-05, 2e-04)); auto attn_output_weights = std::get<1>(output); auto attn_output_weights_expected = torch::tensor( {{{0.3333, 0.3333, 0.3333}}, {{0.3333, 0.3333, 0.3333}}, {{0.3333, 0.3333, 0.3333}}, {{0.3333, 0.3333, 0.3333}}, {{0.3333, 0.3333, 0.3333}}, {{0.3333, 0.3333, 0.3333}}, {{0.3333, 0.3333, 0.3333}}, {{0.3333, 0.3333, 0.3333}}}); ASSERT_TRUE(torch::allclose( attn_output_weights, attn_output_weights_expected, 1e-05, 2e-04)); } { auto indices = torch::tensor({{{1, 3, 4}}}, torch::kLong); auto x = torch::tensor({{{2, 4, 5}}}, torch::dtype(torch::kFloat)); Sequential sequential(MaxUnpool1d(3)); auto y = sequential->forward(x, indices); auto expected = torch::tensor({{{0, 2, 0, 4, 5, 0, 0, 0, 0}}}, torch::kFloat); ASSERT_TRUE(torch::allclose(y, expected)); } { auto indices = torch::tensor( {{{{6, 8, 9}, {16, 18, 19}, {21, 23, 24}}}, {{{6, 8, 9}, {16, 18, 19}, {21, 23, 24}}}}, torch::kLong); auto x = torch::tensor( {{{{6, 8, 9}, {16, 18, 19}, {21, 23, 24}}}, {{{31, 33, 34}, {41, 43, 44}, {46, 48, 49}}}}, torch::dtype(torch::kFloat)); Sequential sequential( MaxUnpool2d(MaxUnpool2dOptions(3).stride(2).padding(1))); auto y = sequential->forward(x, indices); auto expected = torch::tensor( {{{{0, 0, 0, 0, 0}, {0, 6, 0, 8, 9}, {0, 0, 0, 0, 0}, {0, 16, 0, 18, 19}, {0, 21, 0, 23, 24}}}, {{{0, 0, 0, 0, 0}, {0, 31, 0, 33, 34}, {0, 0, 0, 0, 0}, {0, 41, 0, 43, 44}, {0, 46, 0, 48, 49}}}}, torch::kFloat); ASSERT_TRUE(torch::allclose(y, expected)); } { auto indices = torch::tensor({{{{{26}}}}}, torch::kLong); auto x = torch::tensor( {{{{{26}}}}}, torch::dtype(torch::kFloat).requires_grad(true)); Sequential sequential(MaxUnpool3d(3)); auto y = sequential->forward(x, indices); auto expected = torch::tensor( {{{{{0, 0, 0}, {0, 0, 0}, {0, 0, 0}}, {{0, 0, 0}, {0, 0, 0}, {0, 0, 0}}, {{0, 0, 0}, {0, 0, 0}, {0, 0, 26}}}}}, torch::kFloat); ASSERT_TRUE(torch::allclose(y, expected)); } { torch::manual_seed(0); Sequential sequential(Identity(), RNN(2, 3)); auto x = torch::ones({2, 3, 2}); auto rnn_output = sequential->forward>(x); auto expected_output = torch::tensor( {{{-0.0645, -0.7274, 0.4531}, {-0.0645, -0.7274, 0.4531}, {-0.0645, -0.7274, 0.4531}}, {{-0.3970, -0.6950, 0.6009}, {-0.3970, -0.6950, 0.6009}, {-0.3970, -0.6950, 0.6009}}}); ASSERT_TRUE(torch::allclose( std::get<0>(rnn_output), expected_output, 1e-05, 2e-04)); } { torch::manual_seed(0); Sequential sequential(Identity(), LSTM(2, 3)); auto x = torch::ones({2, 3, 2}); auto rnn_output = sequential->forward< std::tuple>>(x); auto expected_output = torch::tensor( {{{-0.2693, -0.1240, 0.0744}, {-0.2693, -0.1240, 0.0744}, {-0.2693, -0.1240, 0.0744}}, {{-0.3889, -0.1919, 0.1183}, {-0.3889, -0.1919, 0.1183}, {-0.3889, -0.1919, 0.1183}}}); ASSERT_TRUE(torch::allclose( std::get<0>(rnn_output), expected_output, 1e-05, 2e-04)); } { torch::manual_seed(0); Sequential sequential(Identity(), GRU(2, 3)); auto x = torch::ones({2, 3, 2}); auto rnn_output = sequential->forward>(x); auto expected_output = torch::tensor( {{{-0.1134, 0.0467, 0.2336}, {-0.1134, 0.0467, 0.2336}, {-0.1134, 0.0467, 0.2336}}, {{-0.1189, 0.0502, 0.2960}, {-0.1189, 0.0502, 0.2960}, {-0.1189, 0.0502, 0.2960}}}); ASSERT_TRUE(torch::allclose( std::get<0>(rnn_output), expected_output, 1e-05, 2e-04)); } { torch::manual_seed(0); Sequential sequential(Identity(), RNNCell(2, 3)); auto x = torch::ones({2, 2}); auto rnn_output = sequential->forward(x); auto expected_output = torch::tensor({{-0.0645, -0.7274, 0.4531}, {-0.0645, -0.7274, 0.4531}}); ASSERT_TRUE(torch::allclose(rnn_output, expected_output, 1e-05, 2e-04)); } { torch::manual_seed(0); Sequential sequential(Identity(), LSTMCell(2, 3)); auto x = torch::ones({2, 2}); auto rnn_output = sequential->forward>(x); auto expected_output = torch::tensor({{-0.2693, -0.1240, 0.0744}, {-0.2693, -0.1240, 0.0744}}); ASSERT_TRUE(torch::allclose( std::get<0>(rnn_output), expected_output, 1e-05, 2e-04)); } { torch::manual_seed(0); Sequential sequential(Identity(), GRUCell(2, 3)); auto x = torch::ones({2, 2}); auto rnn_output = sequential->forward(x); auto expected_output = torch::tensor({{-0.1134, 0.0467, 0.2336}, {-0.1134, 0.0467, 0.2336}}); ASSERT_TRUE(torch::allclose(rnn_output, expected_output, 1e-05, 2e-04)); } }