#include #include #include #include struct OperationTest : torch::test::SeedingFixture { protected: void SetUp() override {} const int TEST_AMOUNT = 10; }; TEST_F(OperationTest, Lerp) { for (const auto i : c10::irange(TEST_AMOUNT)) { (void)i; // Suppress unused variable warning // test lerp_kernel_scalar auto start = torch::rand({3, 5}); auto end = torch::rand({3, 5}); auto scalar = 0.5; // expected and actual auto scalar_expected = start + scalar * (end - start); auto out = torch::lerp(start, end, scalar); // compare ASSERT_EQ(out.dtype(), scalar_expected.dtype()); ASSERT_TRUE(out.allclose(scalar_expected)); // test lerp_kernel_tensor auto weight = torch::rand({3, 5}); // expected and actual auto tensor_expected = start + weight * (end - start); out = torch::lerp(start, end, weight); // compare ASSERT_EQ(out.dtype(), tensor_expected.dtype()); ASSERT_TRUE(out.allclose(tensor_expected)); } } TEST_F(OperationTest, Cross) { for (const auto i : c10::irange(TEST_AMOUNT)) { (void)i; // Suppress unused variable warning // input auto a = torch::rand({10, 3}); auto b = torch::rand({10, 3}); // expected auto exp = torch::empty({10, 3}); for (const auto j : c10::irange(10)) { auto u1 = a[j][0], u2 = a[j][1], u3 = a[j][2]; auto v1 = b[j][0], v2 = b[j][1], v3 = b[j][2]; exp[j][0] = u2 * v3 - v2 * u3; exp[j][1] = v1 * u3 - u1 * v3; exp[j][2] = u1 * v2 - v1 * u2; } // actual auto out = torch::cross(a, b); // compare ASSERT_EQ(out.dtype(), exp.dtype()); ASSERT_TRUE(out.allclose(exp)); } } TEST_F(OperationTest, Linear_out) { { const auto x = torch::arange(100., 118).resize_({3, 3, 2}); const auto w = torch::arange(200., 206).resize_({3, 2}); const auto b = torch::arange(300., 303); auto y = torch::empty({3, 3, 3}); at::linear_out(y, x, w, b); const auto y_exp = torch::tensor( {{{40601, 41004, 41407}, {41403, 41814, 42225}, {42205, 42624, 43043}}, {{43007, 43434, 43861}, {43809, 44244, 44679}, {44611, 45054, 45497}}, {{45413, 45864, 46315}, {46215, 46674, 47133}, {47017, 47484, 47951}}}, torch::kFloat); ASSERT_TRUE(torch::allclose(y, y_exp)); } { const auto x = torch::arange(100., 118).resize_({3, 3, 2}); const auto w = torch::arange(200., 206).resize_({3, 2}); auto y = torch::empty({3, 3, 3}); at::linear_out(y, x, w); ASSERT_EQ(y.ndimension(), 3); ASSERT_EQ(y.sizes(), torch::IntArrayRef({3, 3, 3})); const auto y_exp = torch::tensor( {{{40301, 40703, 41105}, {41103, 41513, 41923}, {41905, 42323, 42741}}, {{42707, 43133, 43559}, {43509, 43943, 44377}, {44311, 44753, 45195}}, {{45113, 45563, 46013}, {45915, 46373, 46831}, {46717, 47183, 47649}}}, torch::kFloat); ASSERT_TRUE(torch::allclose(y, y_exp)); } }