#include #include #include #include #include #include #include #include #include using namespace torch::nn; using namespace torch::test; class TestModel : public torch::nn::Module { public: TestModel() : l1(register_module("l1", Linear(10, 3))), l2(register_module("l2", Linear(3, 5))), l3(register_module("l3", Linear(5, 100))) {} Linear l1, l2, l3; }; class NestedModel : public torch::nn::Module { public: NestedModel() : param_(register_parameter("param", torch::empty({3, 2, 21}))), l1(register_module("l1", Linear(5, 20))), t(register_module("test", std::make_shared())) {} torch::Tensor param_; Linear l1; std::shared_ptr t; }; struct ModulesTest : torch::test::SeedingFixture {}; TEST_F(ModulesTest, Conv1d) { Conv1d model(Conv1dOptions(3, 2, 3).stride(1).bias(false)); model->weight.set_data( torch::arange(18, torch::dtype(torch::kFloat)).reshape({2, 3, 3})); auto x = torch::arange(30, torch::dtype(torch::kFloat).requires_grad(true)) .reshape({2, 3, 5}); auto y = model(x); auto expected = torch::tensor( {{{312., 348., 384.}, {798., 915., 1032.}}, {{852., 888., 924.}, {2553., 2670., 2787.}}}, torch::kFloat); ASSERT_TRUE(torch::allclose(y, expected)); torch::Tensor s = y.sum(); s.backward(); ASSERT_EQ(s.ndimension(), 0); ASSERT_EQ(model->weight.grad().numel(), 3 * 2 * 3); } TEST_F(ModulesTest, Conv1dSameStrided) { auto options = Conv1dOptions(3, 2, 3); options.stride(1).padding(torch::kSame); Conv1d model_valid(options); ASSERT_THROWS_WITH( [&] { Conv1d model_invalid(options.stride(2)); }(), "padding='same' is not supported for strided convolutions"); } TEST_F(ModulesTest, Conv1dIvalidArg) { auto options = Conv1dOptions(3, 2, 3).groups(-1); ASSERT_THROWS_WITH( Conv1d(options), "in_channels, groups and out_channels must"); } TEST_F(ModulesTest, Conv2dEven) { Conv2d model(Conv2dOptions(3, 2, 3).stride(1).bias(false)); model->weight.set_data( torch::arange(54, torch::dtype(torch::kFloat)).reshape({2, 3, 3, 3})); auto x = torch::arange(75, torch::dtype(torch::kFloat).requires_grad(true)) .reshape({1, 3, 5, 5}); auto y = model(x); auto expected = torch::tensor( {{{{15219., 15570., 15921.}, {16974., 17325., 17676.}, {18729., 19080., 19431.}}, {{37818., 38898., 39978.}, {43218., 44298., 45378.}, {48618., 49698., 50778.}}}}, torch::kFloat); ASSERT_TRUE(torch::allclose(y, expected)); torch::Tensor s = y.sum(); s.backward(); ASSERT_EQ(s.ndimension(), 0); ASSERT_EQ(model->weight.grad().numel(), 3 * 2 * 3 * 3); } TEST_F(ModulesTest, Conv2dUneven) { Conv2d model(Conv2dOptions(3, 2, {3, 2}).stride({1, 1}).bias(false)); model->weight.set_data( torch::arange(36, torch::dtype(torch::kFloat)).reshape({2, 3, 3, 2})); auto x = torch::arange(60, torch::dtype(torch::kFloat).requires_grad(true)) .reshape({1, 3, 5, 4}); auto y = model(x); auto expected = torch::tensor( {{{{5289., 5442., 5595.}, {5901., 6054., 6207.}, {6513., 6666., 6819.}}, {{13227., 13704., 14181.}, {15135., 15612., 16089.}, {17043., 17520., 17997.}}}}, torch::kFloat); ASSERT_TRUE(torch::allclose(y, expected)); torch::Tensor s = y.sum(); s.backward(); ASSERT_EQ(s.ndimension(), 0); ASSERT_EQ(model->weight.grad().numel(), 3 * 2 * 3 * 2); } TEST_F(ModulesTest, Conv2dSameStrided) { auto options = Conv2dOptions(3, 2, {3, 4}); options.stride(1).padding(torch::kSame); Conv2d model_valid(options); ASSERT_THROWS_WITH( [&] { Conv2d model_invalid(options.stride(2)); }(), "padding='same' is not supported for strided convolutions"); ASSERT_THROWS_WITH( [&] { Conv2d model_invalid(options.stride({1, 2})); }(), "padding='same' is not supported for strided convolutions"); } TEST_F(ModulesTest, Conv3d) { Conv3d model(Conv3dOptions(3, 2, 3).stride(1).bias(false)); model->weight.set_data( torch::arange(162, torch::dtype(torch::kFloat)).reshape({2, 3, 3, 3, 3})); auto x = torch::arange(375, torch::dtype(torch::kFloat).requires_grad(true)) .reshape({1, 3, 5, 5, 5}); auto y = model(x); auto expected = torch::tensor( {{{{{700704., 703944., 707184.}, {716904., 720144., 723384.}, {733104., 736344., 739584.}}, {{781704., 784944., 788184.}, {797904., 801144., 804384.}, {814104., 817344., 820584.}}, {{862704., 865944., 869184.}, {878904., 882144., 885384.}, {895104., 898344., 901584.}}}, {{{1724220., 1734021., 1743822.}, {1773225., 1783026., 1792827.}, {1822230., 1832031., 1841832.}}, {{1969245., 1979046., 1988847.}, {2018250., 2028051., 2037852.}, {2067255., 2077056., 2086857.}}, {{2214270., 2224071., 2233872.}, {2263275., 2273076., 2282877.}, {2312280., 2322081., 2331882.}}}}}, torch::kFloat); ASSERT_TRUE(torch::allclose(y, expected)); torch::Tensor s = y.sum(); s.backward(); ASSERT_EQ(s.ndimension(), 0); ASSERT_TRUE(model->weight.grad().numel() == 3 * 2 * 3 * 3 * 3); } TEST_F(ModulesTest, Conv3dSameStrided) { auto options = Conv3dOptions(3, 2, {3, 4, 5}); options.stride(1).padding(torch::kSame); Conv3d model_valid(options); ASSERT_THROWS_WITH( [&] { Conv3d model_invalid(options.stride(2)); }(), "padding='same' is not supported for strided convolutions"); ASSERT_THROWS_WITH( [&] { Conv3d model_invalid(options.stride({1, 2, 1})); }(), "padding='same' is not supported for strided convolutions"); } TEST_F(ModulesTest, ConvTranspose1d) { ConvTranspose1d model(ConvTranspose1dOptions(3, 2, 3).stride(1).bias(false)); model->weight.set_data(torch::arange(18.).view({2, 3, 3})); auto x = torch::arange(20.).reshape({2, 2, 5}); auto y = model(x); auto expected = torch::tensor( {{{45., 104., 179., 212., 245., 188., 107.}, {60., 140., 242., 293., 344., 260., 146.}, {75., 176., 305., 374., 443., 332., 185.}}, {{135., 304., 509., 542., 575., 428., 237.}, {210., 460., 752., 803., 854., 620., 336.}, {285., 616., 995., 1064., 1133., 812., 435.}}}); ASSERT_TRUE(torch::allclose(y, expected)); torch::Tensor s = y.sum(); s.backward(); ASSERT_EQ(s.ndimension(), 0); ASSERT_EQ(model->weight.grad().numel(), 3 * 2 * 3); } TEST_F(ModulesTest, ConvTranspose2dEven) { ConvTranspose2d model(ConvTranspose2dOptions(3, 2, 3).stride(1).bias(false)); model->weight.set_data(torch::arange(54.).view({2, 3, 3, 3})); auto x = torch::arange(50.).view({1, 2, 5, 5}); auto y = model(x); auto expected = torch::tensor( {{{{675., 1402., 2183., 2270., 2357., 1634., 849.}, {1560., 3240., 5044., 5236., 5428., 3760., 1952.}, {2685., 5574., 8673., 8988., 9303., 6438., 3339.}, {3180., 6594., 10248., 10563., 10878., 7518., 3894.}, {3675., 7614., 11823., 12138., 12453., 8598., 4449.}, {2820., 5832., 9040., 9268., 9496., 6544., 3380.}, {1605., 3314., 5129., 5252., 5375., 3698., 1907.}}, {{900., 1870., 2912., 3053., 3194., 2210., 1146.}, {2100., 4356., 6772., 7072., 7372., 5092., 2636.}, {3630., 7518., 11670., 12147., 12624., 8706., 4500.}, {4395., 9078., 14055., 14532., 15009., 10326., 5325.}, {5160., 10638., 16440., 16917., 17394., 11946., 6150.}, {3900., 8028., 12388., 12724., 13060., 8956., 4604.}, {2190., 4502., 6938., 7115., 7292., 4994., 2564.}}, {{1125., 2338., 3641., 3836., 4031., 2786., 1443.}, {2640., 5472., 8500., 8908., 9316., 6424., 3320.}, {4575., 9462., 14667., 15306., 15945., 10974., 5661.}, {5610., 11562., 17862., 18501., 19140., 13134., 6756.}, {6645., 13662., 21057., 21696., 22335., 15294., 7851.}, {4980., 10224., 15736., 16180., 16624., 11368., 5828.}, {2775., 5690., 8747., 8978., 9209., 6290., 3221.}}}}); ASSERT_TRUE(torch::allclose(y, expected)); torch::Tensor s = y.sum(); s.backward(); ASSERT_EQ(s.ndimension(), 0); ASSERT_EQ(model->weight.grad().numel(), 3 * 2 * 3 * 3); } TEST_F(ModulesTest, ConvTranspose2dUneven) { ConvTranspose2d model( ConvTranspose2dOptions(3, 2, {3, 2}).stride({1, 1}).bias(false)); model->weight.set_data(torch::arange(36.).view({2, 3, 3, 2})); auto x = torch::arange(40.).view({1, 2, 5, 4}); auto y = model(x); auto expected = torch::tensor( {{{{360., 758., 796., 834., 440.}, {832., 1752., 1836., 1920., 1012.}, {1432., 3014., 3152., 3290., 1732.}, {1696., 3566., 3704., 3842., 2020.}, {1960., 4118., 4256., 4394., 2308.}, {1504., 3152., 3252., 3352., 1756.}, {856., 1790., 1844., 1898., 992.}}, {{480., 1010., 1072., 1134., 596.}, {1120., 2352., 2484., 2616., 1372.}, {1936., 4058., 4268., 4478., 2344.}, {2344., 4898., 5108., 5318., 2776.}, {2752., 5738., 5948., 6158., 3208.}, {2080., 4328., 4476., 4624., 2404.}, {1168., 2426., 2504., 2582., 1340.}}, {{600., 1262., 1348., 1434., 752.}, {1408., 2952., 3132., 3312., 1732.}, {2440., 5102., 5384., 5666., 2956.}, {2992., 6230., 6512., 6794., 3532.}, {3544., 7358., 7640., 7922., 4108.}, {2656., 5504., 5700., 5896., 3052.}, {1480., 3062., 3164., 3266., 1688.}}}}); ASSERT_TRUE(torch::allclose(y, expected)); torch::Tensor s = y.sum(); s.backward(); ASSERT_EQ(s.ndimension(), 0); ASSERT_EQ(model->weight.grad().numel(), 3 * 2 * 3 * 2); } TEST_F(ModulesTest, ConvTranspose3d) { ConvTranspose3d model(ConvTranspose3dOptions(2, 2, 2).stride(1).bias(false)); model->weight.set_data(torch::arange(32.).reshape({2, 2, 2, 2, 2})); auto x = torch::arange(16.).reshape({1, 2, 2, 2, 2}); auto y = model(x); auto expected = torch::tensor( {{{{{128., 280., 154.}, {304., 664., 364.}, {184., 400., 218.}}, {{352., 768., 420.}, {832., 1808., 984.}, {496., 1072., 580.}}, {{256., 552., 298.}, {592., 1272., 684.}, {344., 736., 394.}}}, {{{192., 424., 234.}, {464., 1016., 556.}, {280., 608., 330.}}, {{544., 1184., 644.}, {1280., 2768., 1496.}, {752., 1616., 868.}}, {{384., 824., 442.}, {880., 1880., 1004.}, {504., 1072., 570.}}}}}); ASSERT_TRUE(torch::allclose(y, expected)); torch::Tensor s = y.sum(); s.backward(); ASSERT_EQ(s.ndimension(), 0); ASSERT_TRUE(model->weight.grad().numel() == 2 * 2 * 2 * 2 * 2); } TEST_F(ModulesTest, MaxPool1d) { MaxPool1d model(MaxPool1dOptions(3).stride(2)); auto x = torch::ones({1, 1, 5}, torch::requires_grad()); auto y = model(x); torch::Tensor s = y.sum(); s.backward(); ASSERT_EQ(y.ndimension(), 3); ASSERT_TRUE(torch::allclose(y, torch::ones({1, 1, 2}))); ASSERT_EQ(s.ndimension(), 0); ASSERT_EQ(y.sizes(), std::vector({1, 1, 2})); } TEST_F(ModulesTest, MaxPool1dReturnIndices) { MaxPool1d model(MaxPool1dOptions(3).stride(2)); auto x = torch::ones({1, 1, 5}, torch::requires_grad()); auto [y, indices] = model->forward_with_indices(x); ASSERT_EQ(y.dim(), 3); ASSERT_TRUE(torch::allclose(y, torch::ones({1, 1, 2}))); ASSERT_EQ(y.sizes(), std::vector({1, 1, 2})); ASSERT_TRUE( torch::allclose(indices, torch::tensor({{{0, 2}}}, torch::kLong))); ASSERT_EQ(indices.sizes(), std::vector({1, 1, 2})); } TEST_F(ModulesTest, MaxPool2dEven) { MaxPool2d model(MaxPool2dOptions(3).stride(2)); auto x = torch::ones({2, 5, 5}, torch::requires_grad()); auto y = model(x); torch::Tensor s = y.sum(); s.backward(); ASSERT_EQ(y.ndimension(), 3); ASSERT_TRUE(torch::allclose(y, torch::ones({2, 2, 2}))); ASSERT_EQ(s.ndimension(), 0); ASSERT_EQ(y.sizes(), std::vector({2, 2, 2})); } TEST_F(ModulesTest, MaxPool2dUneven) { MaxPool2d model(MaxPool2dOptions({3, 2}).stride({2, 2})); auto x = torch::ones({2, 5, 4}, torch::requires_grad()); auto y = model(x); torch::Tensor s = y.sum(); s.backward(); ASSERT_EQ(y.ndimension(), 3); ASSERT_TRUE(torch::allclose(y, torch::ones({2, 2, 2}))); ASSERT_EQ(s.ndimension(), 0); ASSERT_EQ(y.sizes(), std::vector({2, 2, 2})); } TEST_F(ModulesTest, MaxPool2dReturnIndices) { MaxPool2d model(MaxPool2dOptions(3).stride(2)); auto x = torch::ones({2, 5, 5}, torch::requires_grad()); auto [y, indices] = model->forward_with_indices(x); ASSERT_EQ(y.dim(), 3); ASSERT_TRUE(torch::allclose(y, torch::ones({2, 2, 2}))); ASSERT_EQ(y.sizes(), std::vector({2, 2, 2})); ASSERT_TRUE(torch::allclose( indices, torch::tensor({{{0, 2}, {10, 12}}, {{0, 2}, {10, 12}}}, torch::kLong))); ASSERT_EQ(indices.sizes(), std::vector({2, 2, 2})); } TEST_F(ModulesTest, MaxPool3d) { MaxPool3d model(MaxPool3dOptions(3).stride(2)); auto x = torch::ones({2, 5, 5, 5}, torch::requires_grad()); auto y = model(x); torch::Tensor s = y.sum(); s.backward(); ASSERT_EQ(y.ndimension(), 4); ASSERT_TRUE(torch::allclose(y, torch::ones({2, 2, 2, 2}))); ASSERT_EQ(s.ndimension(), 0); ASSERT_EQ(y.sizes(), std::vector({2, 2, 2, 2})); } TEST_F(ModulesTest, MaxPool3dReturnIndices) { MaxPool3d model(MaxPool3dOptions(3).stride(2)); auto x = torch::ones({2, 5, 5, 5}, torch::requires_grad()); auto [y, indices] = model->forward_with_indices(x); ASSERT_EQ(y.dim(), 4); ASSERT_TRUE(torch::allclose(y, torch::ones({2, 2, 2, 2}))); ASSERT_EQ(y.sizes(), std::vector({2, 2, 2, 2})); ASSERT_TRUE(torch::allclose( indices, torch::tensor( {{{{0, 2}, {10, 12}}, {{50, 52}, {60, 62}}}, {{{0, 2}, {10, 12}}, {{50, 52}, {60, 62}}}}, torch::kLong))); ASSERT_EQ(indices.sizes(), std::vector({2, 2, 2, 2})); } TEST_F(ModulesTest, AvgPool1d) { AvgPool1d model(AvgPool1dOptions(3).stride(2)); auto x = torch::ones({1, 1, 5}, torch::requires_grad()); auto y = model(x); torch::Tensor s = y.sum(); s.backward(); ASSERT_EQ(y.ndimension(), 3); ASSERT_TRUE(torch::allclose(y, torch::ones({1, 1, 2}))); ASSERT_EQ(s.ndimension(), 0); ASSERT_EQ(y.sizes(), std::vector({1, 1, 2})); } TEST_F(ModulesTest, AvgPool2dEven) { AvgPool2d model(AvgPool2dOptions(3).stride(2)); auto x = torch::ones({2, 5, 5}, torch::requires_grad()); auto y = model(x); torch::Tensor s = y.sum(); s.backward(); ASSERT_EQ(y.ndimension(), 3); ASSERT_TRUE(torch::allclose(y, torch::ones({2, 2, 2}))); ASSERT_EQ(s.ndimension(), 0); ASSERT_EQ(y.sizes(), std::vector({2, 2, 2})); } TEST_F(ModulesTest, AvgPool2dUneven) { AvgPool2d model(AvgPool2dOptions({3, 2}).stride({2, 2})); auto x = torch::ones({2, 5, 4}, torch::requires_grad()); auto y = model(x); torch::Tensor s = y.sum(); s.backward(); ASSERT_EQ(y.ndimension(), 3); ASSERT_TRUE(torch::allclose(y, torch::ones({2, 2, 2}))); ASSERT_EQ(s.ndimension(), 0); ASSERT_EQ(y.sizes(), std::vector({2, 2, 2})); } TEST_F(ModulesTest, AvgPool3d) { AvgPool3d model(AvgPool3dOptions(3).stride(2)); auto x = torch::ones({2, 5, 5, 5}, torch::requires_grad()); auto y = model(x); torch::Tensor s = y.sum(); s.backward(); ASSERT_EQ(y.ndimension(), 4); ASSERT_TRUE(torch::allclose(y, torch::ones({2, 2, 2, 2}))); ASSERT_EQ(s.ndimension(), 0); ASSERT_EQ(y.sizes(), std::vector({2, 2, 2, 2})); } TEST_F(ModulesTest, FractionalMaxPool2d) { FractionalMaxPool2d model(FractionalMaxPool2dOptions(3).output_size(2)); auto x = torch::ones({2, 5, 5}, torch::requires_grad()); auto y = model(x); torch::Tensor s = y.sum(); s.backward(); ASSERT_EQ(y.ndimension(), 3); ASSERT_TRUE(torch::allclose(y, torch::ones({2, 2, 2}))); ASSERT_EQ(s.ndimension(), 0); ASSERT_EQ(y.sizes(), std::vector({2, 2, 2})); } TEST_F(ModulesTest, FractionalMaxPool2dReturnIndices) { FractionalMaxPool2d model(FractionalMaxPool2dOptions(3).output_size(2)); auto x = torch::ones({2, 5, 5}, torch::requires_grad()); auto [y, indices] = model->forward_with_indices(x); ASSERT_EQ(y.dim(), 3); ASSERT_TRUE(torch::allclose(y, torch::ones({2, 2, 2}))); ASSERT_EQ(y.sizes(), std::vector({2, 2, 2})); ASSERT_TRUE(torch::allclose( indices, torch::tensor({{{0, 2}, {10, 12}}, {{0, 2}, {10, 12}}}))); ASSERT_EQ(indices.sizes(), std::vector({2, 2, 2})); } TEST_F(ModulesTest, FractionalMaxPool3d) { FractionalMaxPool3d model(FractionalMaxPool3dOptions(3).output_size(2)); auto x = torch::ones({2, 5, 5, 5}, torch::requires_grad()); auto y = model(x); torch::Tensor s = y.sum(); s.backward(); ASSERT_EQ(y.ndimension(), 4); ASSERT_TRUE(torch::allclose(y, torch::ones({2, 2, 2, 2}))); ASSERT_EQ(s.ndimension(), 0); ASSERT_EQ(y.sizes(), std::vector({2, 2, 2, 2})); } TEST_F(ModulesTest, FractionalMaxPool3dReturnIndices) { FractionalMaxPool3d model(FractionalMaxPool3dOptions(3).output_size(2)); auto x = torch::ones({2, 5, 5, 5}, torch::requires_grad()); auto [y, indices] = model->forward_with_indices(x); ASSERT_EQ(y.dim(), 4); ASSERT_TRUE(torch::allclose(y, torch::ones({2, 2, 2, 2}))); ASSERT_EQ(y.sizes(), std::vector({2, 2, 2, 2})); ASSERT_TRUE(torch::allclose( indices, torch::tensor( {{{{0, 2}, {10, 12}}, {{50, 52}, {60, 62}}}, {{{0, 2}, {10, 12}}, {{50, 52}, {60, 62}}}}))); ASSERT_EQ(indices.sizes(), std::vector({2, 2, 2, 2})); } TEST_F(ModulesTest, LPPool1d) { int norm_type = 2; int stride = 2; int kernel_size = 3; LPPool1d model(LPPool1dOptions(norm_type, kernel_size).stride(stride)); auto x = torch::ones({1, 1, 5}); auto y = model(x); auto expected = (torch::pow(torch::tensor({{{1, 1}}}, torch::kFloat), norm_type) * kernel_size) .pow(1. / norm_type); ASSERT_EQ(y.ndimension(), 3); ASSERT_TRUE(torch::allclose(y, expected)); ASSERT_EQ(y.sizes(), torch::IntArrayRef({1, 1, 2})); } TEST_F(ModulesTest, LPPool2d) { int norm_type = 2; int stride = 2; std::vector kernel_size({2, 3}); LPPool2d model(LPPool2dOptions(norm_type, kernel_size).stride(stride)); auto x = torch::ones({1, 1, 2, 5}); auto y = model(x); auto expected = (torch::pow(torch::tensor({{{{1, 1}}}}, torch::kFloat), norm_type) * (kernel_size[0] * kernel_size[1])) .pow(1. / norm_type); ASSERT_EQ(y.ndimension(), 4); ASSERT_TRUE(torch::allclose(y, expected)); ASSERT_EQ(y.sizes(), torch::IntArrayRef({1, 1, 1, 2})); } TEST_F(ModulesTest, LPPool3d) { int norm_type = 2; int stride = 2; std::vector kernel_size({1, 2, 3}); LPPool3d model(LPPool3dOptions(norm_type, kernel_size).stride(stride)); auto x = torch::ones({1, 1, 1, 2, 5}); auto y = model(x); auto expected = (torch::pow(torch::tensor({{{{{1, 1}}}}}, torch::kFloat), norm_type) * (kernel_size[0] * kernel_size[1] * kernel_size[2])) .pow(1. / norm_type); ASSERT_EQ(y.ndimension(), 5); ASSERT_TRUE(torch::allclose(y, expected)); ASSERT_EQ(y.sizes(), torch::IntArrayRef({1, 1, 1, 1, 2})); } TEST_F(ModulesTest, Identity) { Identity identity; auto input = torch::tensor( {{1, 3, 4}, {2, 3, 4}}, torch::dtype(torch::kFloat).requires_grad(true)); auto output = identity->forward(input); auto expected = torch::tensor({{1, 3, 4}, {2, 3, 4}}, torch::kFloat); auto s = output.sum(); s.backward(); ASSERT_TRUE(torch::equal(output, expected)); ASSERT_TRUE(torch::equal(input.grad(), torch::ones_like(input))); } TEST_F(ModulesTest, Flatten) { Flatten flatten; auto input = torch::tensor( {{1, 3, 4}, {2, 5, 6}}, torch::dtype(torch::kFloat).requires_grad(true)); auto output = flatten->forward(input); auto expected = torch::tensor({{1, 3, 4}, {2, 5, 6}}, torch::kFloat); auto s = output.sum(); s.backward(); ASSERT_TRUE(torch::equal(output, expected)); ASSERT_TRUE(torch::equal(input.grad(), torch::ones_like(input))); // Testing with optional arguments start_dim and end_dim Flatten flatten_optional_dims(FlattenOptions().start_dim(2).end_dim(3)); input = torch::tensor( {{{{1, 2}, {3, 4}}, {{5, 6}, {7, 8}}}, {{{9, 10}, {11, 12}}, {{13, 14}, {15, 16}}}}, torch::dtype(torch::kFloat) .requires_grad(true)); // Tensor with sizes (2, 2, 2, 2) output = flatten_optional_dims->forward(input); expected = torch::tensor( {{{1, 2, 3, 4}, {5, 6, 7, 8}}, {{9, 10, 11, 12}, {13, 14, 15, 16}}}, torch::kFloat); // Tensor with sizes (2, 2, 4) s = output.sum(); s.backward(); ASSERT_TRUE(torch::equal(output, expected)); ASSERT_TRUE(torch::equal(input.grad(), torch::ones_like(input))); } TEST_F(ModulesTest, Unflatten) { // Non-named tensor Unflatten unflatten(UnflattenOptions(0, {2, 2})); auto output = unflatten->forward(torch::tensor({1, 2, 3, 4})); auto expected = torch::tensor({{1, 2}, {3, 4}}); ASSERT_TRUE(torch::equal(output, expected)); // Named tensor auto make_dimnames = [](std::vector names) { std::vector dimnames; // NOLINTNEXTLINE(performance-for-range-copy) for (auto name : names) { // NOLINTNEXTLINE(performance-inefficient-vector-operation) dimnames.push_back( torch::Dimname::fromSymbol(torch::Symbol::dimname(name))); } return dimnames; }; unflatten = Unflatten(UnflattenOptions( "B", {std::pair{"B1", 2}, std::pair{"B2", 2}})); output = unflatten->forward( torch::tensor({{1, 2, 3, 4}}).refine_names(make_dimnames({"A", "B"}))); expected = torch::tensor({{{1, 2}, {3, 4}}}) .refine_names(make_dimnames({"A", "B1", "B2"})); ASSERT_TRUE(torch::equal(output, expected)); } TEST_F(ModulesTest, AdaptiveMaxPool1d) { AdaptiveMaxPool1d model(3); auto x = torch::tensor( {{{1, 2, 3, 4, 5}}}, torch::dtype(torch::kFloat).requires_grad(true)); auto y = model(x); torch::Tensor s = y.sum(); s.backward(); ASSERT_EQ(y.ndimension(), 3); ASSERT_TRUE(torch::allclose(y, torch::tensor({{{2, 4, 5}}}, torch::kFloat))); ASSERT_EQ(s.ndimension(), 0); ASSERT_EQ(y.sizes(), std::vector({1, 1, 3})); } TEST_F(ModulesTest, AdaptiveMaxPool1dReturnIndices) { AdaptiveMaxPool1d model(3); auto x = torch::tensor( {{{1, 2, 3, 4, 5}}}, torch::dtype(torch::kFloat).requires_grad(true)); auto [y, indices] = model->forward_with_indices(x); ASSERT_EQ(y.dim(), 3); ASSERT_TRUE(torch::allclose(y, torch::tensor({{{2, 4, 5}}}, torch::kFloat))); ASSERT_EQ(y.sizes(), std::vector({1, 1, 3})); ASSERT_TRUE( torch::allclose(indices, torch::tensor({{{1, 3, 4}}}, torch::kLong))); ASSERT_EQ(indices.sizes(), std::vector({1, 1, 3})); } TEST_F(ModulesTest, AdaptiveMaxPool2dEven) { AdaptiveMaxPool2d model(3); auto x = torch::arange(0., 50); x.resize_({2, 5, 5}).set_requires_grad(true); auto y = model(x); torch::Tensor s = y.sum(); s.backward(); ASSERT_EQ(y.ndimension(), 3); ASSERT_TRUE(torch::allclose( y, torch::tensor( { {{6, 8, 9}, {16, 18, 19}, {21, 23, 24}}, {{31, 33, 34}, {41, 43, 44}, {46, 48, 49}}, }, torch::kFloat))); ASSERT_EQ(s.ndimension(), 0); ASSERT_EQ(y.sizes(), std::vector({2, 3, 3})); } TEST_F(ModulesTest, AdaptiveMaxPool2dUneven) { AdaptiveMaxPool2d model(AdaptiveMaxPool2dOptions({3, 2})); auto x = torch::arange(0., 40); x.resize_({2, 5, 4}).set_requires_grad(true); auto y = model(x); torch::Tensor s = y.sum(); s.backward(); ASSERT_EQ(y.ndimension(), 3); ASSERT_TRUE(torch::allclose( y, torch::tensor( { {{5, 7}, {13, 15}, {17, 19}}, {{25, 27}, {33, 35}, {37, 39}}, }, torch::kFloat))); ASSERT_EQ(s.ndimension(), 0); ASSERT_EQ(y.sizes(), std::vector({2, 3, 2})); } TEST_F(ModulesTest, AdaptiveMaxPool2dReturnIndicesEven) { AdaptiveMaxPool2d model(3); auto x = torch::arange(0., 50); x.resize_({2, 5, 5}).set_requires_grad(true); auto [y, indices] = model->forward_with_indices(x); torch::Tensor s = y.sum(); s.backward(); ASSERT_EQ(s.ndimension(), 0); ASSERT_EQ(y.ndimension(), 3); ASSERT_TRUE(torch::allclose( y, torch::tensor( { {{6, 8, 9}, {16, 18, 19}, {21, 23, 24}}, {{31, 33, 34}, {41, 43, 44}, {46, 48, 49}}, }, torch::kFloat))); ASSERT_EQ(y.sizes(), std::vector({2, 3, 3})); ASSERT_EQ(indices.ndimension(), 3); ASSERT_TRUE(torch::allclose( indices, torch::tensor( { {{6, 8, 9}, {16, 18, 19}, {21, 23, 24}}, {{6, 8, 9}, {16, 18, 19}, {21, 23, 24}}, }, torch::kLong))); ASSERT_EQ(indices.sizes(), std::vector({2, 3, 3})); } TEST_F(ModulesTest, AdaptiveMaxPool2dReturnIndicesUneven) { AdaptiveMaxPool2d model(AdaptiveMaxPool2dOptions({3, 2})); auto x = torch::arange(0., 40); x.resize_({2, 5, 4}).set_requires_grad(true); auto [y, indices] = model->forward_with_indices(x); torch::Tensor s = y.sum(); s.backward(); ASSERT_EQ(s.ndimension(), 0); ASSERT_EQ(y.ndimension(), 3); ASSERT_TRUE(torch::allclose( y, torch::tensor( { {{5, 7}, {13, 15}, {17, 19}}, {{25, 27}, {33, 35}, {37, 39}}, }, torch::kFloat))); ASSERT_EQ(y.sizes(), std::vector({2, 3, 2})); ASSERT_EQ(indices.ndimension(), 3); ASSERT_TRUE(torch::allclose( indices, torch::tensor( { {{5, 7}, {13, 15}, {17, 19}}, {{5, 7}, {13, 15}, {17, 19}}, }, torch::kLong))); ASSERT_EQ(indices.sizes(), std::vector({2, 3, 2})); } TEST_F(ModulesTest, AdaptiveMaxPool3d) { AdaptiveMaxPool3d model(3); auto x = torch::arange(0., 64); x.resize_({1, 4, 4, 4}).set_requires_grad(true); auto y = model(x); torch::Tensor s = y.sum(); s.backward(); ASSERT_EQ(s.ndimension(), 0); ASSERT_EQ(y.ndimension(), 4); ASSERT_TRUE(torch::allclose( y, torch::tensor( { {{21, 22, 23}, {25, 26, 27}, {29, 30, 31}}, {{37, 38, 39}, {41, 42, 43}, {45, 46, 47}}, {{53, 54, 55}, {57, 58, 59}, {61, 62, 63}}, }, torch::kFloat))); ASSERT_EQ(y.sizes(), std::vector({1, 3, 3, 3})); } TEST_F(ModulesTest, AdaptiveMaxPool3dReturnIndices) { AdaptiveMaxPool3d model(3); auto x = torch::arange(0., 64); x.resize_({1, 4, 4, 4}).set_requires_grad(true); auto [y, indices] = model->forward_with_indices(x); torch::Tensor s = y.sum(); s.backward(); ASSERT_EQ(s.ndimension(), 0); ASSERT_EQ(y.ndimension(), 4); ASSERT_TRUE(torch::allclose( y, torch::tensor( { {{21, 22, 23}, {25, 26, 27}, {29, 30, 31}}, {{37, 38, 39}, {41, 42, 43}, {45, 46, 47}}, {{53, 54, 55}, {57, 58, 59}, {61, 62, 63}}, }, torch::kFloat))); ASSERT_EQ(y.sizes(), std::vector({1, 3, 3, 3})); ASSERT_EQ(indices.ndimension(), 4); ASSERT_TRUE(torch::allclose( indices, torch::tensor( { {{21, 22, 23}, {25, 26, 27}, {29, 30, 31}}, {{37, 38, 39}, {41, 42, 43}, {45, 46, 47}}, {{53, 54, 55}, {57, 58, 59}, {61, 62, 63}}, }, torch::kLong))); ASSERT_EQ(indices.sizes(), std::vector({1, 3, 3, 3})); } TEST_F(ModulesTest, AdaptiveAvgPool1d) { AdaptiveAvgPool1d model(3); auto x = torch::tensor( {{{1, 2, 3, 4, 5}}}, torch::dtype(torch::kFloat).requires_grad(true)); auto y = model(x); torch::Tensor s = y.sum(); s.backward(); ASSERT_EQ(s.ndimension(), 0); ASSERT_EQ(y.ndimension(), 3); ASSERT_TRUE( torch::allclose(y, torch::tensor({{{1.5, 3.0, 4.5}}}, torch::kFloat))); ASSERT_EQ(y.sizes(), std::vector({1, 1, 3})); } TEST_F(ModulesTest, AdaptiveAvgPool2dEven) { AdaptiveAvgPool2d model(3); auto x = torch::arange(0., 50); x.resize_({2, 5, 5}).set_requires_grad(true); auto y = model(x); torch::Tensor s = y.sum(); s.backward(); ASSERT_EQ(s.ndimension(), 0); ASSERT_EQ(y.ndimension(), 3); ASSERT_TRUE(torch::allclose( y, torch::tensor( { {{3.0, 4.5, 6.0}, {10.5, 12.0, 13.5}, {18.0, 19.5, 21.0}}, {{28.0, 29.5, 31.0}, {35.5, 37.0, 38.5}, {43.0, 44.5, 46.0}}, }, torch::kFloat))); ASSERT_EQ(y.sizes(), std::vector({2, 3, 3})); } TEST_F(ModulesTest, AdaptiveAvgPool2dUneven) { AdaptiveAvgPool2d model(AdaptiveAvgPool2dOptions({3, 2})); auto x = torch::arange(0., 40); x.resize_({2, 5, 4}).set_requires_grad(true); auto y = model(x); torch::Tensor s = y.sum(); s.backward(); ASSERT_EQ(s.ndimension(), 0); ASSERT_EQ(y.ndimension(), 3); ASSERT_TRUE(torch::allclose( y, torch::tensor( { {{2.5, 4.5}, {8.5, 10.5}, {14.5, 16.5}}, {{22.5, 24.5}, {28.5, 30.5}, {34.5, 36.5}}, }, torch::kFloat))); ASSERT_EQ(y.sizes(), std::vector({2, 3, 2})); } TEST_F(ModulesTest, AdaptiveAvgPool3d) { AdaptiveAvgPool3d model(3); auto x = torch::arange(0., 64); x.resize_({1, 4, 4, 4}).set_requires_grad(true); auto y = model(x); torch::Tensor s = y.sum(); s.backward(); ASSERT_EQ(s.ndimension(), 0); ASSERT_EQ(y.ndimension(), 4); ASSERT_TRUE(torch::allclose( y, torch::tensor( { {{10.5, 11.5, 12.5}, {14.5, 15.5, 16.5}, {18.5, 19.5, 20.5}}, {{26.5, 27.5, 28.5}, {30.5, 31.5, 32.5}, {34.5, 35.5, 36.5}}, {{42.5, 43.5, 44.5}, {46.5, 47.5, 48.5}, {50.5, 51.5, 52.5}}, }, torch::kFloat))); ASSERT_EQ(y.sizes(), std::vector({1, 3, 3, 3})); } TEST_F(ModulesTest, MaxUnpool1d) { auto indices = torch::tensor({{{1, 3, 4}}}, torch::kLong); auto x = torch::tensor( {{{2, 4, 5}}}, torch::dtype(torch::kFloat).requires_grad(true)); auto model = MaxUnpool1d{3}; auto y = model->forward(x, indices); ASSERT_EQ(y.dim(), 3); ASSERT_TRUE(torch::allclose( y, torch::tensor({{{0, 2, 0, 4, 5, 0, 0, 0, 0}}}, torch::kFloat))); ASSERT_EQ(y.sizes(), std::vector({1, 1, 9})); indices = torch::tensor({{{1, 3, 4}}}, torch::kLong); x = torch::tensor( {{{2, 4, 5}}}, torch::dtype(torch::kFloat).requires_grad(true)); model = MaxUnpool1d{MaxUnpool1dOptions(3).stride(2).padding(1)}; y = model->forward(x, indices, std::vector({1, 1, 5})); ASSERT_EQ(y.dim(), 3); ASSERT_TRUE( torch::allclose(y, torch::tensor({{{0, 2, 0, 4, 5}}}, torch::kFloat))); ASSERT_EQ(y.sizes(), std::vector({1, 1, 5})); } TEST_F(ModulesTest, MaxPool1d_MaxUnpool1d) { MaxPool1d pool{MaxPool1dOptions(2).stride(2)}; MaxUnpool1d unpool{MaxUnpool1dOptions(2).stride(2)}; auto input = torch::tensor({{{1, 2, 3, 4, 5, 6, 7, 8}}}, torch::kFloat); auto [output, indices] = pool->forward_with_indices(input); ASSERT_TRUE(torch::allclose( unpool(output, indices), torch::tensor({{{0, 2, 0, 4, 0, 6, 0, 8}}}, torch::kFloat))); // Example showcasing the use of output_size input = torch::tensor({{{1, 2, 3, 4, 5, 6, 7, 8, 9}}}, torch::kFloat); std::tie(output, indices) = pool->forward_with_indices(input); ASSERT_TRUE(torch::allclose( unpool(output, indices, input.sizes().vec()), torch::tensor({{{0, 2, 0, 4, 0, 6, 0, 8, 0}}}, torch::kFloat))); ASSERT_TRUE(torch::allclose( unpool(output, indices), torch::tensor({{{0, 2, 0, 4, 0, 6, 0, 8}}}, torch::kFloat))); } TEST_F(ModulesTest, MaxUnpool2d) { auto indices = torch::tensor( {{{{6, 8, 9}, {16, 18, 19}, {21, 23, 24}}}, {{{6, 8, 9}, {16, 18, 19}, {21, 23, 24}}}}, torch::kLong); auto x = torch::tensor( {{{{6, 8, 9}, {16, 18, 19}, {21, 23, 24}}}, {{{31, 33, 34}, {41, 43, 44}, {46, 48, 49}}}}, torch::dtype(torch::kFloat).requires_grad(true)); auto model = MaxUnpool2d{MaxUnpool2dOptions(3).stride(2).padding(1)}; auto y = model->forward(x, indices); ASSERT_EQ(y.dim(), 4); ASSERT_TRUE(torch::allclose( y, torch::tensor( {{{{0, 0, 0, 0, 0}, {0, 6, 0, 8, 9}, {0, 0, 0, 0, 0}, {0, 16, 0, 18, 19}, {0, 21, 0, 23, 24}}}, {{{0, 0, 0, 0, 0}, {0, 31, 0, 33, 34}, {0, 0, 0, 0, 0}, {0, 41, 0, 43, 44}, {0, 46, 0, 48, 49}}}}, torch::kFloat))); ASSERT_EQ(y.sizes(), std::vector({2, 1, 5, 5})); } TEST_F(ModulesTest, MaxPool2d_MaxUnpool2d) { MaxPool2d pool{MaxPool2dOptions(2).stride(2)}; MaxUnpool2d unpool{MaxUnpool2dOptions(2).stride(2)}; auto input = torch::tensor( {{{{1, 2, 3, 4}, {5, 6, 7, 8}, {9, 10, 11, 12}, {13, 14, 15, 16}}}}, torch::kFloat); auto [output, indices] = pool->forward_with_indices(input); ASSERT_TRUE(torch::allclose( unpool(output, indices), torch::tensor( {{{{0, 0, 0, 0}, {0, 6, 0, 8}, {0, 0, 0, 0}, {0, 14, 0, 16}}}}, torch::kFloat))); ASSERT_TRUE(torch::allclose( unpool(output, indices, std::vector{1, 1, 5, 5}), torch::tensor( {{{{0, 0, 0, 0, 0}, {6, 0, 8, 0, 0}, {0, 0, 0, 14, 0}, {16, 0, 0, 0, 0}, {0, 0, 0, 0, 0}}}}, torch::kFloat))); } TEST_F(ModulesTest, MaxUnpool3d) { auto indices = torch::tensor({{{{{26}}}}}, torch::kLong); auto x = torch::tensor( {{{{{26}}}}}, torch::dtype(torch::kFloat).requires_grad(true)); auto model = MaxUnpool3d{3}; auto y = model->forward(x, indices); ASSERT_EQ(y.dim(), 5); ASSERT_TRUE(torch::allclose( y, torch::tensor( {{{{{0, 0, 0}, {0, 0, 0}, {0, 0, 0}}, {{0, 0, 0}, {0, 0, 0}, {0, 0, 0}}, {{0, 0, 0}, {0, 0, 0}, {0, 0, 26}}}}}, torch::kFloat))); ASSERT_EQ(y.sizes(), std::vector({1, 1, 3, 3, 3})); } TEST_F(ModulesTest, MaxUnpool3dOutputSize) { auto indices = torch::tensor( {{{{{21, 23}, {29, 31}}, {{53, 55}, {61, 63}}}}}, torch::kLong); auto x = torch::tensor( {{{{{21, 23}, {29, 31}}, {{53, 55}, {61, 63}}}}}, torch::dtype(torch::kFloat).requires_grad(true)); auto model = MaxUnpool3d{MaxUnpool3dOptions(3).stride(2).padding(1)}; auto y = model->forward(x, indices, std::vector({1, 1, 4, 4, 4})); ASSERT_EQ(y.dim(), 5); ASSERT_TRUE(torch::allclose( y, torch::tensor( {{{{{0, 0, 0, 0}, {0, 0, 0, 0}, {0, 0, 0, 0}, {0, 0, 0, 0}}, {{0, 0, 0, 0}, {0, 21, 0, 23}, {0, 0, 0, 0}, {0, 29, 0, 31}}, {{0, 0, 0, 0}, {0, 0, 0, 0}, {0, 0, 0, 0}, {0, 0, 0, 0}}, {{0, 0, 0, 0}, {0, 53, 0, 55}, {0, 0, 0, 0}, {0, 61, 0, 63}}}}}, torch::kFloat))); ASSERT_EQ(y.sizes(), std::vector({1, 1, 4, 4, 4})); } TEST_F(ModulesTest, MaxPool3d_MaxUnpool3d) { MaxPool3d pool{MaxPool3dOptions(3).stride(2)}; MaxUnpool3d unpool{MaxUnpool3dOptions(3).stride(2)}; auto input = torch::randn({20, 16, 51, 33, 15}); auto [output, indices] = pool->forward_with_indices(input); auto unpooled_output = unpool(output, indices); ASSERT_EQ( unpooled_output.sizes(), std::vector({20, 16, 51, 33, 15})); } TEST_F(ModulesTest, Linear) { { Linear model(5, 2); auto x = torch::randn({10, 5}, torch::requires_grad()); auto y = model(x); torch::Tensor s = y.sum(); s.backward(); ASSERT_EQ(y.ndimension(), 2); ASSERT_EQ(s.ndimension(), 0); ASSERT_EQ(y.size(0), 10); ASSERT_EQ(y.size(1), 2); ASSERT_EQ(model->weight.grad().numel(), 2 * 5); auto y_exp = torch::addmm(model->bias, x, model->weight.t()); ASSERT_TRUE(torch::allclose(y, y_exp)); } { Linear model(LinearOptions(5, 2).bias(false)); auto x = torch::randn({10, 5}, torch::requires_grad()); auto y = model(x); torch::Tensor s = y.sum(); s.backward(); ASSERT_EQ(y.ndimension(), 2); ASSERT_EQ(s.ndimension(), 0); ASSERT_EQ(y.size(0), 10); ASSERT_EQ(y.size(1), 2); ASSERT_EQ(model->weight.grad().numel(), 2 * 5); auto y_exp = torch::mm(x, model->weight.t()); ASSERT_TRUE(torch::allclose(y, y_exp)); } } TEST_F(ModulesTest, LocalResponseNorm) { { LocalResponseNorm model(LocalResponseNormOptions(2)); const auto x = torch::arange(100., 136, torch::requires_grad()).reshape({2, 3, 3, 2}); auto y = model(x); const auto y_exp = torch::tensor( {{{{73.7788, 74.1462}, {74.5031, 74.8572}, {75.2010, 75.5420}}, {{61.6057, 61.7227}, {61.8347, 61.9418}, {62.0441, 62.1418}}, {{62.2349, 62.3235}, {62.4077, 62.4877}, {62.5635, 62.6353}}}, {{{79.3915, 79.6491}, {79.8978, 80.1446}, {80.3827, 80.6190}}, {{63.0317, 63.0742}, {63.1135, 63.1496}, {63.1826, 63.2126}}, {{63.2396, 63.2637}, {63.2850, 63.3036}, {63.3195, 63.3328}}}}, torch::kFloat); torch::Tensor s = y.sum(); s.backward(); ASSERT_EQ(y.ndimension(), 4); ASSERT_EQ(s.ndimension(), 0); ASSERT_EQ(y.sizes(), x.sizes()); ASSERT_TRUE(torch::allclose(y, y_exp, 1e-4, 1e-7)); } } TEST_F(ModulesTest, LayerNorm) { LayerNorm model(LayerNormOptions({2, 2}).eps(2e-5)); auto x = torch::randn({2, 2}, torch::requires_grad()); auto y = model(x); auto y_exp = torch::layer_norm(x, {2, 2}, model->weight, model->bias, 2e-5); torch::Tensor s = y.sum(); s.backward(); ASSERT_EQ(y.ndimension(), 2); ASSERT_EQ(s.ndimension(), 0); for (const auto i : c10::irange(2)) { ASSERT_EQ(y.size(i), 2); } ASSERT_EQ(model->weight.grad().numel(), 2 * 2); ASSERT_TRUE(torch::allclose(y, y_exp)); } TEST_F(ModulesTest, GroupNorm) { GroupNorm model(GroupNormOptions(2, 2).eps(2e-5)); auto x = torch::randn({2, 2}, torch::requires_grad()); auto y = model(x); auto y_exp = torch::group_norm(x, 2, model->weight, model->bias, 2e-5); torch::Tensor s = y.sum(); s.backward(); ASSERT_EQ(y.ndimension(), 2); ASSERT_EQ(s.ndimension(), 0); for (const auto i : c10::irange(2)) { ASSERT_EQ(y.size(i), 2); } ASSERT_EQ(model->weight.grad().numel(), 2); ASSERT_TRUE(torch::allclose(y, y_exp)); } TEST_F(ModulesTest, Bilinear) { Bilinear model(5, 3, 2); auto x1 = torch::randn({10, 5}, torch::requires_grad()); auto x2 = torch::randn({10, 3}, torch::requires_grad()); auto y = model(x1, x2); torch::Tensor s = y.sum(); s.backward(); ASSERT_EQ(y.ndimension(), 2); ASSERT_EQ(s.ndimension(), 0); ASSERT_EQ(y.size(0), 10); ASSERT_EQ(y.size(1), 2); ASSERT_EQ(model->weight.grad().numel(), 2 * 5 * 3); } TEST_F(ModulesTest, Fold) { { Fold model(FoldOptions({3, 2}, {2, 2})); auto input = torch::ones({1, 3 * 2 * 2, 2}, torch::requires_grad()); auto output = model(input); auto expected = torch::tensor( {{{{1.0, 1.0}, {2.0, 2.0}, {1.0, 1.0}}, {{1.0, 1.0}, {2.0, 2.0}, {1.0, 1.0}}, {{1.0, 1.0}, {2.0, 2.0}, {1.0, 1.0}}}}, torch::kFloat); auto s = output.sum(); s.backward(); ASSERT_EQ(s.ndimension(), 0); ASSERT_EQ(output.sizes(), std::vector({1, 3, 3, 2})); ASSERT_TRUE(output.allclose(expected)); } { // input wrong dimension Fold model(FoldOptions({8, 8}, {3, 3})); ASSERT_THROWS_WITH( model(torch::randn({1, 3, 16, 16})), "Input Error: Only unbatched (2D) or batched (3D) input Tensors are supported (got 4D)"); } } TEST_F(ModulesTest, Unfold) { { Unfold model(UnfoldOptions({2, 2}).padding(1).stride(2)); auto input = torch::arange(2., 14, torch::requires_grad()).view({1, 2, 2, 3}); auto output = model(input); auto expected = torch::tensor( {{{0.0, 0.0, 0.0, 6.0}, {0.0, 0.0, 5.0, 7.0}, {0.0, 3.0, 0.0, 0.0}, {2.0, 4.0, 0.0, 0.0}, {0.0, 0.0, 0.0, 12.0}, {0.0, 0.0, 11.0, 13.0}, {0.0, 9.0, 0.0, 0.0}, {8.0, 10.0, 0.0, 0.0}}}, torch::kFloat); auto s = output.sum(); s.backward(); ASSERT_EQ(s.ndimension(), 0); ASSERT_EQ(output.sizes(), std::vector({1, 8, 4})); ASSERT_TRUE(output.allclose(expected)); } { // input wrong dimension Unfold model(UnfoldOptions({2, 4})); ASSERT_THROWS_WITH( model(torch::randn({1, 5, 2})), "Input Error: Only 4D input Tensors are supported (got 3D)"); } { // calculated output shape is too small Unfold model(UnfoldOptions({2, 3})); ASSERT_THROWS_WITH( model(torch::randn({1, 2, 2, 2})), "Given input with spatial size (2, 2), kernel_size=(2, 3), " "dilation=(1, 1), padding=(0, 0), calculated shape of the array of " "sliding blocks as (1, 0), but its components must be at least one."); } } TEST_F(ModulesTest, SimpleContainer) { auto model = std::make_shared(); auto l1 = model->add(Linear(10, 3), "l1"); auto l2 = model->add(Linear(3, 5), "l2"); auto l3 = model->add(Linear(5, 100), "l3"); auto x = torch::randn({1000, 10}, torch::requires_grad()); x = l1(x).clamp_min(0); x = l2(x).clamp_min(0); x = l3(x).clamp_min(0); x.backward(torch::ones_like(x)); ASSERT_EQ(x.ndimension(), 2); ASSERT_EQ(x.size(0), 1000); ASSERT_EQ(x.size(1), 100); ASSERT_EQ(x.min().item(), 0); } TEST_F(ModulesTest, EmbeddingBasic) { const int64_t dict_size = 10; Embedding model(dict_size, 2); ASSERT_TRUE(model->named_parameters().contains("weight")); ASSERT_EQ(model->weight.ndimension(), 2); ASSERT_EQ(model->weight.size(0), dict_size); ASSERT_EQ(model->weight.size(1), 2); // Cannot get gradients to change indices (input) - only for embedding // params auto x = torch::full({10}, dict_size - 1, torch::kInt64); auto y = model(x); torch::Tensor s = y.sum(); s.backward(); ASSERT_EQ(y.ndimension(), 2); ASSERT_EQ(s.ndimension(), 0); ASSERT_EQ(y.size(0), 10); ASSERT_EQ(y.size(1), 2); ASSERT_EQ(model->weight.grad().numel(), 2 * dict_size); } TEST_F(ModulesTest, EmbeddingList) { Embedding model(6, 4); auto x = torch::full({2, 3}, 5, torch::kInt64); auto y = model(x); torch::Tensor s = y.sum(); s.backward(); ASSERT_EQ(y.ndimension(), 3); ASSERT_EQ(y.size(0), 2); ASSERT_EQ(y.size(1), 3); ASSERT_EQ(y.size(2), 4); } TEST_F(ModulesTest, EmbeddingFromPretrained) { auto weight = torch::tensor({{1., 2.3, 3.}, {4., 5.1, 6.3}}); Embedding embedding = torch::nn::Embedding::from_pretrained(weight); auto input = torch::tensor({1}, torch::kLong); ASSERT_TRUE(torch::allclose( embedding(input), torch::tensor({4.0000, 5.1000, 6.3000}))); } TEST_F(ModulesTest, EmbeddingBagFromPretrained) { auto weight = torch::tensor({{1., 2.3, 3.}, {4., 5.1, 6.3}}); EmbeddingBag embeddingbag = torch::nn::EmbeddingBag::from_pretrained(weight); auto input = torch::zeros({{1, 2}}, torch::kLong); input[0] = torch::tensor({1, 0}); ASSERT_TRUE(torch::allclose( embeddingbag(input), torch::tensor({2.5000, 3.7000, 4.6500}))); } TEST_F(ModulesTest, AlphaDropout) { AlphaDropout alpha_dropout(0.5); torch::Tensor x = torch::ones(100, torch::requires_grad()); torch::Tensor y = alpha_dropout(x); y.backward(torch::ones_like(y)); ASSERT_EQ(y.ndimension(), 1); ASSERT_EQ(y.size(0), 100); ASSERT_LT(y.sum().item(), 130); // Probably ASSERT_GT(y.sum().item(), 40); // Probably alpha_dropout->eval(); y = alpha_dropout(x); ASSERT_EQ(y.sum().item(), 100); } TEST_F(ModulesTest, FeatureAlphaDropout) { FeatureAlphaDropout feature_alpha_dropout(0.5); torch::Tensor x = torch::ones({10, 10}, torch::requires_grad()); torch::Tensor y = feature_alpha_dropout(x); y.backward(torch::ones_like(y)); ASSERT_EQ(y.ndimension(), 2); ASSERT_EQ(y.size(0), 10); ASSERT_EQ(y.size(1), 10); ASSERT_LT(y.sum().item(), 130); // Probably ASSERT_GT(y.sum().item(), 40); // Probably feature_alpha_dropout->eval(); y = feature_alpha_dropout(x); ASSERT_EQ(y.sum().item(), 100); } TEST_F(ModulesTest, Dropout) { for (const auto inplace : {false, true}) { Dropout dropout(DropoutOptions(0.5).inplace(inplace)); torch::Tensor x = torch::ones(100); if (!inplace) { x.requires_grad_(true); } torch::Tensor y = dropout(x); ASSERT_EQ(y.ndimension(), 1); ASSERT_EQ(y.size(0), 100); ASSERT_LT(y.sum().item(), 130); // Probably ASSERT_GT(y.sum().item(), 70); // Probably if (inplace) { ASSERT_TRUE(y.allclose(x)); } else { y.backward(torch::ones_like(y)); } dropout->eval(); y = dropout(torch::ones(100)); ASSERT_EQ(y.sum().item(), 100); } } TEST_F(ModulesTest, Dropout2d) { auto p = 0.5; for (const auto inplace : {false, true}) { Dropout2d dropout(Dropout2dOptions(p).inplace(inplace)); torch::Tensor x = torch::empty({50, 50, 2, 2}).fill_(1 - p); if (!inplace) { x.requires_grad_(true); } torch::Tensor y = dropout(x); ASSERT_EQ(y.ndimension(), 4); ASSERT_EQ(y.size(0), 50); ASSERT_EQ(y.size(1), 50); ASSERT_EQ(y.size(2), 2); ASSERT_EQ(y.size(3), 2); ASSERT_LT((y.mean() - (1 - p)).abs().item(), 0.05); if (inplace) { ASSERT_TRUE(y.allclose(x)); } else { y.backward(torch::ones_like(y)); } dropout->eval(); y = dropout(torch::ones({2, 2, 10, 10})); ASSERT_EQ(y.sum().item(), 400); } } TEST_F(ModulesTest, Dropout3d) { for (const auto inplace : {false, true}) { auto p = 0.5; Dropout3d dropout(Dropout3dOptions(p).inplace(inplace)); torch::Tensor x = torch::empty({50, 50, 2, 2, 2}).fill_(1 - p); if (!inplace) { x.requires_grad_(true); } torch::Tensor y = dropout(x); ASSERT_EQ(y.ndimension(), 5); ASSERT_EQ(y.size(0), 50); ASSERT_EQ(y.size(1), 50); ASSERT_EQ(y.size(2), 2); ASSERT_EQ(y.size(3), 2); ASSERT_EQ(y.size(4), 2); ASSERT_LT((y.mean() - (1 - p)).abs().item(), 0.05); if (inplace) { ASSERT_TRUE(y.allclose(x)); } else { y.backward(torch::ones_like(y)); } dropout->eval(); y = dropout(torch::ones({4, 4, 5, 5})); ASSERT_EQ(y.sum().item(), 400); } } TEST_F(ModulesTest, Parameters) { auto model = std::make_shared(); auto parameters = model->named_parameters(); ASSERT_EQ(parameters["param"].size(0), 3); ASSERT_EQ(parameters["param"].size(1), 2); ASSERT_EQ(parameters["param"].size(2), 21); ASSERT_EQ(parameters["l1.bias"].size(0), 20); ASSERT_EQ(parameters["l1.weight"].size(0), 20); ASSERT_EQ(parameters["l1.weight"].size(1), 5); ASSERT_EQ(parameters["test.l1.bias"].size(0), 3); ASSERT_EQ(parameters["test.l1.weight"].size(0), 3); ASSERT_EQ(parameters["test.l1.weight"].size(1), 10); ASSERT_EQ(parameters["test.l2.bias"].size(0), 5); ASSERT_EQ(parameters["test.l2.weight"].size(0), 5); ASSERT_EQ(parameters["test.l2.weight"].size(1), 3); ASSERT_EQ(parameters["test.l3.bias"].size(0), 100); ASSERT_EQ(parameters["test.l3.weight"].size(0), 100); ASSERT_EQ(parameters["test.l3.weight"].size(1), 5); } TEST_F(ModulesTest, FunctionalCallsSuppliedFunction) { bool was_called = false; auto functional = Functional([&was_called](torch::Tensor input) { was_called = true; return input; }); auto output = functional(torch::ones(5, torch::requires_grad())); ASSERT_TRUE(was_called); ASSERT_TRUE(output.equal(torch::ones(5, torch::requires_grad()))); was_called = false; // Use the call operator overload here. output = functional(torch::ones(5, torch::requires_grad())); ASSERT_TRUE(was_called); ASSERT_TRUE(output.equal(torch::ones(5, torch::requires_grad()))); } TEST_F(ModulesTest, FunctionalWithTorchFunction) { auto functional = Functional(torch::relu); ASSERT_EQ(functional(torch::ones({})).item(), 1); ASSERT_EQ(functional(torch::ones({})).item(), 1); ASSERT_EQ(functional(torch::ones({}) * -1).item(), 0); } TEST_F(ModulesTest, FunctionalArgumentBinding) { auto functional = Functional(torch::elu, /*alpha=*/1, /*scale=*/0, /*input_scale=*/1); ASSERT_EQ(functional(torch::ones({})).item(), 0); } TEST_F(ModulesTest, BatchNorm1dStateful) { BatchNorm1d bn(5); ASSERT_TRUE(bn->options.track_running_stats()); ASSERT_TRUE(bn->running_mean.defined()); ASSERT_EQ(bn->running_mean.dim(), 1); ASSERT_EQ(bn->running_mean.size(0), 5); ASSERT_TRUE(bn->running_var.defined()); ASSERT_EQ(bn->running_var.dim(), 1); ASSERT_EQ(bn->running_var.size(0), 5); ASSERT_TRUE(bn->num_batches_tracked.defined()); ASSERT_EQ(bn->num_batches_tracked.dim(), 0); ASSERT_TRUE(bn->options.affine()); ASSERT_TRUE(bn->weight.defined()); ASSERT_EQ(bn->weight.dim(), 1); ASSERT_EQ(bn->weight.size(0), 5); ASSERT_TRUE(bn->bias.defined()); ASSERT_EQ(bn->bias.dim(), 1); ASSERT_EQ(bn->bias.size(0), 5); } TEST_F(ModulesTest, BatchNorm1dStateless) { BatchNorm1d bn( BatchNorm1dOptions(5).track_running_stats(false).affine(false)); ASSERT_FALSE(bn->running_mean.defined()); ASSERT_FALSE(bn->running_var.defined()); ASSERT_FALSE(bn->num_batches_tracked.defined()); ASSERT_FALSE(bn->weight.defined()); ASSERT_FALSE(bn->bias.defined()); } TEST_F(ModulesTest, BatchNorm1d) { BatchNorm1d bn(5); bn->eval(); auto input = torch::arange(2. * 5 * 2).view({2, 5, 2}).requires_grad_(); auto output = bn->forward(input); auto expected = torch::tensor( {{{0.0000, 1.0000}, {2.0000, 3.0000}, {4.0000, 5.0000}, {6.0000, 7.0000}, {8.0000, 9.0000}}, {{10.0000, 10.9999}, {11.9999, 12.9999}, {13.9999, 14.9999}, {15.9999, 16.9999}, {17.9999, 18.9999}}}); ASSERT_TRUE(output.allclose(expected)); auto s = output.sum(); s.backward(); ASSERT_EQ(input.sizes(), input.grad().sizes()); } TEST_F(ModulesTest, BatchNorm2dStateful) { BatchNorm2d bn(5); ASSERT_TRUE(bn->options.track_running_stats()); ASSERT_TRUE(bn->running_mean.defined()); ASSERT_EQ(bn->running_mean.dim(), 1); ASSERT_EQ(bn->running_mean.size(0), 5); ASSERT_TRUE(bn->running_var.defined()); ASSERT_EQ(bn->running_var.dim(), 1); ASSERT_EQ(bn->running_var.size(0), 5); ASSERT_TRUE(bn->num_batches_tracked.defined()); ASSERT_EQ(bn->num_batches_tracked.dim(), 0); ASSERT_TRUE(bn->options.affine()); ASSERT_TRUE(bn->weight.defined()); ASSERT_EQ(bn->weight.dim(), 1); ASSERT_EQ(bn->weight.size(0), 5); ASSERT_TRUE(bn->bias.defined()); ASSERT_EQ(bn->bias.dim(), 1); ASSERT_EQ(bn->bias.size(0), 5); } TEST_F(ModulesTest, BatchNorm2dStateless) { BatchNorm2d bn( BatchNorm2dOptions(5).track_running_stats(false).affine(false)); ASSERT_FALSE(bn->running_mean.defined()); ASSERT_FALSE(bn->running_var.defined()); ASSERT_FALSE(bn->num_batches_tracked.defined()); ASSERT_FALSE(bn->weight.defined()); ASSERT_FALSE(bn->bias.defined()); } TEST_F(ModulesTest, BatchNorm2d) { BatchNorm2d bn(5); bn->eval(); auto input = torch::arange(2. * 5 * 2 * 2).view({2, 5, 2, 2}).requires_grad_(); auto output = bn->forward(input); auto expected = torch::tensor( {{{{0.0000, 1.0000}, {2.0000, 3.0000}}, {{4.0000, 5.0000}, {6.0000, 7.0000}}, {{8.0000, 9.0000}, {10.0000, 10.9999}}, {{11.9999, 12.9999}, {13.9999, 14.9999}}, {{15.9999, 16.9999}, {17.9999, 18.9999}}}, {{{19.9999, 20.9999}, {21.9999, 22.9999}}, {{23.9999, 24.9999}, {25.9999, 26.9999}}, {{27.9999, 28.9999}, {29.9998, 30.9998}}, {{31.9998, 32.9998}, {33.9998, 34.9998}}, {{35.9998, 36.9998}, {37.9998, 38.9998}}}}); ASSERT_TRUE(output.allclose(expected)); auto s = output.sum(); s.backward(); ASSERT_EQ(input.sizes(), input.grad().sizes()); } TEST_F(ModulesTest, BatchNorm3dStateful) { BatchNorm3d bn(5); ASSERT_TRUE(bn->options.track_running_stats()); ASSERT_TRUE(bn->running_mean.defined()); ASSERT_EQ(bn->running_mean.dim(), 1); ASSERT_EQ(bn->running_mean.size(0), 5); ASSERT_TRUE(bn->running_var.defined()); ASSERT_EQ(bn->running_var.dim(), 1); ASSERT_EQ(bn->running_var.size(0), 5); ASSERT_TRUE(bn->num_batches_tracked.defined()); ASSERT_EQ(bn->num_batches_tracked.dim(), 0); ASSERT_TRUE(bn->options.affine()); ASSERT_TRUE(bn->weight.defined()); ASSERT_EQ(bn->weight.dim(), 1); ASSERT_EQ(bn->weight.size(0), 5); ASSERT_TRUE(bn->bias.defined()); ASSERT_EQ(bn->bias.dim(), 1); ASSERT_EQ(bn->bias.size(0), 5); } TEST_F(ModulesTest, BatchNorm3dStateless) { BatchNorm3d bn( BatchNorm3dOptions(5).track_running_stats(false).affine(false)); ASSERT_FALSE(bn->running_mean.defined()); ASSERT_FALSE(bn->running_var.defined()); ASSERT_FALSE(bn->num_batches_tracked.defined()); ASSERT_FALSE(bn->weight.defined()); ASSERT_FALSE(bn->bias.defined()); } TEST_F(ModulesTest, BatchNorm3d) { BatchNorm3d bn(5); bn->eval(); auto input = torch::arange(2. * 5 * 2 * 2 * 2).view({2, 5, 2, 2, 2}).requires_grad_(); auto output = bn->forward(input); auto expected = torch::tensor( {{{{{0.0000, 1.0000}, {2.0000, 3.0000}}, {{4.0000, 5.0000}, {6.0000, 7.0000}}}, {{{8.0000, 9.0000}, {10.0000, 10.9999}}, {{11.9999, 12.9999}, {13.9999, 14.9999}}}, {{{15.9999, 16.9999}, {17.9999, 18.9999}}, {{19.9999, 20.9999}, {21.9999, 22.9999}}}, {{{23.9999, 24.9999}, {25.9999, 26.9999}}, {{27.9999, 28.9999}, {29.9998, 30.9998}}}, {{{31.9998, 32.9998}, {33.9998, 34.9998}}, {{35.9998, 36.9998}, {37.9998, 38.9998}}}}, {{{{39.9998, 40.9998}, {41.9998, 42.9998}}, {{43.9998, 44.9998}, {45.9998, 46.9998}}}, {{{47.9998, 48.9998}, {49.9997, 50.9997}}, {{51.9997, 52.9997}, {53.9997, 54.9997}}}, {{{55.9997, 56.9997}, {57.9997, 58.9997}}, {{59.9997, 60.9997}, {61.9997, 62.9997}}}, {{{63.9997, 64.9997}, {65.9997, 66.9997}}, {{67.9997, 68.9997}, {69.9996, 70.9996}}}, {{{71.9996, 72.9996}, {73.9996, 74.9996}}, {{75.9996, 76.9996}, {77.9996, 78.9996}}}}}); ASSERT_TRUE(output.allclose(expected)); auto s = output.sum(); s.backward(); ASSERT_EQ(input.sizes(), input.grad().sizes()); } TEST_F(ModulesTest, InstanceNorm1dStateful) { InstanceNorm1d instance_norm( InstanceNorm1dOptions(5).track_running_stats(true).affine(true)); ASSERT_TRUE(instance_norm->options.track_running_stats()); ASSERT_TRUE(instance_norm->running_mean.defined()); ASSERT_EQ(instance_norm->running_mean.dim(), 1); ASSERT_EQ(instance_norm->running_mean.size(0), 5); ASSERT_TRUE(instance_norm->running_var.defined()); ASSERT_EQ(instance_norm->running_var.dim(), 1); ASSERT_EQ(instance_norm->running_var.size(0), 5); ASSERT_TRUE(instance_norm->num_batches_tracked.defined()); ASSERT_EQ(instance_norm->num_batches_tracked.dim(), 0); ASSERT_TRUE(instance_norm->options.affine()); ASSERT_TRUE(instance_norm->weight.defined()); ASSERT_EQ(instance_norm->weight.dim(), 1); ASSERT_EQ(instance_norm->weight.size(0), 5); ASSERT_TRUE(instance_norm->bias.defined()); ASSERT_EQ(instance_norm->bias.dim(), 1); ASSERT_EQ(instance_norm->bias.size(0), 5); } TEST_F(ModulesTest, InstanceNorm1dStateless) { InstanceNorm1d instance_norm( InstanceNorm1dOptions(5).track_running_stats(false).affine(false)); ASSERT_FALSE(instance_norm->running_mean.defined()); ASSERT_FALSE(instance_norm->running_var.defined()); ASSERT_FALSE(instance_norm->num_batches_tracked.defined()); ASSERT_FALSE(instance_norm->weight.defined()); ASSERT_FALSE(instance_norm->bias.defined()); } TEST_F(ModulesTest, InstanceNorm1d) { InstanceNorm1d instance_norm(5); instance_norm->eval(); auto input = torch::arange(2. * 5 * 2).view({2, 5, 2}).requires_grad_(); auto output = instance_norm->forward(input); auto expected = torch::tensor( {{{-1.0000, 1.0000}, {-1.0000, 1.0000}, {-1.0000, 1.0000}, {-1.0000, 1.0000}, {-1.0000, 1.0000}}, {{-1.0000, 1.0000}, {-1.0000, 1.0000}, {-1.0000, 1.0000}, {-1.0000, 1.0000}, {-1.0000, 1.0000}}}); ASSERT_TRUE(output.allclose(expected, 1e-3)); auto s = output.sum(); s.backward(); ASSERT_EQ(input.sizes(), input.grad().sizes()); } TEST_F(ModulesTest, InstanceNorm2dStateful) { InstanceNorm2d instance_norm( InstanceNorm2dOptions(5).track_running_stats(true).affine(true)); ASSERT_TRUE(instance_norm->options.track_running_stats()); ASSERT_TRUE(instance_norm->running_mean.defined()); ASSERT_EQ(instance_norm->running_mean.dim(), 1); ASSERT_EQ(instance_norm->running_mean.size(0), 5); ASSERT_TRUE(instance_norm->running_var.defined()); ASSERT_EQ(instance_norm->running_var.dim(), 1); ASSERT_EQ(instance_norm->running_var.size(0), 5); ASSERT_TRUE(instance_norm->num_batches_tracked.defined()); ASSERT_EQ(instance_norm->num_batches_tracked.dim(), 0); ASSERT_TRUE(instance_norm->options.affine()); ASSERT_TRUE(instance_norm->weight.defined()); ASSERT_EQ(instance_norm->weight.dim(), 1); ASSERT_EQ(instance_norm->weight.size(0), 5); ASSERT_TRUE(instance_norm->bias.defined()); ASSERT_EQ(instance_norm->bias.dim(), 1); ASSERT_EQ(instance_norm->bias.size(0), 5); } TEST_F(ModulesTest, InstanceNorm2dStateless) { InstanceNorm2d instance_norm( InstanceNorm2dOptions(5).track_running_stats(false).affine(false)); ASSERT_FALSE(instance_norm->running_mean.defined()); ASSERT_FALSE(instance_norm->running_var.defined()); ASSERT_FALSE(instance_norm->num_batches_tracked.defined()); ASSERT_FALSE(instance_norm->weight.defined()); ASSERT_FALSE(instance_norm->bias.defined()); } TEST_F(ModulesTest, InstanceNorm2d) { InstanceNorm2d instance_norm(5); instance_norm->eval(); auto input = torch::arange(2. * 5 * 2 * 2).view({2, 5, 2, 2}).requires_grad_(); auto output = instance_norm->forward(input); auto expected = torch::tensor( {{{{-1.3416, -0.4472}, {0.4472, 1.3416}}, {{-1.3416, -0.4472}, {0.4472, 1.3416}}, {{-1.3416, -0.4472}, {0.4472, 1.3416}}, {{-1.3416, -0.4472}, {0.4472, 1.3416}}, {{-1.3416, -0.4472}, {0.4472, 1.3416}}}, {{{-1.3416, -0.4472}, {0.4472, 1.3416}}, {{-1.3416, -0.4472}, {0.4472, 1.3416}}, {{-1.3416, -0.4472}, {0.4472, 1.3416}}, {{-1.3416, -0.4472}, {0.4472, 1.3416}}, {{-1.3416, -0.4472}, {0.4472, 1.3416}}}}); ASSERT_TRUE(output.allclose(expected, 1e-3)); auto s = output.sum(); s.backward(); ASSERT_EQ(input.sizes(), input.grad().sizes()); } TEST_F(ModulesTest, InstanceNorm3dStateful) { InstanceNorm3d instance_norm( InstanceNorm3dOptions(5).track_running_stats(true).affine(true)); ASSERT_TRUE(instance_norm->options.track_running_stats()); ASSERT_TRUE(instance_norm->running_mean.defined()); ASSERT_EQ(instance_norm->running_mean.dim(), 1); ASSERT_EQ(instance_norm->running_mean.size(0), 5); ASSERT_TRUE(instance_norm->running_var.defined()); ASSERT_EQ(instance_norm->running_var.dim(), 1); ASSERT_EQ(instance_norm->running_var.size(0), 5); ASSERT_TRUE(instance_norm->num_batches_tracked.defined()); ASSERT_EQ(instance_norm->num_batches_tracked.dim(), 0); ASSERT_TRUE(instance_norm->options.affine()); ASSERT_TRUE(instance_norm->weight.defined()); ASSERT_EQ(instance_norm->weight.dim(), 1); ASSERT_EQ(instance_norm->weight.size(0), 5); ASSERT_TRUE(instance_norm->bias.defined()); ASSERT_EQ(instance_norm->bias.dim(), 1); ASSERT_EQ(instance_norm->bias.size(0), 5); } TEST_F(ModulesTest, InstanceNorm3dStateless) { InstanceNorm3d instance_norm( InstanceNorm3dOptions(5).track_running_stats(false).affine(false)); ASSERT_FALSE(instance_norm->running_mean.defined()); ASSERT_FALSE(instance_norm->running_var.defined()); ASSERT_FALSE(instance_norm->num_batches_tracked.defined()); ASSERT_FALSE(instance_norm->weight.defined()); ASSERT_FALSE(instance_norm->bias.defined()); } TEST_F(ModulesTest, InstanceNorm3d) { InstanceNorm3d instance_norm(5); instance_norm->eval(); auto input = torch::arange(2. * 5 * 2 * 2 * 2).view({2, 5, 2, 2, 2}).requires_grad_(); auto output = instance_norm->forward(input); auto expected = torch::tensor( {{{{{-1.5275, -1.0911}, {-0.6547, -0.2182}}, {{0.2182, 0.6547}, {1.0911, 1.5275}}}, {{{-1.5275, -1.0911}, {-0.6547, -0.2182}}, {{0.2182, 0.6547}, {1.0911, 1.5275}}}, {{{-1.5275, -1.0911}, {-0.6547, -0.2182}}, {{0.2182, 0.6547}, {1.0911, 1.5275}}}, {{{-1.5275, -1.0911}, {-0.6547, -0.2182}}, {{0.2182, 0.6547}, {1.0911, 1.5275}}}, {{{-1.5275, -1.0911}, {-0.6547, -0.2182}}, {{0.2182, 0.6547}, {1.0911, 1.5275}}}}, {{{{-1.5275, -1.0911}, {-0.6547, -0.2182}}, {{0.2182, 0.6547}, {1.0911, 1.5275}}}, {{{-1.5275, -1.0911}, {-0.6547, -0.2182}}, {{0.2182, 0.6547}, {1.0911, 1.5275}}}, {{{-1.5275, -1.0911}, {-0.6547, -0.2182}}, {{0.2182, 0.6547}, {1.0911, 1.5275}}}, {{{-1.5275, -1.0911}, {-0.6547, -0.2182}}, {{0.2182, 0.6547}, {1.0911, 1.5275}}}, {{{-1.5275, -1.0911}, {-0.6547, -0.2182}}, {{0.2182, 0.6547}, {1.0911, 1.5275}}}}}); ASSERT_TRUE(output.allclose(expected, 1e-3)); auto s = output.sum(); s.backward(); ASSERT_EQ(input.sizes(), input.grad().sizes()); } TEST_F(ModulesTest, Linear_CUDA) { Linear model(5, 2); model->to(torch::kCUDA); auto x = torch::randn({10, 5}, torch::device(torch::kCUDA).requires_grad(true)); auto y = model(x); torch::Tensor s = y.sum(); s.backward(); ASSERT_EQ(y.ndimension(), 2); ASSERT_EQ(s.ndimension(), 0); ASSERT_EQ(y.size(0), 10); ASSERT_EQ(y.size(1), 2); ASSERT_EQ(model->weight.grad().numel(), 2 * 5); } TEST_F(ModulesTest, Linear2_CUDA) { Linear model(5, 2); model->to(torch::kCUDA); model->to(torch::kCPU); auto x = torch::randn({10, 5}, torch::requires_grad()); auto y = model(x); torch::Tensor s = y.sum(); s.backward(); ASSERT_EQ(y.ndimension(), 2); ASSERT_EQ(s.ndimension(), 0); ASSERT_EQ(y.size(0), 10); ASSERT_EQ(y.size(1), 2); ASSERT_EQ(model->weight.grad().numel(), 2 * 5); } TEST_F(ModulesTest, L1Loss) { L1Loss loss; auto input = torch::randn({5, 6}, torch::requires_grad()); auto target = torch::empty({5, 6}).random_(2); auto output = loss->forward(torch::sigmoid(input), target); auto s = output.sum(); s.backward(); ASSERT_EQ(output.sizes(), std::vector()); ASSERT_EQ(input.sizes(), input.grad().sizes()); } TEST_F(ModulesTest, MSELoss) { MSELoss loss; auto input = torch::randn({5, 6}, torch::requires_grad()); auto target = torch::empty({5, 6}).random_(2); auto output = loss->forward(torch::sigmoid(input), target); auto s = output.sum(); s.backward(); ASSERT_EQ(output.sizes(), torch::IntArrayRef()); ASSERT_EQ(input.sizes(), input.grad().sizes()); } TEST_F(ModulesTest, BCELoss) { BCELoss loss; auto input = torch::randn({5, 6}, torch::requires_grad()); auto target = torch::empty({5, 6}).random_(2); auto output = loss->forward(torch::sigmoid(input), target); auto s = output.sum(); s.backward(); ASSERT_EQ(output.sizes(), torch::IntArrayRef()); ASSERT_EQ(input.sizes(), input.grad().sizes()); } TEST_F(ModulesTest, KLDivLoss) { KLDivLoss loss; auto input = torch::randn({5, 6}, torch::requires_grad()); auto target = torch::empty({5, 6}).random_(2); auto output = loss->forward(torch::sigmoid(input), target); auto s = output.sum(); s.backward(); ASSERT_EQ(output.sizes(), torch::IntArrayRef()); ASSERT_EQ(input.sizes(), input.grad().sizes()); } TEST_F(ModulesTest, HingeEmbeddingLoss) { HingeEmbeddingLoss loss(HingeEmbeddingLossOptions().margin(2)); auto input = torch::tensor( {{2, 22, 4}, {20, 10, 0}}, torch::dtype(torch::kFloat).requires_grad(true)); auto target = torch::tensor({{2, 6, 4}, {1, 10, 0}}, torch::kFloat); auto output = loss->forward(input, target); auto expected = torch::tensor({10}, torch::kFloat); auto s = output.sum(); s.backward(); ASSERT_TRUE(output.allclose(expected)); ASSERT_EQ(input.sizes(), input.grad().sizes()); } TEST_F(ModulesTest, MultiMarginLoss) { auto weight = torch::tensor({0.3, 0.3, 0.4}, torch::kFloat); MultiMarginLoss loss(MultiMarginLossOptions().margin(2).weight(weight)); auto input = torch::tensor( {{0.2, 0.2, 0.6}, {0.1, 0.8, 0.1}, {0.9, 0.09, 0.01}}, torch::dtype(torch::kFloat).requires_grad(true)); auto target = torch::tensor({2, 1, 0}, torch::kLong); auto output = loss->forward(input, target); auto expected = torch::tensor({0.305556}, torch::kFloat); auto s = output.sum(); s.backward(); ASSERT_TRUE(output.allclose(expected, 1e-04)); ASSERT_EQ(input.sizes(), input.grad().sizes()); } TEST_F(ModulesTest, CosineEmbeddingLoss) { CosineEmbeddingLoss cos(CosineEmbeddingLossOptions().margin(0.5)); auto input1 = torch::tensor( {{2, 3, 4}, {6, 2, 4}}, torch::dtype(torch::kFloat).requires_grad(true)); auto input2 = torch::tensor( {{2, 3, 5}, {9, 12, 0}}, torch::dtype(torch::kFloat).requires_grad(true)); auto target = torch::tensor({1, -1}); auto output = cos(input1, input2, target); auto expected = torch::tensor({0.1004}, torch::kFloat); auto s = output.sum(); s.backward(); ASSERT_TRUE(output.allclose(expected, 1e-4)); ASSERT_EQ(input1.sizes(), input1.grad().sizes()); ASSERT_EQ(input2.sizes(), input2.grad().sizes()); } TEST_F(ModulesTest, SmoothL1LossDefaultOptions) { SmoothL1Loss loss; auto input = torch::tensor( {0.1, 1.2, 4.7}, torch::dtype(torch::kFloat).requires_grad(true)); auto target = torch::tensor({0., 1., 5.}, torch::kFloat); auto output = loss(input, target); auto expected = torch::tensor(0.0233335, torch::kFloat); auto s = output.sum(); s.backward(); ASSERT_TRUE(output.allclose(expected)); ASSERT_EQ(input.sizes(), input.grad().sizes()); } TEST_F(ModulesTest, HuberLossDefaultOptions) { HuberLoss loss; auto input = torch::tensor( {0.1, 1.2, 4.7}, torch::dtype(torch::kFloat).requires_grad(true)); auto target = torch::tensor({0., 1., 5.}, torch::kFloat); auto output = loss(input, target); auto expected = torch::tensor(0.0233335, torch::kFloat); auto s = output.sum(); s.backward(); ASSERT_TRUE(output.allclose(expected)); ASSERT_EQ(input.sizes(), input.grad().sizes()); } TEST_F(ModulesTest, MultiLabelMarginLossDefaultOptions) { MultiLabelMarginLoss loss; auto input = torch::tensor( {{0.1, 0.2, 0.4, 0.8}}, torch::dtype(torch::kFloat).requires_grad(true)); auto target = torch::tensor({{3, 0, -1, 1}}, torch::kLong); auto output = loss->forward(input, target); auto expected = torch::tensor({0.8500}, torch::kFloat); auto s = output.sum(); s.backward(); ASSERT_TRUE(output.allclose(expected)); ASSERT_EQ(input.sizes(), input.grad().sizes()); } TEST_F(ModulesTest, SmoothL1LossNoReduction) { SmoothL1Loss loss(/*reduction=*/torch::kNone); auto input = torch::tensor( {0.1, 1.2, 4.7}, torch::dtype(torch::kFloat).requires_grad(true)); auto target = torch::tensor({0., 1., 5.}, torch::kFloat); auto output = loss(input, target); auto expected = torch::tensor({0.005, 0.02, 0.045}, torch::kFloat); auto s = output.sum(); s.backward(); ASSERT_TRUE(output.allclose(expected)); ASSERT_EQ(input.sizes(), input.grad().sizes()); } TEST_F(ModulesTest, HuberLossNoReduction) { HuberLoss loss(/*reduction=*/torch::kNone); auto input = torch::tensor( {0.1, 1.2, 4.7}, torch::dtype(torch::kFloat).requires_grad(true)); auto target = torch::tensor({0., 1., 5.}, torch::kFloat); auto output = loss(input, target); auto expected = torch::tensor({0.005, 0.02, 0.045}, torch::kFloat); auto s = output.sum(); s.backward(); ASSERT_TRUE(output.allclose(expected)); ASSERT_EQ(input.sizes(), input.grad().sizes()); } TEST_F(ModulesTest, MultiLabelMarginLossNoReduction) { MultiLabelMarginLoss loss(torch::kNone); auto input = torch::tensor( {{0.1, 0.2, 0.4, 0.8}}, torch::dtype(torch::kFloat).requires_grad(true)); auto target = torch::tensor({{3, 0, -1, 1}}, torch::kLong); auto output = loss->forward(input, target); auto expected = torch::tensor({0.8500}, torch::kFloat); auto s = output.sum(); s.backward(); ASSERT_TRUE(output.allclose(expected)); ASSERT_EQ(input.sizes(), input.grad().sizes()); } TEST_F(ModulesTest, SmoothL1LossBeta) { auto options = SmoothL1LossOptions().beta(0.2); SmoothL1Loss loss(options); auto input = torch::tensor( {0.1, 1.2, 4.7}, torch::dtype(torch::kFloat).requires_grad(true)); auto target = torch::tensor({0., 1., 5.}, torch::kFloat); auto output = loss(input, target); auto expected = torch::tensor(0.108333, torch::kFloat); auto s = output.sum(); s.backward(); ASSERT_TRUE(output.allclose(expected)); ASSERT_EQ(input.sizes(), input.grad().sizes()); } TEST_F(ModulesTest, HuberLossDelta) { auto options = HuberLossOptions().delta(0.2); HuberLoss loss(options); auto input = torch::tensor( {0.1, 1.2, 4.7}, torch::dtype(torch::kFloat).requires_grad(true)); auto target = torch::tensor({0., 1., 5.}, torch::kFloat); auto output = loss(input, target); auto expected = torch::tensor(0.0216666, torch::kFloat); auto s = output.sum(); s.backward(); ASSERT_TRUE(output.allclose(expected)); ASSERT_EQ(input.sizes(), input.grad().sizes()); } TEST_F(ModulesTest, TripletMarginLoss) { TripletMarginLoss loss(TripletMarginLossOptions().margin(1.0)); auto anchor = torch::tensor( {{3., 3.}}, torch::dtype(torch::kFloat).requires_grad(true)); auto positive = torch::tensor( {{2., 2.}}, torch::dtype(torch::kFloat).requires_grad(true)); auto negative = torch::tensor( {{0., 0.}}, torch::dtype(torch::kFloat).requires_grad(true)); auto output = loss->forward(anchor, positive, negative); auto expected = torch::tensor({0.}, torch::kFloat); auto s = output.sum(); s.backward(); ASSERT_TRUE(output.allclose(expected, 1e-04)); ASSERT_EQ(anchor.sizes(), anchor.grad().sizes()); } TEST_F(ModulesTest, TripletMarginWithDistanceLossDefaultParity) { // Check that if we use torch::pairwise_distance with the default // TripletMarginLoss options as our distance function, the outputs // are equal (i.e., equal under defaults). std::vector reductions = { torch::kSum, torch::kMean, torch::kNone}; std::vector margins = {0.5, 1.0, 1.5}; std::vector swaps = {true, false}; for (auto& reduction : reductions) { for (auto& margin : margins) { for (const auto swap : swaps) { auto anchor = torch::randn( {100, 128}, torch::dtype(torch::kFloat).requires_grad(true)); auto positive = torch::randn( {100, 128}, torch::dtype(torch::kFloat).requires_grad(true)); auto negative = torch::randn( {100, 128}, torch::dtype(torch::kFloat).requires_grad(true)); auto basicOptions = TripletMarginLossOptions().reduction(reduction).margin(margin).swap( swap); auto distanceOptions = TripletMarginWithDistanceLossOptions() .reduction(reduction) .margin(margin) .swap(swap); TripletMarginLoss basicLoss(basicOptions); TripletMarginWithDistanceLoss distanceLoss(distanceOptions); auto basicOutput = basicLoss->forward(anchor, positive, negative); auto distanceOutput = distanceLoss->forward(anchor, positive, negative); auto basicOperatorOutput = basicLoss(anchor, positive, negative); auto distanceOperatorOutput = distanceLoss(anchor, positive, negative); ASSERT_TRUE(distanceOutput.allclose(basicOutput, 1e-6, 1e-6)); ASSERT_TRUE( distanceOperatorOutput.allclose(distanceOutput, 1e-6, 1e-6)); ASSERT_TRUE( distanceOperatorOutput.allclose(basicOperatorOutput, 1e-6, 1e-6)); // handle for torch::kNone reduction auto sum = distanceOutput.sum(); sum.backward(); ASSERT_EQ(anchor.sizes(), anchor.grad().sizes()); ASSERT_EQ(positive.sizes(), positive.grad().sizes()); ASSERT_EQ(negative.sizes(), negative.grad().sizes()); } } } } TEST_F(ModulesTest, TripletMarginWithDistanceLossFunctionalParity) { // Check for parity between F::triplet_margin_with_distance_loss and // TripletMarginWithDistanceLoss. auto pairwise_distance = [&](const torch::Tensor& x, const torch::Tensor& y) { return torch::pairwise_distance(x, y); }; auto cosine_distance = [&](const torch::Tensor& x, const torch::Tensor& y) { return 1.0 - torch::cosine_similarity(x, y); }; std::vector distance_functions = {pairwise_distance, cosine_distance}; std::vector reductions = { torch::kSum, torch::kMean, torch::kNone}; std::vector margins = {0.5, 1.0, 1.5}; std::vector swaps = {true, false}; for (auto& function : distance_functions) { for (auto& reduction : reductions) { for (auto& margin : margins) { for (const auto swap : swaps) { auto moduleOptions = TripletMarginWithDistanceLossOptions() .distance_function(function) .reduction(reduction) .margin(margin) .swap(swap); auto functionOptions = torch::nn::functional::TripletMarginWithDistanceLossFuncOptions() .distance_function(function) .reduction(reduction) .margin(margin) .swap(swap); auto anchor = torch::randn( {100, 128}, torch::dtype(torch::kFloat).requires_grad(true)); auto positive = torch::randn( {100, 128}, torch::dtype(torch::kFloat).requires_grad(true)); auto negative = torch::randn( {100, 128}, torch::dtype(torch::kFloat).requires_grad(true)); TripletMarginWithDistanceLoss distanceLoss(moduleOptions); auto moduleOutput = distanceLoss->forward(anchor, positive, negative); auto moduleOperatorOutput = distanceLoss(anchor, positive, negative); auto functionOutput = torch::nn::functional::triplet_margin_with_distance_loss( anchor, positive, negative, functionOptions); ASSERT_TRUE(moduleOutput.allclose(functionOutput, 1e-6, 1e-6)); ASSERT_TRUE( moduleOperatorOutput.allclose(functionOutput, 1e-6, 1e-6)); } } } } } TEST_F(ModulesTest, NLLLoss) { NLLLoss loss; auto input = torch::tensor( {{-0.1315, -3.1315, -2.5315}, {-3.7038, -0.1038, -2.6038}, {-2.3422, -1.3422, -0.4422}}, torch::dtype(torch::kFloat).requires_grad(true)); auto target = torch::tensor({1, 0, 2}, torch::kLong); auto output = loss->forward(input, target); auto expected = torch::tensor(2.4258, torch::kFloat); auto s = output.sum(); s.backward(); ASSERT_TRUE(output.allclose(expected, 1e-04)); ASSERT_TRUE( NLLLoss(NLLLossOptions().ignore_index(-100).reduction(torch::kMean)) ->forward(input, target) .allclose(expected, 1e-04)); } TEST_F(ModulesTest, CrossEntropyLoss) { CrossEntropyLoss loss; auto input = torch::tensor( {{3., 3.}, {2., 2.}}, torch::dtype(torch::kFloat).requires_grad(true)); auto target = torch::tensor({0, 1}, torch::kLong); auto output = loss->forward(input, target); auto expected = torch::tensor(0.6931, torch::kFloat); auto s = output.sum(); s.backward(); ASSERT_TRUE(output.allclose(expected, 1e-04)); ASSERT_EQ(input.sizes(), input.grad().sizes()); ASSERT_TRUE( CrossEntropyLoss( CrossEntropyLossOptions().ignore_index(-100).reduction(torch::kMean)) ->forward(input, target) .allclose(expected, 1e-04)); // label smoothing with class indices loss = CrossEntropyLoss( CrossEntropyLossOptions().label_smoothing(0.15).reduction(torch::kMean)); input = torch::tensor( {{3., 1.}, {1., 2.}}, torch::dtype(torch::kFloat).requires_grad(true)); target = torch::tensor({0, 1}, torch::kLong); output = loss->forward(input, target); expected = torch::tensor(0.3326, torch::kFloat); s = output.sum(); s.backward(); ASSERT_TRUE(output.allclose(expected, 1e-04)); ASSERT_EQ(input.sizes(), input.grad().sizes()); // label smoothing with with target probabilities loss = CrossEntropyLoss( CrossEntropyLossOptions().label_smoothing(0.2).reduction(torch::kMean)); input = torch::tensor( {{3., 1.}, {1., 2.}}, torch::dtype(torch::kFloat).requires_grad(true)); target = torch::tensor({{0.8, 0.2}, {0.1, 0.9}}, torch::kFloat); output = loss->forward(input, target); expected = torch::tensor(0.5701, torch::kFloat); s = output.sum(); s.backward(); ASSERT_TRUE(output.allclose(expected, 1e-04)); ASSERT_EQ(input.sizes(), input.grad().sizes()); } TEST_F(ModulesTest, CosineSimilarity) { CosineSimilarity cos(CosineSimilarityOptions().dim(1)); auto input1 = torch::tensor( {{1, 2, 3}, {4, 5, 6}}, torch::dtype(torch::kFloat).requires_grad(true)); auto input2 = torch::tensor( {{1, 8, 3}, {2, 1, 6}}, torch::dtype(torch::kFloat).requires_grad(true)); auto output = cos->forward(input1, input2); auto expected = torch::tensor({0.8078, 0.8721}, torch::kFloat); auto s = output.sum(); s.backward(); ASSERT_TRUE(output.allclose(expected, 1e-04)); ASSERT_EQ(input1.sizes(), input1.grad().sizes()); } TEST_F(ModulesTest, SoftMarginLossDefaultOptions) { SoftMarginLoss loss; auto input = torch::tensor( {2., 4., 1., 3.}, torch::dtype(torch::kFloat).requires_grad(true)); auto target = torch::tensor({-1., 1., 1., -1.}, torch::kFloat); auto output = loss->forward(input, target); auto expected = torch::tensor({1.3767317}, torch::kFloat); auto s = output.sum(); s.backward(); ASSERT_TRUE(output.allclose(expected)); ASSERT_EQ(input.sizes(), input.grad().sizes()); } TEST_F(ModulesTest, MultiLabelSoftMarginLossDefaultOptions) { MultiLabelSoftMarginLoss loss; auto input = torch::tensor( {{0., 2., 2., 0.}, {2., 1., 0., 1.}}, torch::dtype(torch::kFloat).requires_grad(true)); auto target = torch::tensor({{0., 0., 1., 0.}, {1., 0., 1., 1.}}, torch::kFloat); auto output = loss->forward(input, target); auto expected = torch::tensor({0.7608436}, torch::kFloat); auto s = output.sum(); s.backward(); ASSERT_TRUE(output.allclose(expected)); ASSERT_EQ(input.sizes(), input.grad().sizes()); } TEST_F(ModulesTest, SoftMarginLossNoReduction) { SoftMarginLoss loss(torch::kNone); auto input = torch::tensor( {2., 4., 1., 3.}, torch::dtype(torch::kFloat).requires_grad(true)); auto target = torch::tensor({-1., 1., 1., -1.}, torch::kFloat); auto output = loss->forward(input, target); auto expected = torch::tensor( {2.1269281, 0.01814993, 0.3132617, 3.0485873}, torch::kFloat); auto s = output.sum(); s.backward(); ASSERT_TRUE(output.allclose(expected)); ASSERT_EQ(input.sizes(), input.grad().sizes()); } TEST_F(ModulesTest, MultiLabelSoftMarginLossWeightedNoReduction) { auto input = torch::tensor( {{0., 2., 2., 0.}, {2., 1., 0., 1.}}, torch::dtype(torch::kFloat).requires_grad(true)); auto target = torch::tensor({{0., 0., 1., 0.}, {1., 0., 1., 1.}}, torch::kFloat); auto weight = torch::tensor({0.1, 0.6, 0.4, 0.8}, torch::kFloat); auto options = MultiLabelSoftMarginLossOptions().reduction(torch::kNone).weight(weight); MultiLabelSoftMarginLoss loss = MultiLabelSoftMarginLoss(options); auto output = loss->forward(input, target); auto expected = torch::tensor({0.4876902, 0.3321295}, torch::kFloat); auto s = output.sum(); s.backward(); ASSERT_TRUE(output.allclose(expected)); ASSERT_EQ(input.sizes(), input.grad().sizes()); } TEST_F(ModulesTest, PairwiseDistance) { PairwiseDistance dist(PairwiseDistanceOptions().p(1)); auto input1 = torch::tensor( {{1, 2, 3}, {4, 5, 6}}, torch::dtype(torch::kFloat).requires_grad(true)); auto input2 = torch::tensor( {{1, 8, 3}, {2, 1, 6}}, torch::dtype(torch::kFloat).requires_grad(true)); auto output = dist->forward(input1, input2); auto expected = torch::tensor({6, 6}, torch::kFloat); auto s = output.sum(); s.backward(); ASSERT_TRUE(output.allclose(expected)); ASSERT_EQ(input1.sizes(), input1.grad().sizes()); } TEST_F(ModulesTest, ELU) { const auto size = 3; for (const auto alpha : {0.0, 0.42, 1.0, 4.2, 42.42}) { for (const auto inplace : {false, true}) { ELU model{ELUOptions().alpha(alpha).inplace(inplace)}; auto x = torch::linspace(-10.0, 10.0, size * size * size); x.resize_({size, size, size}); if (!inplace) { x.requires_grad_(true); } auto x_orig = x.clone(); auto y = model(x); torch::Tensor s = y.sum(); ASSERT_EQ(s.ndimension(), 0); ASSERT_EQ(y.ndimension(), 3); ASSERT_EQ(y.sizes(), std::vector({size, size, size})); auto y_exp = torch::max(torch::zeros_like(x_orig), x_orig) + torch::min(torch::zeros_like(x_orig), alpha * (torch::exp(x_orig) - 1.0)); ASSERT_TRUE(torch::allclose(y, y_exp)); if (inplace) { ASSERT_TRUE(torch::allclose(x, y_exp)); } else { s.backward(); } } } } TEST_F(ModulesTest, SELU) { for (const auto inplace : {false, true}) { SELU model(inplace); auto input = torch::randn({5, 5}); if (!inplace) { input.requires_grad_(true); } auto input_orig = input.clone(); auto output = model->forward(input); const double scale = 1.0507009873554804934193349852946; const double alpha = 1.6732632423543772848170429916717; auto zero = torch::zeros_like(input); auto expected = scale * (torch::max(zero, input_orig) + torch::min(zero, alpha * (torch::exp(input_orig) - 1))); auto s = output.sum(); ASSERT_EQ(s.ndimension(), 0); ASSERT_TRUE(output.allclose(expected)); if (inplace) { ASSERT_TRUE(input.allclose(expected)); } else { s.backward(); } } } TEST_F(ModulesTest, Hardshrink) { const auto size = 3; for (const auto lambda : {-4.2, -1.0, -0.42, 0.0, 0.42, 1.0, 4.2, 42.42}) { Hardshrink model{HardshrinkOptions().lambda(lambda)}; auto x = torch::linspace(-10.0, 10.0, size * size * size); x.resize_({size, size, size}).set_requires_grad(true); auto y = model(x); torch::Tensor s = y.sum(); s.backward(); ASSERT_EQ(s.ndimension(), 0); ASSERT_EQ(y.ndimension(), 3); ASSERT_EQ(y.sizes(), std::vector({size, size, size})); auto y_exp = (x.abs() > lambda) * x; ASSERT_TRUE(torch::allclose(y, y_exp)); } } TEST_F(ModulesTest, Hardtanh) { const auto size = 3; for (const auto min_val : {-4.2, -1.0, -0.42, 0.0}) { for (const auto max_val : {0.42, 1.0, 4.2}) { for (const auto inplace : {false, true}) { Hardtanh model{ HardtanhOptions().min_val(min_val).max_val(max_val).inplace( inplace)}; auto x = torch::linspace(-10.0, 10.0, size * size * size); x.resize_({size, size, size}); if (!inplace) { x.requires_grad_(true); } auto x_orig = x.clone(); auto y = model(x); torch::Tensor s = y.sum(); ASSERT_EQ(s.ndimension(), 0); ASSERT_EQ(y.ndimension(), 3); ASSERT_EQ(y.sizes(), std::vector({size, size, size})); auto y_exp = (x_orig < min_val) * min_val + ((x_orig >= min_val) * (x_orig <= max_val)) * x_orig + (x_orig > max_val) * max_val; ASSERT_TRUE(torch::allclose(y, y_exp)); if (inplace) { ASSERT_TRUE(torch::allclose(x, y_exp)); } else { s.backward(); } } } } } TEST_F(ModulesTest, HardtanhMinValGEMaxVal) { ASSERT_THROWS_WITH( Hardtanh{HardtanhOptions().min_val(0.42).max_val(0.42)}, "max_val must be greater than min_val"); ASSERT_THROWS_WITH( Hardtanh{HardtanhOptions().min_val(0.42).max_val(-0.42)}, "max_val must be greater than min_val"); Hardtanh ht{HardtanhOptions().min_val(-0.42).max_val(0.42)}; ht->options.min_val(0.42); ASSERT_THROWS_WITH(ht->reset(), "max_val must be greater than min_val"); ht->options.max_val(-0.42); ASSERT_THROWS_WITH(ht->reset(), "max_val must be greater than min_val"); } TEST_F(ModulesTest, LeakyReLU) { const auto size = 3; for (const auto inplace : {false, true}) { for (const auto negative_slope : {0.0, 0.42, 1.0}) { for (const auto type : {torch::kFloat, torch::kBFloat16}) { LeakyReLU model{ LeakyReLUOptions().negative_slope(negative_slope).inplace(inplace)}; auto x = torch::linspace(-10.0, 10.0, size * size * size).to(type); x.resize_({size, size, size}); if (!inplace) { x.requires_grad_(true); } auto x_orig = x.clone(); auto y = model(x); torch::Tensor s = y.sum(); ASSERT_EQ(s.ndimension(), 0); ASSERT_EQ(y.ndimension(), 3); ASSERT_EQ(y.sizes(), std::vector({size, size, size})); auto y_exp = (x_orig < 0) * x_orig * negative_slope + (x_orig >= 0) * x_orig; ASSERT_TRUE(torch::allclose(y, y_exp)); if (inplace) { ASSERT_TRUE(torch::allclose(x, y_exp)); } else { s.backward(); } } } } } TEST_F(ModulesTest, LogSigmoid) { const auto size = 3; LogSigmoid model; auto x = torch::linspace(-10.0, 10.0, size * size * size); x.resize_({size, size, size}).set_requires_grad(true); auto y = model(x); torch::Tensor s = y.sum(); s.backward(); ASSERT_EQ(s.ndimension(), 0); ASSERT_EQ(y.ndimension(), 3); ASSERT_EQ(y.sizes(), std::vector({size, size, size})); auto y_exp = torch::log( torch::ones_like(x) / (torch::ones_like(x) + torch::exp(torch::neg(x)))); ASSERT_TRUE(torch::allclose(y, y_exp, 1e-4, 1e-7)); } TEST_F(ModulesTest, Softmax) { Softmax m(/*dim=*/1); auto input = torch::arange(10, torch::kFloat).reshape({2, 5}); auto output = m(input); auto sum = torch::sum(torch::exp(input), 1); for (const auto i : c10::irange(2)) { auto expected = torch::exp(input[i]) / sum[i]; ASSERT_TRUE(torch::allclose(output[i], expected)); } } TEST_F(ModulesTest, Softmin) { Softmin m(/*dim=*/1); auto input = torch::arange(10, torch::kFloat).reshape({2, 5}); auto output = m(input); auto sum = torch::sum(torch::exp(-input), 1); for (const auto i : c10::irange(2)) { auto expected = torch::exp(-input[i]) / sum[i]; ASSERT_TRUE(torch::allclose(output[i], expected)); } } TEST_F(ModulesTest, LogSoftmax) { LogSoftmax m(/*dim=*/1); auto input = torch::arange(10, torch::kFloat).reshape({2, 5}); auto output = m(input); auto sum = torch::sum(torch::exp(input), 1); for (const auto i : c10::irange(2)) { auto expected = torch::log(torch::exp(input[i]) / sum[i]); ASSERT_TRUE(torch::allclose(output[i], expected)); } } TEST_F(ModulesTest, AdaptiveLogSoftmaxWithLoss) { { // log_probs actually returns log_proba AdaptiveLogSoftmaxWithLoss asfm( AdaptiveLogSoftmaxWithLossOptions(8, 4, {2}).div_value(2.)); auto x = torch::randn({4, 8}); auto logprob_out = asfm->log_prob(x); ASSERT_TRUE( torch::allclose(torch::exp(logprob_out).data().sum(1), torch::ones(4))); } { // test predict AdaptiveLogSoftmaxWithLoss asfm( AdaptiveLogSoftmaxWithLossOptions(8, 10, {4, 8}) .div_value(2.) .head_bias(true)); auto x = torch::randn({64, 8}); auto logprob_out = asfm->log_prob(x); auto predict_out = asfm->predict(x); ASSERT_TRUE(torch::allclose(predict_out, logprob_out.argmax(1))); } { // cluster sizes AdaptiveLogSoftmaxWithLoss asfm( AdaptiveLogSoftmaxWithLossOptions(16, 20, {4, 10, 15}).div_value(2.)); auto x = torch::arange(100, 132, torch::kFloat).reshape({2, 16}); auto y = torch::tensor({0, 17}, torch::kLong); auto asm_out = asfm(x, y); ASSERT_EQ(asm_out.output.sizes(), std::vector({2})); } { // forward returns the same thing as log_probs AdaptiveLogSoftmaxWithLoss asfm( AdaptiveLogSoftmaxWithLossOptions(8, 4, {2}).div_value(2.)); auto x = torch::randn({4, 8}); auto logprob_out = asfm->log_prob(x); NLLLoss nll_loss; for (const auto v : c10::irange(4)) { auto y = torch::full({4}, v, torch::kLong); auto asm_out = asfm(x, y); auto out = asm_out.output; auto loss = torch::tensor(asm_out.loss, torch::kFloat); auto expected = nll_loss->forward(logprob_out, y); ASSERT_TRUE(torch::allclose(loss, expected)); ASSERT_TRUE(torch::allclose( out, logprob_out.gather(1, y.unsqueeze(1)).squeeze())); } } { // test no batch dim AdaptiveLogSoftmaxWithLoss asfm( AdaptiveLogSoftmaxWithLossOptions(16, 20, {4, 10, 15}).div_value(2.)); auto x = torch::randn({1, 16}); auto y = torch::tensor({17}); auto x2 = x.squeeze(0); auto y2 = y.squeeze(0); ASSERT_TRUE( torch::allclose(asfm(x, y).output.squeeze(0), asfm(x2, y2).output)); } { // test div_value auto options = AdaptiveLogSoftmaxWithLossOptions(16, 20, {4, 10, 15}).div_value(0.); ASSERT_THROWS_WITH( AdaptiveLogSoftmaxWithLoss(options), "div_value should not be equal to 0"); options = AdaptiveLogSoftmaxWithLossOptions(16, 20, {4, 10, 15}).div_value(0.25); ASSERT_TRUE(AdaptiveLogSoftmaxWithLoss(options)); } } TEST_F(ModulesTest, Softmax2d) { Softmax2d m; auto input = torch::arange(24, torch::kFloat).reshape({1, 2, 3, 4}); auto output = m(input); auto sum = torch::sum(torch::exp(input), 1); for (const auto i : c10::irange(1)) { for (const auto j : c10::irange(2)) { for (const auto k : c10::irange(3)) { for (const auto l : c10::irange(4)) { auto expected = torch::exp(input[i][j][k][l]) / sum[i][k][l]; ASSERT_TRUE(torch::allclose(output[i][j][k][l], expected)); } } } } } TEST_F(ModulesTest, PReLU) { const auto num_parameters = 42; const auto init = 0.42; PReLU model{PReLUOptions().num_parameters(num_parameters).init(init)}; ASSERT_EQ(model->weight.sizes(), std::vector({num_parameters})); ASSERT_TRUE( torch::allclose(model->weight, torch::full(num_parameters, init))); const auto x = torch::rand({100, num_parameters}) * 200 - 100; const auto y = model(x); const auto s = y.sum(); s.backward(); ASSERT_EQ(s.ndimension(), 0); ASSERT_EQ(y.ndimension(), x.ndimension()); ASSERT_EQ(y.sizes(), x.sizes()); const auto y_exp = (x < 0) * model->weight * x + (x >= 0) * x; ASSERT_TRUE(torch::allclose(y, y_exp)); } TEST_F(ModulesTest, ReLU) { for (const auto inplace : {false, true}) { const auto size = 3; ReLU model(inplace); auto x = torch::linspace(-10.0, 10.0, size * size * size); x.resize_({size, size, size}); if (!inplace) { x.requires_grad_(true); } auto x_orig = x.clone(); auto y = model(x); torch::Tensor s = y.sum(); ASSERT_EQ(s.ndimension(), 0); ASSERT_EQ(y.ndimension(), 3); ASSERT_EQ(y.sizes(), std::vector({size, size, size})); auto y_exp = (x_orig < 0) * 0 + (x_orig >= 0) * x_orig; ASSERT_TRUE(torch::allclose(y, y_exp)); if (inplace) { ASSERT_TRUE(torch::allclose(x, y_exp)); } else { s.backward(); } } } TEST_F(ModulesTest, ReLU6) { for (const auto inplace : {false, true}) { const auto size = 3; ReLU6 model(inplace); auto x = torch::linspace(-10.0, 10.0, size * size * size); x.resize_({size, size, size}); if (!inplace) { x.requires_grad_(true); } auto x_orig = x.clone(); auto y = model(x); torch::Tensor s = y.sum(); ASSERT_EQ(s.ndimension(), 0); ASSERT_EQ(y.ndimension(), 3); ASSERT_EQ(y.sizes(), std::vector({size, size, size})); auto y_exp = (x_orig < 0) * 0 + ((x_orig >= 0) * (x_orig <= 6)) * x_orig + (x_orig > 6) * 6; ASSERT_TRUE(torch::allclose(y, y_exp)); if (inplace) { ASSERT_TRUE(torch::allclose(x, y_exp)); } else { s.backward(); } } } TEST_F(ModulesTest, RReLU) { const auto size = 3; for (const auto lower : {0.01, 0.1, 0.2}) { for (const auto upper : {0.3, 0.4, 0.5}) { for (const auto inplace : {false, true}) { for (const auto type : {torch::kFloat, torch::kBFloat16}) { RReLU model{ RReLUOptions().lower(lower).upper(upper).inplace(inplace)}; auto x = torch::linspace(-10.0, 10.0, size * size * size).to(type); x.resize_({size, size, size}); if (!inplace) { x.requires_grad_(true); } auto x_orig = x.clone(); auto y = model(x); torch::Tensor s = y.sum(); ASSERT_EQ(s.ndimension(), 0); ASSERT_EQ(y.ndimension(), 3); ASSERT_EQ(y.sizes(), std::vector({size, size, size})); auto z = ((x_orig >= 0) * (x_orig == y) + (x_orig < 0) * (y >= x_orig * upper) * (y <= lower * x_orig)) * 1.0; ASSERT_TRUE(torch::allclose(z, torch::ones_like(z))); if (inplace) { ASSERT_TRUE(torch::allclose(x, y)); } else { s.backward(); } } } } } } TEST_F(ModulesTest, CELU) { const auto size = 3; for (const auto inplace : {false, true}) { for (const auto alpha : {0.42, 1.0, 4.2, 42.42}) { CELU model{CELUOptions().alpha(alpha).inplace(inplace)}; auto x = torch::linspace(-10.0, 10.0, size * size * size); x.resize_({size, size, size}); if (!inplace) { x.requires_grad_(true); } auto x_orig = x.clone(); auto y = model(x); torch::Tensor s = y.sum(); ASSERT_EQ(s.ndimension(), 0); ASSERT_EQ(y.ndimension(), 3); ASSERT_EQ(y.sizes(), std::vector({size, size, size})); auto y_exp = torch::max(torch::zeros_like(x_orig), x_orig) + torch::min(torch::zeros_like(x_orig), alpha * (torch::exp(x_orig / alpha) - 1.0)); ASSERT_TRUE(torch::allclose(y, y_exp)); if (inplace) { ASSERT_TRUE(torch::allclose(x, y_exp)); } else { s.backward(); } } } } TEST_F(ModulesTest, GLU) { int64_t dim = 1; GLU model(dim); auto input = torch::randn({4, 2}, torch::requires_grad()); auto output = model->forward(input); auto input_size = input.sizes()[dim] / 2; auto first_half = input.narrow(dim, 0, input_size); auto second_half = input.narrow(dim, input_size, input_size); auto expected = first_half * torch::sigmoid(second_half); auto s = output.sum(); s.backward(); ASSERT_EQ(s.ndimension(), 0); ASSERT_TRUE(output.allclose(expected)); GLU model_default_options; ASSERT_TRUE(model_default_options->forward(input).allclose(expected)); } TEST_F(ModulesTest, GELU) { GELU model(GELUOptions().approximate("none")); const auto x = torch::linspace(-3.0, 3.0, 100); const auto y_exp = x * 0.5 * (1.0 + torch::erf(x / std::sqrt(2.0))); const auto y = model(x); ASSERT_TRUE(torch::allclose(y, y_exp, 1.4e-06, 1e-05)); } TEST_F(ModulesTest, TanhGELU) { GELU model(GELUOptions().approximate("tanh")); const auto x = torch::linspace(-3.0, 3.0, 100); const auto inner = std::sqrt(2 / M_PI) * (x + 0.044715 * x.pow(3.0)); const auto y_exp = 0.5 * x * (1.0 + inner.tanh()); const auto y = model(x); ASSERT_TRUE(torch::allclose(y, y_exp, 1.4e-06, 1e-05)); } // NOLINTNEXTLINE(cppcoreguidelines-avoid-non-const-global-variables) TEST_F(ModulesTest, Mish) { Mish model; auto x = torch::randn(100) * 10; auto y_exp = x * x.exp().log1p().tanh(); auto y = model(x); ASSERT_TRUE(torch::allclose(y, y_exp)); } TEST_F(ModulesTest, Sigmoid) { Sigmoid model; auto x = torch::randn(100) * 10; auto y_exp = 1 / (1 + torch::exp(-x)); auto y = model(x); ASSERT_TRUE(torch::allclose(y, y_exp)); } TEST_F(ModulesTest, PixelShuffle) { PixelShuffle module(/*upscale_factor=*/2); auto x = torch::tensor( {{{{-17, 19}, {-1, 2}}, {{7, 14}, {-3, 1}}, {{0, -2}, {-12, 14}}, {{-15, 0}, {-3, 9}}}}, torch::kFloat); auto y_exp = torch::tensor( {{{{-17, 7, 19, 14}, {0, -15, -2, 0}, {-1, -3, 2, 1}, {-12, -3, 14, 9}}}}, torch::kFloat); auto y = module(x); ASSERT_EQ(y.ndimension(), 4); ASSERT_EQ(y.sizes(), torch::IntArrayRef({1, 1, 4, 4})); ASSERT_TRUE(y.allclose(y_exp)); } TEST_F(ModulesTest, PixelUnshuffle) { PixelUnshuffle module(/*downscale_factor=*/2); auto x = torch::tensor( {{{{-17, 7, 19, 14}, {0, -15, -2, 0}, {-1, -3, 2, 1}, {-12, -3, 14, 9}}}}, torch::kFloat); auto y_exp = torch::tensor( {{{{-17, 19}, {-1, 2}}, {{7, 14}, {-3, 1}}, {{0, -2}, {-12, 14}}, {{-15, 0}, {-3, 9}}}}, torch::kFloat); auto y = module(x); ASSERT_EQ(y.ndimension(), 4); ASSERT_EQ(y.sizes(), torch::IntArrayRef({1, 4, 2, 2})); ASSERT_TRUE(y.allclose(y_exp)); } TEST_F(ModulesTest, Softplus) { const auto size = 3; for (const auto beta : {0.5, 1.0, 2.0}) { for (const auto threshold : {1.0, 3.0, 5.0}) { Softplus model{SoftplusOptions().beta(beta).threshold(threshold)}; auto x = torch::linspace(-3.0, 3.0, 61); x.resize_({size, size, size}); auto y_exp = (x <= threshold) * torch::log(1 + torch::exp(x * beta)) / beta + (x > threshold) * x; auto y = model(x); ASSERT_EQ(y.ndimension(), 3); ASSERT_EQ(y.sizes(), std::vector({size, size, size})); ASSERT_TRUE(torch::allclose(y, y_exp)); } } } TEST_F(ModulesTest, Softshrink) { const auto size = 3; for (const auto lambda : {0.0, 0.42, 1.0, 4.2, 42.42}) { Softshrink model{/*lambda=*/lambda}; auto x = torch::linspace(-10.0, 10.0, size * size * size); x.resize_({size, size, size}).set_requires_grad(true); auto y = model(x); torch::Tensor s = y.sum(); s.backward(); ASSERT_EQ(s.ndimension(), 0); ASSERT_EQ(y.ndimension(), 3); ASSERT_EQ(y.sizes(), std::vector({size, size, size})); auto y_exp = (x < -lambda) * (x + lambda) + (x > lambda) * (x - lambda); ASSERT_TRUE(torch::allclose(y, y_exp)); } } TEST_F(ModulesTest, Softsign) { Softsign model; auto x = torch::randn(100) * 10; auto y_exp = x / (1 + x.abs()); auto y = model(x); ASSERT_TRUE(torch::allclose(y, y_exp)); } TEST_F(ModulesTest, Tanh) { Tanh model; auto x = torch::randn(100) * 10; auto y_exp = (x.exp() - (-x).exp()) / (x.exp() + (-x).exp()); auto y = model(x); ASSERT_TRUE(torch::allclose(y, y_exp)); } TEST_F(ModulesTest, Tanhshrink) { Tanhshrink model; auto x = torch::randn(100) * 10; auto y_exp = x - x.tanh(); auto y = model(x); ASSERT_TRUE(torch::allclose(y, y_exp)); } TEST_F(ModulesTest, Threshold) { const auto size = 3; for (const auto threshold : {0.5, 1.0, 2.0}) { for (const auto value : {0.5, 1.0, 2.0}) { for (const auto inplace : {false, true}) { Threshold model{ThresholdOptions(threshold, value).inplace(inplace)}; auto x = torch::linspace(-3.0, 3.0, 61); x.resize_({size, size, size}); auto x_orig = x.clone(); auto y_exp = (x_orig <= threshold) * value + (x_orig > threshold) * x_orig; auto y = model(x); ASSERT_EQ(y.ndimension(), 3); ASSERT_EQ(y.sizes(), std::vector({size, size, size})); ASSERT_TRUE(torch::allclose(y, y_exp)); if (inplace) { ASSERT_TRUE(torch::allclose(x, y_exp)); } } } } } TEST_F(ModulesTest, Upsampling1D) { { Upsample model(UpsampleOptions() .size(std::vector({4})) .mode(torch::kNearest)); auto input = torch::ones({1, 1, 2}, torch::requires_grad()); auto output = model->forward(input); auto expected = torch::ones({1, 1, 4}); auto s = output.sum(); s.backward(); ASSERT_EQ(s.ndimension(), 0); ASSERT_TRUE(output.allclose(expected)); } { for (const auto align_corners : {true, false}) { // test float scale factor up & down sampling for (const auto scale_factor : {0.5, 1.5, 2.0}) { Upsample model(UpsampleOptions() .scale_factor(std::vector({scale_factor})) .mode(torch::kLinear) .align_corners(align_corners)); auto input = torch::ones({1, 1, 2}, torch::requires_grad()); auto output = model->forward(input); auto expected_size = static_cast(std::floor(input.size(-1) * scale_factor)); auto expected = torch::ones({1, 1, expected_size}); auto s = output.sum(); s.backward(); ASSERT_EQ(s.ndimension(), 0); ASSERT_TRUE(output.allclose(expected)); } } } { // linear (1D) upsampling spatial invariance Upsample model(UpsampleOptions() .scale_factor(std::vector({3})) .mode(torch::kLinear) .align_corners(false)); auto input = torch::zeros({1, 1, 9}); input.narrow(2, 0, 4).normal_(); auto output = model->forward(input); auto expected = model->forward(input.narrow(2, 0, 5)); ASSERT_TRUE(torch::allclose(output.narrow(2, 0, 15), expected)); } } TEST_F(ModulesTest, Upsampling2D) { { Upsample model(UpsampleOptions() .size(std::vector({4, 4})) .mode(torch::kNearest)); auto input = torch::ones({1, 1, 2, 2}, torch::requires_grad()); auto output = model->forward(input); auto expected = torch::ones({1, 1, 4, 4}); auto s = output.sum(); s.backward(); ASSERT_EQ(s.ndimension(), 0); ASSERT_TRUE(output.allclose(expected)); } { for (const auto align_corners : {true, false}) { // test float scale factor up & down sampling for (const auto scale_factor : {0.5, 1.5, 2.0}) { Upsample model( UpsampleOptions() .scale_factor(std::vector({scale_factor, scale_factor})) .mode(torch::kBilinear) .align_corners(align_corners)); auto input = torch::ones({1, 1, 2, 2}, torch::requires_grad()); auto output = model->forward(input); auto expected_size = static_cast(std::floor(input.size(-1) * scale_factor)); auto expected = torch::ones({1, 1, expected_size, expected_size}); auto s = output.sum(); s.backward(); ASSERT_EQ(s.ndimension(), 0); ASSERT_TRUE(output.allclose(expected)); } } } { for (const auto align_corners : {true, false}) { // test float scale factor up & down sampling for (const auto scale_factor : {0.5, 1.5, 2.0}) { Upsample model( UpsampleOptions() .scale_factor(std::vector({scale_factor, scale_factor})) .mode(torch::kBicubic) .align_corners(align_corners)); auto input = torch::ones({1, 1, 2, 2}, torch::requires_grad()); auto output = model->forward(input); auto expected_size = static_cast(std::floor(input.size(-1) * scale_factor)); auto expected = torch::ones({1, 1, expected_size, expected_size}); auto s = output.sum(); s.backward(); ASSERT_EQ(s.ndimension(), 0); ASSERT_TRUE(output.allclose(expected)); } } } } TEST_F(ModulesTest, Upsampling3D) { { Upsample model(UpsampleOptions() .size(std::vector({4, 4, 4})) .mode(torch::kNearest)); auto input = torch::ones({1, 1, 2, 2, 2}, torch::requires_grad()); auto output = model->forward(input); auto expected = torch::ones({1, 1, 4, 4, 4}); auto s = output.sum(); s.backward(); ASSERT_EQ(s.ndimension(), 0); ASSERT_TRUE(output.allclose(expected)); } { for (const auto align_corners : {true, false}) { // test float scale factor up & down sampling for (const auto scale_factor : {0.5, 1.5, 2.0}) { Upsample model(UpsampleOptions() .scale_factor(std::vector( {scale_factor, scale_factor, scale_factor})) .mode(torch::kTrilinear) .align_corners(align_corners)); auto input = torch::ones({1, 1, 2, 2, 2}, torch::requires_grad()); auto output = model->forward(input); auto expected_size = static_cast(std::floor(input.size(-1) * scale_factor)); auto expected = torch::ones({1, 1, expected_size, expected_size, expected_size}); auto s = output.sum(); s.backward(); ASSERT_EQ(s.ndimension(), 0); ASSERT_TRUE(output.allclose(expected)); } } } } TEST_F(ModulesTest, CTCLoss) { CTCLoss loss{CTCLossOptions().reduction(torch::kNone)}; const auto target_lengths = torch::tensor({0, 0, 0}); const auto input_lengths = torch::tensor({50, 50, 50}); const auto targets = torch::randint(1, 15, at::IntArrayRef({0}), torch::kLong); const auto log_probs = torch::randn({50, 3, 15}, torch::kDouble).log_softmax(2); const auto output = loss->forward(log_probs, targets, input_lengths, target_lengths); ASSERT_TRUE(output.ge(0).all().item()); ASSERT_TRUE(torch::allclose( -log_probs.sum(0).slice(1, 0, 1).view_as(output), output)); } TEST_F(ModulesTest, PoissonNLLLoss) { const auto input = torch::tensor({0.5, 1.5, 2.5}); const auto target = torch::tensor({1., 2., 3.}); const auto component_wise_loss = torch::exp(input) - target * input; { PoissonNLLLoss loss{PoissonNLLLossOptions().reduction(torch::kNone)}; ASSERT_TRUE( torch::allclose(component_wise_loss, loss->forward(input, target))); } { PoissonNLLLoss loss{PoissonNLLLossOptions().reduction(torch::kSum)}; ASSERT_TRUE(torch::allclose( torch::sum(component_wise_loss), loss->forward(input, target))); } { PoissonNLLLoss loss{PoissonNLLLossOptions().reduction(torch::kMean)}; ASSERT_TRUE(torch::allclose( torch::mean(component_wise_loss), loss->forward(input, target))); } } TEST_F(ModulesTest, MarginRankingLoss) { { MarginRankingLoss loss; const auto input1 = torch::randn(15) * 10; const auto input2 = torch::randn(15) * 10; const auto target = torch::randn(15).sign(); ASSERT_TRUE(torch::allclose( loss->forward(input1, input2, target), (-target * (input1 - input2)).clamp(0).mean())); } { MarginRankingLoss loss{ MarginRankingLossOptions().margin(0.5).reduction(torch::kSum)}; const auto input1 = torch::randn(15) * 10; const auto input2 = torch::randn(15) * 10; const auto target = torch::randn(15).sign(); const auto margin = 0.5; ASSERT_TRUE(torch::allclose( loss->forward(input1, input2, target), (-target * (input1 - input2) + margin).clamp(0).sum())); } { MarginRankingLoss loss{ MarginRankingLossOptions().margin(0.5).reduction(torch::kMean)}; const auto input1 = torch::randn(15) * 10; const auto input2 = torch::randn(15) * 10; const auto target = torch::randn(15).sign(); const auto margin = 0.5; ASSERT_TRUE(torch::allclose( loss->forward(input1, input2, target), (-target * (input1 - input2) + margin).clamp(0).mean())); } } TEST_F(ModulesTest, BCEWithLogitsLoss) { { // test BCE with logits raises if target and input are different size { const auto target = torch::rand(5); const auto input = torch::rand({5, 1}); ASSERT_THROWS_WITH( BCEWithLogitsLoss()(input, target), "must be the same as input size"); } { const auto target = torch::rand({5, 1}); const auto input = torch::rand(5); ASSERT_THROWS_WITH( BCEWithLogitsLoss()(input, target), "must be the same as input size"); } } { // test BCE with logits gives same result as sigmoid and bce loss auto sigmoid = Sigmoid(); auto target = torch::rand({64, 4}); auto output = torch::rand({64, 4}) - 0.5; ASSERT_TRUE(torch::allclose( BCEWithLogitsLoss()(output, target), BCELoss()(sigmoid(output), target))); auto weight = torch::rand(4); ASSERT_TRUE(torch::allclose( BCEWithLogitsLoss(BCEWithLogitsLossOptions().weight(weight))( output, target), BCELoss(BCELossOptions().weight(weight))(sigmoid(output), target))); target = torch::zeros({4, 1}, torch::kFloat); output = torch::empty({4, 1}, torch::kFloat).fill_(-100); ASSERT_TRUE(torch::allclose( BCEWithLogitsLoss()(output, target), BCELoss()(sigmoid(output), target))); ASSERT_TRUE(torch::allclose( BCEWithLogitsLoss(BCEWithLogitsLossOptions().reduction(torch::kNone))( output, target), BCELoss(BCELossOptions().reduction(torch::kNone))( sigmoid(output), target))); weight = torch::rand({1}, torch::kFloat); ASSERT_TRUE(torch::allclose( BCEWithLogitsLoss(BCEWithLogitsLossOptions().weight(weight))( output, target), BCELoss(BCELossOptions().weight(weight))(sigmoid(output), target))); } { // test BCE with logits has correct grad at zero const auto output = torch::zeros({3, 1}, torch::requires_grad()); const auto target = torch::zeros({3, 1}); BCEWithLogitsLoss(BCEWithLogitsLossOptions().reduction(torch::kSum))( output, target) .backward(); const auto expected_grad = torch::empty({3, 1}).fill_(0.5); ASSERT_TRUE(torch::allclose(output.grad(), expected_grad)); } { // test BCE with logits broadcasts weights const auto target = torch::rand({16, 4}); const auto output = torch::rand({16, 4}) - 0.5; auto weight = torch::rand(4); auto out1 = BCEWithLogitsLoss(BCEWithLogitsLossOptions().weight(weight))( output, target); weight = weight.expand({16, 4}).contiguous(); auto out2 = BCEWithLogitsLoss(BCEWithLogitsLossOptions().weight(weight))( output, target); ASSERT_TRUE(torch::allclose(out1, out2)); weight = torch::rand({16, 1}); out1 = BCEWithLogitsLoss(BCEWithLogitsLossOptions().weight(weight))( output, target); weight = weight.expand({16, 4}).contiguous(); out2 = BCEWithLogitsLoss(BCEWithLogitsLossOptions().weight(weight))( output, target); ASSERT_TRUE(torch::allclose(out1, out2)); } { // test BCE with logits ones in pos weights are the same as none const auto target = torch::rand({64, 4}); const auto output = torch::rand({64, 4}) - 0.5; const auto pos_weight = torch::ones({64, 4}); ASSERT_TRUE(torch::allclose( BCEWithLogitsLoss()(output, target), BCEWithLogitsLoss(BCEWithLogitsLossOptions().pos_weight(pos_weight))( output, target))); } { // test BCE with logits broadcasts pos weights const auto target = torch::rand({64, 4}); const auto output = torch::rand({64, 4}) - 0.5; const auto pos_weight = torch::rand(4); const auto out1 = BCEWithLogitsLoss( BCEWithLogitsLossOptions().pos_weight(pos_weight))(output, target); const auto pos_weight1 = pos_weight.expand({1, 4}); const auto out2 = BCEWithLogitsLoss( BCEWithLogitsLossOptions().pos_weight(pos_weight))(output, target); const auto pos_weight2 = pos_weight.expand({64, 4}); const auto out3 = BCEWithLogitsLoss( BCEWithLogitsLossOptions().pos_weight(pos_weight))(output, target); ASSERT_TRUE(torch::allclose(out1, out2)); ASSERT_TRUE(torch::allclose(out1, out3)); } { // test BCE with logits with pos weight has correct grad at zero const auto output = torch::zeros({3, 1}, torch::requires_grad()); const auto target = torch::zeros({3, 1}); const auto pos_weight = torch::ones({3, 1}); BCEWithLogitsLoss(BCEWithLogitsLossOptions() .pos_weight(pos_weight) .reduction(torch::kSum))(output, target) .backward(); const auto expected_grad = torch::empty({3, 1}).fill_(0.5); // NOLINTNEXTLINE(performance-unnecessary-copy-initialization) const auto grad = output.grad(); ASSERT_TRUE(torch::allclose(grad, expected_grad)); } { // test BCE with logits stability const auto output = torch::tensor({0., -120.}); const auto target = torch::tensor({0., 1.}); const auto pos_weight = torch::tensor({1., 1.}); const auto out1 = BCEWithLogitsLoss()(output, target); ASSERT_TRUE(torch::isfinite(out1).all().item()); const auto out2 = BCEWithLogitsLoss( BCEWithLogitsLossOptions().pos_weight(pos_weight))(output, target); ASSERT_TRUE(torch::isfinite(out2).all().item()); } } namespace detail { namespace F = torch::nn::functional; torch::Tensor _batchmatmul(const torch::Tensor& a, const torch::Tensor& b) { TORCH_INTERNAL_ASSERT(a.size(0) == b.size(0)); TORCH_INTERNAL_ASSERT(a.size(1) == b.size(1)); auto retval = torch::zeros( {a.size(0), a.size(1), a.size(2), b.size(3)}, torch::kFloat32); for (const auto i : c10::irange(a.size(0))) { for (const auto j : c10::irange(a.size(1))) { retval[i][j] = torch::matmul(a[i][j], b[i][j]); } } return retval; } torch::Tensor _softmax(const torch::Tensor& x) { auto output = torch::zeros(x.sizes()); for (const auto i : c10::irange(x.size(0))) { for (const auto j : c10::irange(x.size(1))) { for (const auto k : c10::irange(x.size(2))) { const auto& x_curr = x[i][j][k]; const auto e_x = torch::exp(x_curr - torch::max(x_curr)); output[i][j][k] = e_x / torch::sum(e_x); } } } return output; } std::tuple _scaled_dot_attn_ref( const torch::Tensor& Q, const torch::Tensor& K, const torch::Tensor& V, at::IntArrayRef dims, const torch::Tensor& unseen_mask = {}, const torch::Tensor& key_padding_mask = {}, bool average_attn_weights = true) { auto QKT = _batchmatmul(Q, K.permute({0, 1, 3, 2}) / std::sqrt(dims[3])); const auto b1 = QKT.size(0); const auto b2 = QKT.size(1); const auto s1 = QKT.size(2); const auto s2 = QKT.size(3); if (unseen_mask.defined() || key_padding_mask.defined()) { for (const auto i : c10::irange(b1)) { for (const auto j : c10::irange(b2)) { for (const auto m : c10::irange(s1)) { for (const auto n : c10::irange(s2)) { if (unseen_mask.defined() && unseen_mask[m][n].item() == 0) { QKT[i][j][m][n] = -std::numeric_limits::infinity(); } if (key_padding_mask.defined() && key_padding_mask[i][n].item() != 0) { QKT[i][j][m][n] = -std::numeric_limits::infinity(); } } } } } } auto reference = _softmax(QKT); auto ref_attn_weight = reference; if (average_attn_weights) { // NOLINTNEXTLINE(bugprone-argument-comment) ref_attn_weight = torch::sum(ref_attn_weight, /*axis=*/1) / b2; } reference = _batchmatmul(reference, V); return std::tie(reference, ref_attn_weight); } torch::Tensor _split_heads_ref( const torch::Tensor& X, at::IntArrayRef dims, int nheads, int d_head) { auto X_split = X.reshape({dims[0], dims[1], nheads, d_head}); auto X_split_transposed = X_split.permute({0, 2, 1, 3}); return X_split_transposed.reshape({dims[0], nheads, dims[1], d_head}); } torch::Tensor _combine_heads_ref( const torch::Tensor& X, at::IntArrayRef dims, int nheads, int d_head) { auto X_transposed = X.permute({0, 2, 1, 3}); auto reference = X_transposed.reshape({dims[0], dims[1], nheads * d_head}); return reference; } torch::Tensor _fc( torch::Tensor X, torch::Tensor X_weight, torch::Tensor X_bias) { // NOLINTNEXTLINE(performance-unnecessary-copy-initialization) auto X_fc_b = X_bias; // NOLINTNEXTLINE(performance-unnecessary-copy-initialization) auto X_fc_w = X_weight; return torch::matmul(X, torch::t(X_fc_w)) + X_fc_b; } void _multihead_attn_test_helper( bool add_key_padding_mask = false, bool add_bias_kv = false, bool add_zero_attn = false, bool saved_kv = false, bool same_embed_dim = false, bool average_attn_weights = true) { std::random_device device; std::mt19937 generator(device()); std::uniform_int_distribution d_2_10(2, 10); std::uniform_int_distribution d_3_10(3, 10); bool registration_checked = false; for (const auto i : c10::irange(100)) { (void)i; // Suppress unused variable warning const auto batch_sz = d_2_10(generator); const auto seq_len = d_2_10(generator); const auto d_head = d_3_10(generator); const auto nheads = d_3_10(generator); const auto d_model = d_head * nheads; // NOLINTNEXTLINE(cppcoreguidelines-init-variables) int kv_dim; if (same_embed_dim) { kv_dim = d_model; } else { std::uniform_int_distribution d(5, 20); kv_dim = d(generator); while (kv_dim == d_model) { kv_dim = d(generator); } } std::vector dims{batch_sz, seq_len, kv_dim}; torch::Tensor saved_k; torch::Tensor saved_k_tensor; torch::Tensor saved_v; torch::Tensor saved_v_tensor; if (saved_kv) { saved_k = torch::rand({batch_sz * nheads, seq_len, d_head}); saved_k_tensor = saved_k; saved_v = torch::rand({batch_sz * nheads, seq_len, d_head}); saved_v_tensor = saved_v; } torch::Tensor key_padding_mask; torch::Tensor key_padding_mask_tensor; if (add_key_padding_mask) { const auto seq_mask = torch::randint(0, 2, {1, seq_len}); key_padding_mask = seq_mask.repeat({batch_sz, 1}) == 1; key_padding_mask_tensor = key_padding_mask; } const auto decoder_state = torch::rand({batch_sz, d_model}); const torch::Tensor K = torch::rand(dims); // NOLINTNEXTLINE(performance-unnecessary-copy-initialization) const torch::Tensor V = K; const torch::Tensor Q = decoder_state.clone().resize_({batch_sz, 1, d_model}); auto attn_mask = torch::randint(0, 2, {1, seq_len}, torch::kFloat); const torch::Tensor attn_mask_tensor = attn_mask.clone(); attn_mask_tensor.masked_fill_( attn_mask_tensor == 0, -std::numeric_limits::infinity()); attn_mask_tensor.masked_fill_(attn_mask_tensor > 0, double(0.0)); // NOLINTNEXTLINE(performance-unnecessary-copy-initialization) const torch::Tensor decoder_state_tensor = decoder_state; const torch::Tensor source_hid_tensor = K.transpose(0, 1); const auto options = MultiheadAttentionOptions(d_model, nheads) .add_bias_kv(add_bias_kv) .add_zero_attn(add_zero_attn) .kdim(kv_dim) .vdim(kv_dim); const auto multihead_attn_module = MultiheadAttention(options); if (!registration_checked) { // make sure parameters are all registered correctly auto named_parameters = multihead_attn_module->named_parameters(); if (same_embed_dim) { ASSERT_TRUE(named_parameters.contains("in_proj_weight")); } else { ASSERT_TRUE(named_parameters.contains("q_proj_weight")); ASSERT_TRUE(named_parameters.contains("k_proj_weight")); ASSERT_TRUE(named_parameters.contains("v_proj_weight")); } if (add_bias_kv) { ASSERT_TRUE(named_parameters.contains("bias_k")); ASSERT_TRUE(named_parameters.contains("bias_v")); } // make sure sub modules are all registered correctly auto submodules = multihead_attn_module->named_children(); ASSERT_TRUE(submodules.contains("out_proj")); registration_checked = true; } torch::Tensor bias_k; torch::Tensor bias_v; if (add_bias_kv) { bias_k = multihead_attn_module->bias_k.detach(); bias_v = multihead_attn_module->bias_v.detach(); } else { bias_k.reset(); bias_v.reset(); } torch::Tensor _Q = decoder_state_tensor.unsqueeze(1).transpose(0, 1); // NOLINTNEXTLINE(performance-unnecessary-copy-initialization) torch::Tensor _V = source_hid_tensor; // NOLINTNEXTLINE(performance-unnecessary-copy-initialization) torch::Tensor _K = source_hid_tensor; torch::Tensor result; torch::Tensor result_weight; if (multihead_attn_module->_qkv_same_embed_dim) { std::tie(result, result_weight) = F::multi_head_attention_forward( _Q, _K, _V, F::MultiheadAttentionForwardFuncOptions( /*embed_dim_to_check=*/d_model, /*num_heads=*/nheads, /*in_proj_weight=*/multihead_attn_module->in_proj_weight, /*in_proj_bias=*/multihead_attn_module->in_proj_bias, /*bias_k=*/multihead_attn_module->bias_k, /*bias_v=*/multihead_attn_module->bias_v, /*add_zero_attn=*/multihead_attn_module->options.add_zero_attn(), /*dropout_p=*/multihead_attn_module->options.dropout(), /*out_proj_weight=*/multihead_attn_module->out_proj->weight, /*out_proj_bias=*/multihead_attn_module->out_proj->bias) .training(multihead_attn_module->is_training()) .key_padding_mask(key_padding_mask_tensor) .need_weights(true) .attn_mask(attn_mask_tensor) .static_k(saved_k_tensor) .static_v(saved_v_tensor) .average_attn_weights(average_attn_weights)); } else { std::tie(result, result_weight) = F::multi_head_attention_forward( _Q, _K, _V, F::MultiheadAttentionForwardFuncOptions( /*embed_dim_to_check=*/d_model, /*num_heads=*/nheads, /*in_proj_weight=*/{}, /*in_proj_bias=*/multihead_attn_module->in_proj_bias, /*bias_k=*/multihead_attn_module->bias_k, /*bias_v=*/multihead_attn_module->bias_v, /*add_zero_attn=*/multihead_attn_module->options.add_zero_attn(), /*dropout_p=*/multihead_attn_module->options.dropout(), /*out_proj_weight=*/multihead_attn_module->out_proj->weight, /*out_proj_bias=*/multihead_attn_module->out_proj->bias) .training(multihead_attn_module->is_training()) .key_padding_mask(key_padding_mask_tensor) .need_weights(true) .attn_mask(attn_mask_tensor) .use_separate_proj_weight(true) .q_proj_weight(multihead_attn_module->q_proj_weight) .k_proj_weight(multihead_attn_module->k_proj_weight) .v_proj_weight(multihead_attn_module->v_proj_weight) .static_k(saved_k_tensor) .static_v(saved_v_tensor) .average_attn_weights(average_attn_weights)); } result = result.squeeze(0).detach(); torch::Tensor q_proj_weight; torch::Tensor k_proj_weight; torch::Tensor v_proj_weight; if (multihead_attn_module->_qkv_same_embed_dim) { q_proj_weight = multihead_attn_module->in_proj_weight.slice(/*dim=*/0, 0, d_model); k_proj_weight = multihead_attn_module->in_proj_weight.slice( /*dim=*/0, d_model, (d_model * 2)); v_proj_weight = multihead_attn_module->in_proj_weight.slice(/*dim=*/0, (d_model * 2)); } else { q_proj_weight = multihead_attn_module->q_proj_weight; k_proj_weight = multihead_attn_module->k_proj_weight; v_proj_weight = multihead_attn_module->v_proj_weight; } auto Q_fc = _fc(Q, q_proj_weight, multihead_attn_module->in_proj_bias.slice(/*dim=*/0, 0, d_model)); auto K_fc = _fc(K, k_proj_weight, multihead_attn_module->in_proj_bias.slice( /*dim=*/0, d_model, (d_model * 2))); auto V_fc = _fc( V, v_proj_weight, multihead_attn_module->in_proj_bias.slice(/*dim=*/0, (d_model * 2))); if (add_bias_kv) { K_fc = torch::cat( {K_fc, bias_k.repeat({K_fc.size(0) / bias_k.size(0), 1, 1} /*, axis=0*/)}, /*dim=*/1); V_fc = torch::cat( {V_fc, bias_v.repeat({V_fc.size(0) / bias_v.size(0), 1, 1} /*, axis=0*/)}, /*dim=*/1); if (attn_mask.defined()) { attn_mask = torch::cat({attn_mask, torch::ones({1, 1})}, /*dim=*/1); } if (key_padding_mask.defined()) { key_padding_mask = torch::cat( {key_padding_mask, torch::full({batch_sz, 1}, false, torch::kBool)}, /*dim=*/1); } dims[1] += 1; } const auto Q_split = _split_heads_ref(Q_fc, {batch_sz, 1, d_model}, nheads, d_head); torch::Tensor K_split; if (saved_k.defined()) { K_split = saved_k.reshape({dims[0], nheads, dims[1], d_head}); } else { K_split = _split_heads_ref(K_fc, dims, nheads, d_head); } torch::Tensor V_split; if (saved_v.defined()) { V_split = saved_v.reshape({dims[0], nheads, dims[1], d_head}); } else { V_split = _split_heads_ref(V_fc, dims, nheads, d_head); } if (add_zero_attn) { dims[1] += 1; K_split = torch::cat( {K_split, torch::zeros( {K_split.size(0), K_split.size(1), 1, K_split.size(3)})}, /*dim=*/2); V_split = torch::cat( {V_split, torch::zeros( {V_split.size(0), V_split.size(1), 1, V_split.size(3)})}, /*dim=*/2); if (attn_mask.defined()) { attn_mask = torch::cat({attn_mask, torch::ones({1, 1})}, /*dim=*/1); } if (key_padding_mask.defined()) { key_padding_mask = torch::cat( {key_padding_mask, torch::full({batch_sz, 1}, false, torch::kBool)}, /*dim=*/1); } } auto [attn_heads, ref_attn_weight] = _scaled_dot_attn_ref( Q_split, K_split, V_split, Q_split.sizes(), attn_mask, key_padding_mask, average_attn_weights); const auto combined_attn_heads = _combine_heads_ref(attn_heads, {batch_sz, 1}, nheads, d_head); auto reference = _fc(combined_attn_heads, multihead_attn_module->out_proj->weight, multihead_attn_module->out_proj->bias); // NOLINTNEXTLINE(bugprone-argument-comment) reference = torch::squeeze(reference, /*axis=*/1); // result = reference ASSERT_EQ(result.sizes(), std::vector({batch_sz, d_model})); ASSERT_TRUE( torch::allclose(result, reference, 1e-5, 1e-5, /*equal_nan=*/true)); // result_weight = ref_attn_weight result_weight = result_weight.detach(); ASSERT_EQ(result_weight.sizes(), ref_attn_weight.sizes()); ASSERT_TRUE(torch::allclose( result_weight, ref_attn_weight, 1e-5, 1e-5, /*equal_nan=*/true)); } } } // namespace detail TEST_F(ModulesTest, MultiheadAttention) { using namespace ::detail; for (auto average_attn_weights : {false, true}) { // test_multihead_attn_add_zero_attn _multihead_attn_test_helper( /*add_key_padding_mask=*/false, /*add_bias_kv=*/false, /*add_zero_attn=*/true, /*saved_kv=*/false, /*same_embed_dim=*/false, /*average_attn_weights=*/average_attn_weights); // test_multihead_attn_add_bias_kv _multihead_attn_test_helper( /*add_key_padding_mask=*/false, /*add_bias_kv=*/true, /*add_zero_attn=*/false, /*saved_kv=*/false, /*same_embed_dim=*/false, /*average_attn_weights=*/average_attn_weights); // test_multihead_attn_no_masking(): _multihead_attn_test_helper(); // test_multihead_attn_key_padding_mask _multihead_attn_test_helper( /*add_key_padding_mask=*/true, /*add_bias_kv=*/false, /*add_zero_attn=*/false, /*saved_kv=*/false, /*same_embed_dim=*/false, /*average_attn_weights=*/average_attn_weights); // test_multihead_attn_saved_kv _multihead_attn_test_helper( /*add_key_padding_mask=*/false, /*add_bias_kv=*/false, /*add_zero_attn=*/false, /*saved_kv=*/true, /*same_embed_dim=*/false, /*average_attn_weights=*/average_attn_weights); // test_multihead_attn_add_bias_kv_zero_attn _multihead_attn_test_helper( /*add_key_padding_mask=*/true, /*add_bias_kv=*/true, /*add_zero_attn=*/true, /*saved_kv=*/false, /*same_embed_dim=*/false, /*average_attn_weights=*/average_attn_weights); // test_multihead_attn_all_arguments1 _multihead_attn_test_helper( /*add_key_padding_mask=*/true, /*add_bias_kv=*/false, /*add_zero_attn=*/true, /*saved_kv=*/true, /*same_embed_dim=*/false, /*average_attn_weights=*/average_attn_weights); ASSERT_THROWS_WITH( // test_multihead_attn_all_arguments2 _multihead_attn_test_helper( /*add_key_padding_mask=*/true, /*add_bias_kv=*/true, /*add_zero_attn=*/true, /*saved_kv=*/true, /*same_embed_dim=*/false, /*average_attn_weights=*/average_attn_weights), "bias cannot be added to static key"); // test_multihead_attn_all_arguments3 _multihead_attn_test_helper( /*add_key_padding_mask=*/true, /*add_bias_kv=*/false, /*add_zero_attn=*/true, /*saved_kv=*/true, /*same_embed_dim=*/true, /*average_attn_weights=*/average_attn_weights); } } TEST_F(ModulesTest, PrettyPrintIdentity) { ASSERT_EQ(c10::str(Identity()), "torch::nn::Identity()"); } TEST_F(ModulesTest, PrettyPrintFlatten) { ASSERT_EQ(c10::str(Flatten()), "torch::nn::Flatten(start_dim=1, end_dim=-1)"); ASSERT_EQ( c10::str(Flatten(FlattenOptions().start_dim(2).end_dim(4))), "torch::nn::Flatten(start_dim=2, end_dim=4)"); } TEST_F(ModulesTest, PrettyPrintUnflatten) { ASSERT_EQ( c10::str(Unflatten(UnflattenOptions(0, {2, 2}))), "torch::nn::Unflatten(dim=0, unflattened_size={2, 2})"); ASSERT_EQ( c10::str(Unflatten(UnflattenOptions( "B", {std::pair{"B1", 2}, std::pair{"B2", 2}}))), "torch::nn::Unflatten(dim=\"B\", unflattened_size={{\"B1\", 2}, {\"B2\", 2}})"); } TEST_F(ModulesTest, ReflectionPad1d) { { ReflectionPad1d m(ReflectionPad1dOptions(2)); auto input = torch::arange(8, torch::kFloat).reshape({1, 2, 4}); auto output = m(input); auto expected = torch::tensor( {{{2., 1., 0., 1., 2., 3., 2., 1.}, {6., 5., 4., 5., 6., 7., 6., 5.}}}, torch::kFloat); ASSERT_TRUE(output.allclose(expected)); } { ReflectionPad1d m(ReflectionPad1dOptions({3, 1})); auto input = torch::arange(8, torch::kFloat).reshape({1, 2, 4}); auto output = m(input); auto expected = torch::tensor( {{{3., 2., 1., 0., 1., 2., 3., 2.}, {7., 6., 5., 4., 5., 6., 7., 6.}}}, torch::kFloat); ASSERT_TRUE(output.allclose(expected)); } } TEST_F(ModulesTest, ReflectionPad2d) { { ReflectionPad2d m(ReflectionPad2dOptions(2)); auto input = torch::arange(9, torch::kFloat).reshape({1, 1, 3, 3}); auto output = m(input); auto expected = torch::tensor( {{{{8., 7., 6., 7., 8., 7., 6.}, {5., 4., 3., 4., 5., 4., 3.}, {2., 1., 0., 1., 2., 1., 0.}, {5., 4., 3., 4., 5., 4., 3.}, {8., 7., 6., 7., 8., 7., 6.}, {5., 4., 3., 4., 5., 4., 3.}, {2., 1., 0., 1., 2., 1., 0.}}}}, torch::kFloat); ASSERT_TRUE(output.allclose(expected)); } { ReflectionPad2d m(ReflectionPad2dOptions({1, 1, 2, 0})); auto input = torch::arange(9, torch::kFloat).reshape({1, 1, 3, 3}); auto output = m(input); auto expected = torch::tensor( {{{{7., 6., 7., 8., 7.}, {4., 3., 4., 5., 4.}, {1., 0., 1., 2., 1.}, {4., 3., 4., 5., 4.}, {7., 6., 7., 8., 7.}}}}, torch::kFloat); ASSERT_TRUE(output.allclose(expected)); } } TEST_F(ModulesTest, ReflectionPad3d) { { ReflectionPad3d m(ReflectionPad3dOptions(1)); auto input = torch::arange(8, torch::kFloat).reshape({1, 1, 2, 2, 2}); auto output = m(input); auto expected = torch::tensor( {{{{{7., 6., 7., 6.}, {5., 4., 5., 4.}, {7., 6., 7., 6.}, {5., 4., 5., 4.}}, {{3., 2., 3., 2.}, {1., 0., 1., 0.}, {3., 2., 3., 2.}, {1., 0., 1., 0.}}, {{7., 6., 7., 6.}, {5., 4., 5., 4.}, {7., 6., 7., 6.}, {5., 4., 5., 4.}}, {{3., 2., 3., 2.}, {1., 0., 1., 0.}, {3., 2., 3., 2.}, {1., 0., 1., 0.}}}}}, torch::kFloat); ASSERT_TRUE(output.allclose(expected)); } { ReflectionPad3d m(ReflectionPad3dOptions({0, 1, 1, 0, 1, 2})); auto input = torch::arange(16, torch::kFloat).reshape({1, 1, 4, 2, 2}); auto output = m(input); auto expected = torch::tensor( {{{{{6., 7., 6.}, {4., 5., 4.}, {6., 7., 6.}}, {{2., 3., 2.}, {0., 1., 0.}, {2., 3., 2.}}, {{6., 7., 6.}, {4., 5., 4.}, {6., 7., 6.}}, {{10., 11., 10.}, {8., 9., 8.}, {10., 11., 10.}}, {{14., 15., 14.}, {12., 13., 12.}, {14., 15., 14.}}, {{10., 11., 10.}, {8., 9., 8.}, {10., 11., 10.}}, {{6., 7., 6.}, {4., 5., 4.}, {6., 7., 6.}}}}}, torch::kFloat); ASSERT_EQ(output.sizes(), std::vector({1, 1, 7, 3, 3})); ASSERT_TRUE(output.allclose(expected)); } } TEST_F(ModulesTest, ReplicationPad1d) { { ReplicationPad1d m(ReplicationPad1dOptions(2)); auto input = torch::arange(8, torch::kFloat).reshape({1, 2, 4}); auto output = m(input); auto expected = torch::tensor( {{{0., 0., 0., 1., 2., 3., 3., 3.}, {4., 4., 4., 5., 6., 7., 7., 7.}}}, torch::kFloat); ASSERT_TRUE(output.allclose(expected)); } { ReplicationPad1d m(ReplicationPad1dOptions({3, 1})); auto input = torch::arange(8, torch::kFloat).reshape({1, 2, 4}); auto output = m(input); auto expected = torch::tensor( {{{0., 0., 0., 0., 1., 2., 3., 3.}, {4., 4., 4., 4., 5., 6., 7., 7.}}}, torch::kFloat); ASSERT_TRUE(output.allclose(expected)); } } TEST_F(ModulesTest, ReplicationPad2d) { { ReplicationPad2d m(ReplicationPad2dOptions(2)); auto input = torch::arange(9, torch::kFloat).reshape({1, 1, 3, 3}); auto output = m(input); auto expected = torch::tensor( {{{{0., 0., 0., 1., 2., 2., 2.}, {0., 0., 0., 1., 2., 2., 2.}, {0., 0., 0., 1., 2., 2., 2.}, {3., 3., 3., 4., 5., 5., 5.}, {6., 6., 6., 7., 8., 8., 8.}, {6., 6., 6., 7., 8., 8., 8.}, {6., 6., 6., 7., 8., 8., 8.}}}}, torch::kFloat); ASSERT_TRUE(output.allclose(expected)); } { ReplicationPad2d m(ReplicationPad2dOptions({1, 1, 2, 0})); auto input = torch::arange(9, torch::kFloat).reshape({1, 1, 3, 3}); auto output = m(input); auto expected = torch::tensor( {{{{0., 0., 1., 2., 2.}, {0., 0., 1., 2., 2.}, {0., 0., 1., 2., 2.}, {3., 3., 4., 5., 5.}, {6., 6., 7., 8., 8.}}}}, torch::kFloat); ASSERT_TRUE(output.allclose(expected)); } } TEST_F(ModulesTest, ReplicationPad3d) { { ReplicationPad3d m(ReplicationPad3dOptions(1)); auto input = torch::arange(8, torch::kFloat).reshape({1, 1, 2, 2, 2}); auto output = m(input); auto expected = torch::tensor( {{{{{0., 0., 1., 1.}, {0., 0., 1., 1.}, {2., 2., 3., 3.}, {2., 2., 3., 3.}}, {{0., 0., 1., 1.}, {0., 0., 1., 1.}, {2., 2., 3., 3.}, {2., 2., 3., 3.}}, {{4., 4., 5., 5.}, {4., 4., 5., 5.}, {6., 6., 7., 7.}, {6., 6., 7., 7.}}, {{4., 4., 5., 5.}, {4., 4., 5., 5.}, {6., 6., 7., 7.}, {6., 6., 7., 7.}}}}}, torch::kFloat); ASSERT_TRUE(output.allclose(expected)); } { ReplicationPad3d m(ReplicationPad3dOptions({1, 2, 1, 2, 1, 2})); auto input = torch::arange(8, torch::kFloat).reshape({1, 1, 2, 2, 2}); auto output = m(input); auto expected = torch::tensor( {{{{{0., 0., 1., 1., 1.}, {0., 0., 1., 1., 1.}, {2., 2., 3., 3., 3.}, {2., 2., 3., 3., 3.}, {2., 2., 3., 3., 3.}}, {{0., 0., 1., 1., 1.}, {0., 0., 1., 1., 1.}, {2., 2., 3., 3., 3.}, {2., 2., 3., 3., 3.}, {2., 2., 3., 3., 3.}}, {{4., 4., 5., 5., 5.}, {4., 4., 5., 5., 5.}, {6., 6., 7., 7., 7.}, {6., 6., 7., 7., 7.}, {6., 6., 7., 7., 7.}}, {{4., 4., 5., 5., 5.}, {4., 4., 5., 5., 5.}, {6., 6., 7., 7., 7.}, {6., 6., 7., 7., 7.}, {6., 6., 7., 7., 7.}}, {{4., 4., 5., 5., 5.}, {4., 4., 5., 5., 5.}, {6., 6., 7., 7., 7.}, {6., 6., 7., 7., 7.}, {6., 6., 7., 7., 7.}}}}}, torch::kFloat); ASSERT_TRUE(output.allclose(expected)); } } TEST_F(ModulesTest, ZeroPad1d) { { ZeroPad1d m(ZeroPad1dOptions(2)); auto input = torch::arange(8, torch::kFloat).reshape({1, 2, 4}); auto output = m(input); auto expected = torch::tensor( {{{0., 0., 0., 1., 2., 3., 0., 0.}, {0., 0., 4., 5., 6., 7., 0., 0.}}}, torch::kFloat); ASSERT_TRUE(output.allclose(expected)); } { ZeroPad1d m(ZeroPad1dOptions({3, 1})); auto input = torch::arange(6, torch::kFloat).reshape({1, 2, 3}); auto output = m(input); auto expected = torch::tensor( {{{0., 0., 0., 0., 1., 2., 0.}, {0., 0., 0., 3., 4., 5., 0.}}}, torch::kFloat); ASSERT_TRUE(output.allclose(expected)); } } TEST_F(ModulesTest, ZeroPad2d) { { ZeroPad2d m(ZeroPad2dOptions(2)); auto input = torch::arange(9, torch::kFloat).reshape({1, 1, 3, 3}); auto output = m(input); auto expected = torch::tensor( {{{{0., 0., 0., 0., 0., 0., 0.}, {0., 0., 0., 0., 0., 0., 0.}, {0., 0., 0., 1., 2., 0., 0.}, {0., 0., 3., 4., 5., 0., 0.}, {0., 0., 6., 7., 8., 0., 0.}, {0., 0., 0., 0., 0., 0., 0.}, {0., 0., 0., 0., 0., 0., 0.}}}}, torch::kFloat); ASSERT_TRUE(output.allclose(expected)); } { ZeroPad2d m(ZeroPad2dOptions({1, 1, 2, 0})); auto input = torch::arange(9, torch::kFloat).reshape({1, 1, 3, 3}); auto output = m(input); auto expected = torch::tensor( {{{{0., 0., 0., 0., 0.}, {0., 0., 0., 0., 0.}, {0., 0., 1., 2., 0.}, {0., 3., 4., 5., 0.}, {0., 6., 7., 8., 0.}}}}, torch::kFloat); ASSERT_TRUE(output.allclose(expected)); } } TEST_F(ModulesTest, ZeroPad3d) { { ZeroPad3d m(ZeroPad3dOptions(1)); auto input = torch::arange(8, torch::kFloat).reshape({1, 1, 2, 2, 2}); auto output = m(input); auto expected = torch::tensor( {{{{{0., 0., 0., 0.}, {0., 0., 0., 0.}, {0., 0., 0., 0.}, {0., 0., 0., 0.}}, {{0., 0., 0., 0.}, {0., 0., 1., 0.}, {0., 2., 3., 0.}, {0., 0., 0., 0.}}, {{0., 0., 0., 0.}, {0., 4., 5., 0.}, {0., 6., 7., 0.}, {0., 0., 0., 0.}}, {{0., 0., 0., 0.}, {0., 0., 0., 0.}, {0., 0., 0., 0.}, {0., 0., 0., 0.}}}}}, torch::kFloat); ASSERT_TRUE(output.allclose(expected)); } { ZeroPad3d m(ZeroPad3dOptions({1, 2, 1, 2, 1, 2})); auto input = torch::arange(8, torch::kFloat).reshape({1, 1, 2, 2, 2}); auto output = m(input); auto expected = torch::tensor( {{{{{0., 0., 0., 0., 0.}, {0., 0., 0., 0., 0.}, {0., 0., 0., 0., 0.}, {0., 0., 0., 0., 0.}, {0., 0., 0., 0., 0.}}, {{0., 0., 0., 0., 0.}, {0., 0., 1., 0., 0.}, {0., 2., 3., 0., 0.}, {0., 0., 0., 0., 0.}, {0., 0., 0., 0., 0.}}, {{0., 0., 0., 0., 0.}, {0., 4., 5., 0., 0.}, {0., 6., 7., 0., 0.}, {0., 0., 0., 0., 0.}, {0., 0., 0., 0., 0.}}, {{0., 0., 0., 0., 0.}, {0., 0., 0., 0., 0.}, {0., 0., 0., 0., 0.}, {0., 0., 0., 0., 0.}, {0., 0., 0., 0., 0.}}, {{0., 0., 0., 0., 0.}, {0., 0., 0., 0., 0.}, {0., 0., 0., 0., 0.}, {0., 0., 0., 0., 0.}, {0., 0., 0., 0., 0.}}}}}, torch::kFloat); ASSERT_TRUE(output.allclose(expected)); } } TEST_F(ModulesTest, ConstantPad1d) { { ConstantPad1d m(ConstantPad1dOptions(2, 3.5)); auto input = torch::arange(8, torch::kFloat).reshape({1, 2, 4}); auto output = m(input); auto expected = torch::tensor( {{{3.5000, 3.5000, 0.0000, 1.0000, 2.0000, 3.0000, 3.5000, 3.5000}, {3.5000, 3.5000, 4.0000, 5.0000, 6.0000, 7.0000, 3.5000, 3.5000}}}, torch::kFloat); ASSERT_TRUE(output.allclose(expected)); } { ConstantPad1d m(ConstantPad1dOptions({3, 1}, 3.5)); auto input = torch::arange(6, torch::kFloat).reshape({1, 2, 3}); auto output = m(input); auto expected = torch::tensor( {{{3.5000, 3.5000, 3.5000, 0.0000, 1.0000, 2.0000, 3.5000}, {3.5000, 3.5000, 3.5000, 3.0000, 4.0000, 5.0000, 3.5000}}}, torch::kFloat); ASSERT_TRUE(output.allclose(expected)); } } TEST_F(ModulesTest, ConstantPad2d) { { ConstantPad2d m(ConstantPad2dOptions(2, 3.5)); auto input = torch::arange(4, torch::kFloat).reshape({1, 2, 2}); auto output = m(input); auto expected = torch::tensor( {{{3.5000, 3.5000, 3.5000, 3.5000, 3.5000, 3.5000}, {3.5000, 3.5000, 3.5000, 3.5000, 3.5000, 3.5000}, {3.5000, 3.5000, 0.0000, 1.0000, 3.5000, 3.5000}, {3.5000, 3.5000, 2.0000, 3.0000, 3.5000, 3.5000}, {3.5000, 3.5000, 3.5000, 3.5000, 3.5000, 3.5000}, {3.5000, 3.5000, 3.5000, 3.5000, 3.5000, 3.5000}}}, torch::kFloat); ASSERT_TRUE(output.allclose(expected)); } { ConstantPad2d m(ConstantPad2dOptions({3, 0, 2, 1}, 3.5)); auto input = torch::arange(4, torch::kFloat).reshape({1, 2, 2}); auto output = m(input); auto expected = torch::tensor( {{{3.5000, 3.5000, 3.5000, 3.5000, 3.5000}, {3.5000, 3.5000, 3.5000, 3.5000, 3.5000}, {3.5000, 3.5000, 3.5000, 0.0000, 1.0000}, {3.5000, 3.5000, 3.5000, 2.0000, 3.0000}, {3.5000, 3.5000, 3.5000, 3.5000, 3.5000}}}, torch::kFloat); ASSERT_TRUE(output.allclose(expected)); } } TEST_F(ModulesTest, ConstantPad3d) { { ConstantPad3d m(ConstantPad3dOptions(1, 3.5)); auto input = torch::arange(8, torch::kFloat).reshape({1, 1, 2, 2, 2}); auto output = m(input); auto expected = torch::tensor( {{{{{3.5000, 3.5000, 3.5000, 3.5000}, {3.5000, 3.5000, 3.5000, 3.5000}, {3.5000, 3.5000, 3.5000, 3.5000}, {3.5000, 3.5000, 3.5000, 3.5000}}, {{3.5000, 3.5000, 3.5000, 3.5000}, {3.5000, 0.0000, 1.0000, 3.5000}, {3.5000, 2.0000, 3.0000, 3.5000}, {3.5000, 3.5000, 3.5000, 3.5000}}, {{3.5000, 3.5000, 3.5000, 3.5000}, {3.5000, 4.0000, 5.0000, 3.5000}, {3.5000, 6.0000, 7.0000, 3.5000}, {3.5000, 3.5000, 3.5000, 3.5000}}, {{3.5000, 3.5000, 3.5000, 3.5000}, {3.5000, 3.5000, 3.5000, 3.5000}, {3.5000, 3.5000, 3.5000, 3.5000}, {3.5000, 3.5000, 3.5000, 3.5000}}}}}, torch::kFloat); ASSERT_TRUE(output.allclose(expected)); } { ConstantPad3d m(ConstantPad3dOptions({1, 2, 1, 2, 1, 2}, 3.5)); auto input = torch::arange(8, torch::kFloat).reshape({1, 1, 2, 2, 2}); auto output = m(input); auto expected = torch::tensor( {{{{{3.5000, 3.5000, 3.5000, 3.5000, 3.5000}, {3.5000, 3.5000, 3.5000, 3.5000, 3.5000}, {3.5000, 3.5000, 3.5000, 3.5000, 3.5000}, {3.5000, 3.5000, 3.5000, 3.5000, 3.5000}, {3.5000, 3.5000, 3.5000, 3.5000, 3.5000}}, {{3.5000, 3.5000, 3.5000, 3.5000, 3.5000}, {3.5000, 0.0000, 1.0000, 3.5000, 3.5000}, {3.5000, 2.0000, 3.0000, 3.5000, 3.5000}, {3.5000, 3.5000, 3.5000, 3.5000, 3.5000}, {3.5000, 3.5000, 3.5000, 3.5000, 3.5000}}, {{3.5000, 3.5000, 3.5000, 3.5000, 3.5000}, {3.5000, 4.0000, 5.0000, 3.5000, 3.5000}, {3.5000, 6.0000, 7.0000, 3.5000, 3.5000}, {3.5000, 3.5000, 3.5000, 3.5000, 3.5000}, {3.5000, 3.5000, 3.5000, 3.5000, 3.5000}}, {{3.5000, 3.5000, 3.5000, 3.5000, 3.5000}, {3.5000, 3.5000, 3.5000, 3.5000, 3.5000}, {3.5000, 3.5000, 3.5000, 3.5000, 3.5000}, {3.5000, 3.5000, 3.5000, 3.5000, 3.5000}, {3.5000, 3.5000, 3.5000, 3.5000, 3.5000}}, {{3.5000, 3.5000, 3.5000, 3.5000, 3.5000}, {3.5000, 3.5000, 3.5000, 3.5000, 3.5000}, {3.5000, 3.5000, 3.5000, 3.5000, 3.5000}, {3.5000, 3.5000, 3.5000, 3.5000, 3.5000}, {3.5000, 3.5000, 3.5000, 3.5000, 3.5000}}}}}, torch::kFloat); ASSERT_TRUE(output.allclose(expected)); } } TEST_F(ModulesTest, CrossMapLRN2d) { /// size 3, default options auto input = torch::arange(9, torch::kFloat32).view({1, 1, 3, 3}).requires_grad_(true); auto expected = torch::tensor( {{{{0.00000000, 0.99997497, 1.99980010}, {2.99932500, 3.99840070, 4.99687700}, {5.99460600, 6.99143740, 7.98722360}}}}, torch::kFloat32); auto grad_expected = torch::tensor( {{{{1.00000000, 0.99992496, 0.99970007}, {0.99932520, 0.99880093, 0.99812720}, {0.99730474, 0.99633380, 0.99521490}}}}, torch::kFloat32); auto crossmaplrn2d = CrossMapLRN2d(3); auto output = crossmaplrn2d(input); output.sum().backward(); ASSERT_TRUE(input.grad().allclose(grad_expected)); ASSERT_TRUE(output.allclose(expected)); /// size change crossmaplrn2d = CrossMapLRN2d(CrossMapLRN2dOptions(4).alpha(1e-4).beta(0.75).k(1)); output = crossmaplrn2d(input); expected = torch::tensor( {{{{0.00000000, 0.99998120, 1.99985000}, {2.99949400, 3.99880050, 4.99765800}, {5.99595300, 6.99357600, 7.99041300}}}}, torch::kFloat32); ASSERT_TRUE(output.allclose(expected)); /// alpha change crossmaplrn2d = CrossMapLRN2d(CrossMapLRN2dOptions(3).alpha(1e-3).beta(0.75).k(1)); output = crossmaplrn2d(input); expected = torch::tensor( {{{{0.00000000, 0.99975010, 1.99800230}, {2.99326750, 3.98407440, 4.96897600}, {5.94656100, 6.91545720, 7.87434340}}}}, torch::kFloat32); ASSERT_TRUE(output.allclose(expected)); /// beta change crossmaplrn2d = CrossMapLRN2d(CrossMapLRN2dOptions(3).alpha(1e-4).beta(0.95).k(1)); output = crossmaplrn2d(input); expected = torch::tensor( {{{{0.00000000, 0.99996830, 1.99974680}, {2.99914500, 3.99797440, 4.99604460}, {5.99316840, 6.98915600, 7.98382000}}}}, torch::kFloat32); ASSERT_TRUE(output.allclose(expected)); /// k change crossmaplrn2d = CrossMapLRN2d(CrossMapLRN2dOptions(3).alpha(1e-4).beta(0.75).k(2)); output = crossmaplrn2d(input); expected = torch::tensor( {{{{0.00000000, 0.59459610, 1.18914770}, {1.78361000, 2.37793870, 2.97208900}, {3.56601700, 4.15967700, 4.75302650}}}}, torch::kFloat32); ASSERT_TRUE(output.allclose(expected)); } TEST_F(ModulesTest, RNNCell) { torch::manual_seed(0); auto rnn = RNNCell(1, 2); auto input = torch::randn({3, 1}); auto hx = torch::randn({3, 2}); auto output = rnn(input, hx); auto expected = torch::tensor({{-0.5078, 0.4380}, {-0.7215, 0.2969}, {-0.1304, 0.0653}}); ASSERT_TRUE(torch::allclose(output, expected, 1e-05, 2e-04)); output = rnn(input); expected = torch::tensor({{-0.0775, 0.6688}, {-0.0734, 0.4759}, {-0.0725, 0.4225}}); ASSERT_TRUE(torch::allclose(output, expected, 1e-05, 2e-04)); input = torch::randn({1}); hx = torch::randn({2}); output = rnn(input, hx); expected = torch::tensor({0.2808, 0.6505}); ASSERT_TRUE(torch::allclose(output, expected, 1e-05, 2e-04)); { auto input = torch::randn({3, 2}); auto hx = torch::randn({3, 2}); ASSERT_THROWS_WITH( rnn(input, hx), "input has inconsistent input_size: got 2 expected 1"); } { auto input = torch::randn({3, 1}); auto hx = torch::randn({3, 1}); ASSERT_THROWS_WITH( rnn(input, hx), "hidden0 has inconsistent hidden_size: got 1, expected 2"); } { auto input = torch::randn({3, 1, 1, 1, 1}); auto hx = torch::randn({3, 2}); ASSERT_THROWS_WITH( rnn(input, hx), "Expected input to be 1D or 2D, got 5D instead"); } { auto input = torch::randn({3, 1}); auto hx = torch::randn({3, 1, 1, 1, 2}); ASSERT_THROWS_WITH( rnn(input, hx), "Expected hidden to be 1D or 2D, got 5D instead"); } } TEST_F(ModulesTest, LSTMCell) { torch::manual_seed(0); auto lstm = LSTMCell(1, 2); auto input = torch::randn({3, 1}); auto hx = torch::randn({3, 2}); auto cx = torch::randn({3, 2}); auto output = lstm(input, std::make_tuple(hx, cx)); auto output_hx = std::get<0>(output); auto output_cx = std::get<1>(output); auto expected_hx = torch::tensor({{-0.2462, 0.0810}, {-0.2206, 0.1867}, {-0.0146, 0.0429}}); auto expected_cx = torch::tensor({{-0.4480, 0.1071}, {-0.6245, 0.2687}, {-0.0322, 0.0518}}); ASSERT_TRUE(torch::allclose(output_hx, expected_hx, 1e-05, 2e-04)); ASSERT_TRUE(torch::allclose(output_cx, expected_cx, 1e-05, 2e-04)); output = lstm(input); output_hx = std::get<0>(output); output_cx = std::get<1>(output); expected_hx = torch::tensor({{-0.1331, 0.1634}, {-0.1494, 0.2869}, {-0.1428, 0.2263}}); expected_cx = torch::tensor({{-0.2679, 0.2180}, {-0.3049, 0.3493}, {-0.2896, 0.2853}}); ASSERT_TRUE(torch::allclose(output_hx, expected_hx, 1e-05, 2e-04)); ASSERT_TRUE(torch::allclose(output_cx, expected_cx, 1e-05, 2e-04)); input = torch::randn({1}); hx = torch::randn({2}); cx = torch::randn({2}); output = lstm(input, std::make_tuple(hx, cx)); output_hx = std::get<0>(output); output_cx = std::get<1>(output); expected_hx = torch::tensor({-0.0443, 0.1537}); expected_cx = torch::tensor({-0.1195, 0.2144}); ASSERT_TRUE(torch::allclose(output_hx, expected_hx, 1e-05, 2e-04)); ASSERT_TRUE(torch::allclose(output_cx, expected_cx, 1e-05, 2e-04)); { auto input = torch::randn({3, 2}); auto hx = torch::randn({3, 2}); auto cx = torch::randn({3, 2}); ASSERT_THROWS_WITH( lstm(input, std::make_tuple(hx, cx)), "input has inconsistent input_size: got 2 expected 1"); } { auto input = torch::randn({3, 1}); auto hx = torch::randn({3, 1}); auto cx = torch::randn({3, 2}); ASSERT_THROWS_WITH( lstm(input, std::make_tuple(hx, cx)), "hidden0 has inconsistent hidden_size: got 1, expected 2"); } { auto input = torch::randn({3, 1}); auto hx = torch::randn({3, 2}); auto cx = torch::randn({3, 1}); ASSERT_THROWS_WITH( lstm(input, std::make_tuple(hx, cx)), "hidden1 has inconsistent hidden_size: got 1, expected 2"); } { auto input = torch::randn({3, 1, 1, 1, 1}); auto hx = torch::randn({3, 1}); auto cx = torch::randn({3, 1}); ASSERT_THROWS_WITH( lstm(input, std::make_tuple(hx, cx)), "Expected input to be 1D or 2D, got 5D instead"); } { auto input = torch::randn({3, 1}); auto hx = torch::randn({3, 1, 1, 1, 2}); auto cx = torch::randn({3, 2}); ASSERT_THROWS_WITH( lstm(input, std::make_tuple(hx, cx)), "Expected hx[0] to be 1D or 2D, got 5D instead"); } { auto input = torch::randn({3, 1}); auto hx = torch::randn({3, 2}); auto cx = torch::randn({3, 1, 1, 1, 2}); ASSERT_THROWS_WITH( lstm(input, std::make_tuple(hx, cx)), "Expected hx[1] to be 1D or 2D, got 5D instead"); } } TEST_F(ModulesTest, GRUCell) { torch::manual_seed(0); auto gru = GRUCell(1, 2); auto input = torch::randn({3, 1}); auto hx = torch::randn({3, 2}); auto output = gru(input, hx); auto expected = torch::tensor({{1.0243, 0.3227}, {-0.5659, 0.0330}, {-0.4030, -0.2800}}); ASSERT_TRUE(torch::allclose(output, expected, 1e-05, 2e-04)); output = gru(input); expected = torch::tensor({{-0.0085, 0.1095}, {-0.1291, 0.2675}, {-0.1339, 0.2725}}); ASSERT_TRUE(torch::allclose(output, expected, 1e-05, 2e-04)); input = torch::randn({1}); hx = torch::randn({2}); output = gru(input, hx); expected = torch::tensor({-1.0058, -0.3025}); ASSERT_TRUE(torch::allclose(output, expected, 1e-05, 2e-04)); { auto input = torch::randn({3, 2}); auto hx = torch::randn({3, 2}); ASSERT_THROWS_WITH( gru(input, hx), "input has inconsistent input_size: got 2 expected 1"); } { auto input = torch::randn({3, 1}); auto hx = torch::randn({3, 1}); ASSERT_THROWS_WITH( gru(input, hx), "hidden0 has inconsistent hidden_size: got 1, expected 2"); } { auto input = torch::randn({3, 1, 1, 1, 1}); auto hx = torch::randn({3, 2}); ASSERT_THROWS_WITH( gru(input, hx), "Expected input to be 1D or 2D, got 5D instead"); } { auto input = torch::randn({3, 1}); auto hx = torch::randn({3, 1, 1, 1, 2}); ASSERT_THROWS_WITH( gru(input, hx), "Expected hidden to be 1D or 2D, got 5D instead"); } } TEST_F(ModulesTest, PrettyPrintLinear) { ASSERT_EQ( c10::str(Linear(3, 4)), "torch::nn::Linear(in_features=3, out_features=4, bias=true)"); } TEST_F(ModulesTest, PrettyPrintBilinear) { ASSERT_EQ( c10::str(Bilinear(3, 2, 4)), "torch::nn::Bilinear(in1_features=3, in2_features=2, out_features=4, bias=true)"); ASSERT_EQ( c10::str(Bilinear(BilinearOptions(3, 2, 4).bias(false))), "torch::nn::Bilinear(in1_features=3, in2_features=2, out_features=4, bias=false)"); } TEST_F(ModulesTest, PrettyPrintConv) { ASSERT_EQ( c10::str(Conv1d(3, 4, 5)), "torch::nn::Conv1d(3, 4, kernel_size=5, stride=1)"); ASSERT_EQ( c10::str(Conv2d(3, 4, 5)), "torch::nn::Conv2d(3, 4, kernel_size=[5, 5], stride=[1, 1])"); ASSERT_EQ( c10::str(Conv2d(Conv2dOptions(3, 4, 5).stride(2))), "torch::nn::Conv2d(3, 4, kernel_size=[5, 5], stride=[2, 2])"); { const auto options = Conv2dOptions(3, 4, std::vector{5, 6}).stride({1, 2}); ASSERT_EQ( c10::str(Conv2d(options)), "torch::nn::Conv2d(3, 4, kernel_size=[5, 6], stride=[1, 2])"); } ASSERT_EQ( c10::str(Conv3d(4, 4, std::vector{5, 6, 7})), "torch::nn::Conv3d(4, 4, kernel_size=[5, 6, 7], stride=[1, 1, 1])"); { const auto options = Conv3dOptions(4, 4, std::vector{5, 6, 7}) .stride({1, 2, 3}) .padding(1) .dilation(0) .groups(2) .bias(false) .padding_mode(torch::kCircular); ASSERT_EQ( c10::str(Conv3d(options)), "torch::nn::Conv3d(" "4, " "4, " "kernel_size=[5, 6, 7], " "stride=[1, 2, 3], " "padding=[1, 1, 1], " "dilation=[0, 0, 0], " "groups=2, " "bias=false, " "padding_mode=kCircular)"); } } TEST_F(ModulesTest, PrettyPrintConvTranspose) { ASSERT_EQ( c10::str(ConvTranspose1d(3, 4, 5)), "torch::nn::ConvTranspose1d(3, 4, kernel_size=5, stride=1)"); ASSERT_EQ( c10::str(ConvTranspose2d(3, 4, 5)), "torch::nn::ConvTranspose2d(3, 4, kernel_size=[5, 5], stride=[1, 1])"); ASSERT_EQ( c10::str(ConvTranspose2d(ConvTranspose2dOptions(3, 4, 5).stride(2))), "torch::nn::ConvTranspose2d(3, 4, kernel_size=[5, 5], stride=[2, 2])"); { const auto options = ConvTranspose2dOptions(3, 4, std::vector{5, 6}).stride({1, 2}); ASSERT_EQ( c10::str(ConvTranspose2d(options)), "torch::nn::ConvTranspose2d(3, 4, kernel_size=[5, 6], stride=[1, 2])"); } ASSERT_EQ( c10::str(ConvTranspose3d(4, 4, std::vector{5, 6, 7})), "torch::nn::ConvTranspose3d(4, 4, kernel_size=[5, 6, 7], stride=[1, 1, 1])"); { const auto options = ConvTranspose3dOptions(4, 4, std::vector{5, 6, 7}) .stride({1, 2, 3}) .padding(1) .dilation(0) .groups(2) .bias(false) .padding_mode(torch::kCircular); ASSERT_EQ( c10::str(ConvTranspose3d(options)), "torch::nn::ConvTranspose3d(" "4, " "4, " "kernel_size=[5, 6, 7], " "stride=[1, 2, 3], " "padding=[1, 1, 1], " "dilation=[0, 0, 0], " "groups=2, " "bias=false, " "padding_mode=kCircular)"); } } TEST_F(ModulesTest, PrettyPrintUpsample) { ASSERT_EQ( c10::str( Upsample(UpsampleOptions().size(std::vector({2, 4, 4})))), "torch::nn::Upsample(size=[2, 4, 4], mode=kNearest)"); ASSERT_EQ( c10::str(Upsample(UpsampleOptions() .scale_factor(std::vector({0.5, 1.5})) .mode(torch::kBilinear))), "torch::nn::Upsample(scale_factor=[0.5, 1.5], mode=kBilinear)"); } TEST_F(ModulesTest, PrettyPrintFold) { ASSERT_EQ( c10::str(Fold(FoldOptions({2, 2}, {5, 5}))), "torch::nn::Fold(output_size=[2, 2], kernel_size=[5, 5], dilation=[1, 1], padding=[0, 0], stride=[1, 1])"); ASSERT_EQ( c10::str(Fold( FoldOptions({8, 8}, {3, 3}).dilation(2).padding({2, 1}).stride(2))), "torch::nn::Fold(output_size=[8, 8], kernel_size=[3, 3], dilation=[2, 2], padding=[2, 1], stride=[2, 2])"); } TEST_F(ModulesTest, PrettyPrintUnfold) { ASSERT_EQ( c10::str(Unfold(torch::IntArrayRef({2, 4}))), "torch::nn::Unfold(kernel_size=[2, 4], dilation=[1, 1], padding=[0, 0], stride=[1, 1])"); ASSERT_EQ( c10::str( Unfold(UnfoldOptions({2, 4}).dilation(2).padding({2, 1}).stride(2))), "torch::nn::Unfold(kernel_size=[2, 4], dilation=[2, 2], padding=[2, 1], stride=[2, 2])"); } TEST_F(ModulesTest, PrettyPrintMaxPool) { ASSERT_EQ( c10::str(MaxPool1d(5)), "torch::nn::MaxPool1d(kernel_size=5, stride=5, padding=0, dilation=1, ceil_mode=false)"); ASSERT_EQ( c10::str(MaxPool2d(5)), "torch::nn::MaxPool2d(kernel_size=[5, 5], stride=[5, 5], padding=[0, 0], dilation=[1, 1], ceil_mode=false)"); ASSERT_EQ( c10::str(MaxPool2d(MaxPool2dOptions(5).stride(2))), "torch::nn::MaxPool2d(kernel_size=[5, 5], stride=[2, 2], padding=[0, 0], dilation=[1, 1], ceil_mode=false)"); ASSERT_EQ( c10::str(MaxPool3d(5)), "torch::nn::MaxPool3d(kernel_size=[5, 5, 5], stride=[5, 5, 5], padding=[0, 0, 0], dilation=[1, 1, 1], ceil_mode=false)"); ASSERT_EQ( c10::str(MaxPool3d(MaxPool3dOptions(5).stride(2))), "torch::nn::MaxPool3d(kernel_size=[5, 5, 5], stride=[2, 2, 2], padding=[0, 0, 0], dilation=[1, 1, 1], ceil_mode=false)"); const auto options = MaxPool2dOptions(std::vector{5, 6}).stride({1, 2}); ASSERT_EQ( c10::str(MaxPool2d(options)), "torch::nn::MaxPool2d(kernel_size=[5, 6], stride=[1, 2], padding=[0, 0], dilation=[1, 1], ceil_mode=false)"); } TEST_F(ModulesTest, PrettyPrintAvgPool) { ASSERT_EQ( c10::str(AvgPool1d(5)), "torch::nn::AvgPool1d(kernel_size=5, stride=5, padding=0)"); ASSERT_EQ( c10::str(AvgPool2d(5)), "torch::nn::AvgPool2d(kernel_size=[5, 5], stride=[5, 5], padding=[0, 0])"); ASSERT_EQ( c10::str(AvgPool2d(AvgPool2dOptions(5).stride(2))), "torch::nn::AvgPool2d(kernel_size=[5, 5], stride=[2, 2], padding=[0, 0])"); ASSERT_EQ( c10::str(AvgPool3d(5)), "torch::nn::AvgPool3d(kernel_size=[5, 5, 5], stride=[5, 5, 5], padding=[0, 0, 0])"); ASSERT_EQ( c10::str(AvgPool3d(AvgPool3dOptions(5).stride(2))), "torch::nn::AvgPool3d(kernel_size=[5, 5, 5], stride=[2, 2, 2], padding=[0, 0, 0])"); const auto options = AvgPool2dOptions(std::vector{5, 6}).stride({1, 2}); ASSERT_EQ( c10::str(AvgPool2d(options)), "torch::nn::AvgPool2d(kernel_size=[5, 6], stride=[1, 2], padding=[0, 0])"); } TEST_F(ModulesTest, PrettyPrinFractionalMaxPool) { ASSERT_EQ( c10::str( FractionalMaxPool2d(FractionalMaxPool2dOptions(5).output_size(1))), "torch::nn::FractionalMaxPool2d()"); ASSERT_EQ( c10::str( FractionalMaxPool3d(FractionalMaxPool3dOptions(5).output_size(1))), "torch::nn::FractionalMaxPool3d()"); } TEST_F(ModulesTest, PrettyPrintLPPool) { ASSERT_EQ( c10::str(LPPool1d(2, 5)), "torch::nn::LPPool1d(norm_type=2, kernel_size=5, stride=5, ceil_mode=false)"); ASSERT_EQ( c10::str(LPPool1d(LPPool1dOptions(1, 2).stride(5).ceil_mode(true))), "torch::nn::LPPool1d(norm_type=1, kernel_size=2, stride=5, ceil_mode=true)"); ASSERT_EQ( c10::str(LPPool2d(2, std::vector({1, 2}))), "torch::nn::LPPool2d(norm_type=2, kernel_size=[1, 2], stride=[1, 2], ceil_mode=false)"); ASSERT_EQ( c10::str(LPPool2d(LPPool2dOptions(1, std::vector({3, 4})) .stride({5, 6}) .ceil_mode(true))), "torch::nn::LPPool2d(norm_type=1, kernel_size=[3, 4], stride=[5, 6], ceil_mode=true)"); ASSERT_EQ( c10::str(LPPool3d(2, std::vector({1, 2, 3}))), "torch::nn::LPPool3d(norm_type=2, kernel_size=[1, 2, 3], stride=[1, 2, 3], ceil_mode=false)"); ASSERT_EQ( c10::str(LPPool3d(LPPool3dOptions(1, std::vector({3, 4, 5})) .stride({5, 6, 7}) .ceil_mode(true))), "torch::nn::LPPool3d(norm_type=1, kernel_size=[3, 4, 5], stride=[5, 6, 7], ceil_mode=true)"); } TEST_F(ModulesTest, PrettyPrintAdaptiveMaxPool) { ASSERT_EQ( c10::str(AdaptiveMaxPool1d(5)), "torch::nn::AdaptiveMaxPool1d(output_size=5)"); const auto options = AdaptiveMaxPool1dOptions(3); ASSERT_EQ( c10::str(AdaptiveMaxPool1d(options)), "torch::nn::AdaptiveMaxPool1d(output_size=3)"); ASSERT_EQ( c10::str(AdaptiveMaxPool2d(5)), "torch::nn::AdaptiveMaxPool2d(output_size=[5, 5])"); ASSERT_EQ( c10::str(AdaptiveMaxPool2d(AdaptiveMaxPool2dOptions({5, 6}))), "torch::nn::AdaptiveMaxPool2d(output_size=[5, 6])"); ASSERT_EQ( c10::str(AdaptiveMaxPool2d(AdaptiveMaxPool2dOptions({5, std::nullopt}))), "torch::nn::AdaptiveMaxPool2d(output_size=[5, None])"); ASSERT_EQ( c10::str(AdaptiveMaxPool2d( AdaptiveMaxPool2dOptions({std::nullopt, std::nullopt}))), "torch::nn::AdaptiveMaxPool2d(output_size=[None, None])"); ASSERT_EQ( c10::str(AdaptiveMaxPool3d(5)), "torch::nn::AdaptiveMaxPool3d(output_size=[5, 5, 5])"); ASSERT_EQ( c10::str(AdaptiveMaxPool3d(AdaptiveMaxPool3dOptions({5, 6, 7}))), "torch::nn::AdaptiveMaxPool3d(output_size=[5, 6, 7])"); ASSERT_EQ( c10::str( AdaptiveMaxPool3d(AdaptiveMaxPool3dOptions({5, std::nullopt, 7}))), "torch::nn::AdaptiveMaxPool3d(output_size=[5, None, 7])"); ASSERT_EQ( c10::str(AdaptiveMaxPool3d(AdaptiveMaxPool3dOptions( {std::nullopt, std::nullopt, std::nullopt}))), "torch::nn::AdaptiveMaxPool3d(output_size=[None, None, None])"); } TEST_F(ModulesTest, PrettyPrintAdaptiveAvgPool) { ASSERT_EQ( c10::str(AdaptiveAvgPool1d(5)), "torch::nn::AdaptiveAvgPool1d(output_size=5)"); ASSERT_EQ( c10::str(AdaptiveAvgPool2d(5)), "torch::nn::AdaptiveAvgPool2d(output_size=[5, 5])"); ASSERT_EQ( c10::str(AdaptiveAvgPool2d(AdaptiveAvgPool2dOptions({5, 6}))), "torch::nn::AdaptiveAvgPool2d(output_size=[5, 6])"); ASSERT_EQ( c10::str(AdaptiveAvgPool2d(AdaptiveAvgPool2dOptions({5, std::nullopt}))), "torch::nn::AdaptiveAvgPool2d(output_size=[5, None])"); ASSERT_EQ( c10::str(AdaptiveAvgPool2d( AdaptiveAvgPool2dOptions({std::nullopt, std::nullopt}))), "torch::nn::AdaptiveAvgPool2d(output_size=[None, None])"); ASSERT_EQ( c10::str(AdaptiveAvgPool3d(5)), "torch::nn::AdaptiveAvgPool3d(output_size=[5, 5, 5])"); ASSERT_EQ( c10::str(AdaptiveAvgPool3d(AdaptiveAvgPool3dOptions({5, 6, 7}))), "torch::nn::AdaptiveAvgPool3d(output_size=[5, 6, 7])"); ASSERT_EQ( c10::str( AdaptiveAvgPool3d(AdaptiveAvgPool3dOptions({5, std::nullopt, 7}))), "torch::nn::AdaptiveAvgPool3d(output_size=[5, None, 7])"); ASSERT_EQ( c10::str(AdaptiveAvgPool3d(AdaptiveAvgPool3dOptions( {std::nullopt, std::nullopt, std::nullopt}))), "torch::nn::AdaptiveAvgPool3d(output_size=[None, None, None])"); } TEST_F(ModulesTest, PrettyPrintMaxUnpool) { ASSERT_EQ( c10::str(MaxUnpool1d(5)), "torch::nn::MaxUnpool1d(kernel_size=5, stride=5, padding=0)"); ASSERT_EQ( c10::str(MaxUnpool1d(MaxUnpool1dOptions(5).stride(3).padding(1))), "torch::nn::MaxUnpool1d(kernel_size=5, stride=3, padding=1)"); ASSERT_EQ( c10::str(MaxUnpool2d(5)), "torch::nn::MaxUnpool2d(kernel_size=[5, 5], stride=[5, 5], padding=[0, 0])"); ASSERT_EQ( c10::str(MaxUnpool2d(std::vector{5, 6})), "torch::nn::MaxUnpool2d(kernel_size=[5, 6], stride=[5, 6], padding=[0, 0])"); ASSERT_EQ( c10::str(MaxUnpool2d(MaxUnpool2dOptions(std::vector{5, 6}) .stride({3, 4}) .padding({1, 2}))), "torch::nn::MaxUnpool2d(kernel_size=[5, 6], stride=[3, 4], padding=[1, 2])"); } TEST_F(ModulesTest, PrettyPrintDropout) { ASSERT_EQ(c10::str(Dropout()), "torch::nn::Dropout(p=0.5, inplace=false)"); ASSERT_EQ( c10::str(Dropout(0.42)), "torch::nn::Dropout(p=0.42, inplace=false)"); ASSERT_EQ( c10::str(Dropout(DropoutOptions().p(0.42).inplace(true))), "torch::nn::Dropout(p=0.42, inplace=true)"); } TEST_F(ModulesTest, PrettyPrintDropout2d) { ASSERT_EQ( c10::str(Dropout2d()), "torch::nn::Dropout2d(p=0.5, inplace=false)"); ASSERT_EQ( c10::str(Dropout2d(0.42)), "torch::nn::Dropout2d(p=0.42, inplace=false)"); ASSERT_EQ( c10::str(Dropout2d(Dropout2dOptions().p(0.42).inplace(true))), "torch::nn::Dropout2d(p=0.42, inplace=true)"); } TEST_F(ModulesTest, PrettyPrintDropout3d) { ASSERT_EQ( c10::str(Dropout3d()), "torch::nn::Dropout3d(p=0.5, inplace=false)"); ASSERT_EQ( c10::str(Dropout3d(0.42)), "torch::nn::Dropout3d(p=0.42, inplace=false)"); ASSERT_EQ( c10::str(Dropout3d(Dropout3dOptions().p(0.42).inplace(true))), "torch::nn::Dropout3d(p=0.42, inplace=true)"); } TEST_F(ModulesTest, PrettyPrintFunctional) { ASSERT_EQ(c10::str(Functional(torch::relu)), "torch::nn::Functional()"); } TEST_F(ModulesTest, PrettyPrintBatchNorm1d) { ASSERT_EQ( c10::str(BatchNorm1d(BatchNorm1dOptions(4) .eps(0.5) .momentum(0.1) .affine(false) .track_running_stats(true))), "torch::nn::BatchNorm1d(4, eps=0.5, momentum=0.1, affine=false, track_running_stats=true)"); } TEST_F(ModulesTest, PrettyPrintBatchNorm2d) { ASSERT_EQ( c10::str(BatchNorm2d(BatchNorm2dOptions(4) .eps(0.5) .momentum(0.1) .affine(false) .track_running_stats(true))), "torch::nn::BatchNorm2d(4, eps=0.5, momentum=0.1, affine=false, track_running_stats=true)"); } TEST_F(ModulesTest, PrettyPrintBatchNorm3d) { ASSERT_EQ( c10::str(BatchNorm3d(BatchNorm3dOptions(4) .eps(0.5) .momentum(0.1) .affine(false) .track_running_stats(true))), "torch::nn::BatchNorm3d(4, eps=0.5, momentum=0.1, affine=false, track_running_stats=true)"); } TEST_F(ModulesTest, PrettyPrintInstanceNorm1d) { ASSERT_EQ( c10::str(InstanceNorm1d(InstanceNorm1dOptions(4) .eps(0.5) .momentum(0.1) .affine(false) .track_running_stats(true))), "torch::nn::InstanceNorm1d(4, eps=0.5, momentum=0.1, affine=false, track_running_stats=true)"); } TEST_F(ModulesTest, PrettyPrintInstanceNorm2d) { ASSERT_EQ( c10::str(InstanceNorm2d(InstanceNorm2dOptions(4) .eps(0.5) .momentum(0.1) .affine(false) .track_running_stats(true))), "torch::nn::InstanceNorm2d(4, eps=0.5, momentum=0.1, affine=false, track_running_stats=true)"); } TEST_F(ModulesTest, PrettyPrintInstanceNorm3d) { ASSERT_EQ( c10::str(InstanceNorm3d(InstanceNorm3dOptions(4) .eps(0.5) .momentum(0.1) .affine(false) .track_running_stats(true))), "torch::nn::InstanceNorm3d(4, eps=0.5, momentum=0.1, affine=false, track_running_stats=true)"); } TEST_F(ModulesTest, PrettyPrintLayerNorm) { ASSERT_EQ( c10::str(LayerNorm(LayerNormOptions({2, 2}))), "torch::nn::LayerNorm([2, 2], eps=1e-05, elementwise_affine=true)"); ASSERT_EQ( c10::str(LayerNorm( LayerNormOptions({2, 2}).elementwise_affine(false).eps(2e-5))), "torch::nn::LayerNorm([2, 2], eps=2e-05, elementwise_affine=false)"); } TEST_F(ModulesTest, PrettyPrintGroupNorm) { ASSERT_EQ( c10::str(GroupNorm(GroupNormOptions(2, 2))), "torch::nn::GroupNorm(2, 2, eps=1e-05, affine=true)"); ASSERT_EQ( c10::str(GroupNorm(GroupNormOptions(2, 2).eps(2e-5).affine(false))), "torch::nn::GroupNorm(2, 2, eps=2e-05, affine=false)"); } TEST_F(ModulesTest, PrettyPrintLocalResponseNorm) { ASSERT_EQ( c10::str(LocalResponseNorm(LocalResponseNormOptions(2))), "torch::nn::LocalResponseNorm(2, alpha=0.0001, beta=0.75, k=1)"); ASSERT_EQ( c10::str(LocalResponseNorm( LocalResponseNormOptions(2).alpha(0.0002).beta(0.85).k(2.))), "torch::nn::LocalResponseNorm(2, alpha=0.0002, beta=0.85, k=2)"); } TEST_F(ModulesTest, PrettyPrintEmbedding) { ASSERT_EQ( c10::str(Embedding(EmbeddingOptions(10, 2))), "torch::nn::Embedding(num_embeddings=10, embedding_dim=2)"); ASSERT_EQ( c10::str(Embedding(EmbeddingOptions(10, 2).padding_idx(3).max_norm(2))), "torch::nn::Embedding(num_embeddings=10, embedding_dim=2, padding_idx=3, max_norm=2)"); ASSERT_EQ( c10::str(Embedding(EmbeddingOptions(10, 2) .padding_idx(3) .max_norm(2) .norm_type(2.5) .scale_grad_by_freq(true) .sparse(true))), "torch::nn::Embedding(num_embeddings=10, embedding_dim=2, padding_idx=3, max_norm=2, norm_type=2.5, scale_grad_by_freq=true, sparse=true)"); } TEST_F(ModulesTest, PrettyPrintEmbeddingBag) { ASSERT_EQ( c10::str(EmbeddingBag(EmbeddingBagOptions(10, 2))), "torch::nn::EmbeddingBag(num_embeddings=10, embedding_dim=2)"); ASSERT_EQ( c10::str(EmbeddingBag(EmbeddingBagOptions(10, 2).max_norm(2))), "torch::nn::EmbeddingBag(num_embeddings=10, embedding_dim=2, max_norm=2)"); ASSERT_EQ( c10::str(EmbeddingBag(EmbeddingBagOptions(10, 2) .max_norm(2) .norm_type(2.5) .scale_grad_by_freq(true) .sparse(true))), "torch::nn::EmbeddingBag(num_embeddings=10, embedding_dim=2, max_norm=2, norm_type=2.5, scale_grad_by_freq=true, sparse=true)"); ASSERT_EQ( c10::str(EmbeddingBag(EmbeddingBagOptions(10, 2) .max_norm(2) .norm_type(2.5) .scale_grad_by_freq(true) .sparse(true) .mode(torch::kSum))), "torch::nn::EmbeddingBag(num_embeddings=10, embedding_dim=2, max_norm=2, norm_type=2.5, scale_grad_by_freq=true, sparse=true, mode=kSum)"); ASSERT_EQ( c10::str(EmbeddingBag(EmbeddingBagOptions(10, 2) .max_norm(2) .norm_type(2.5) .scale_grad_by_freq(true) .sparse(true) .mode(torch::kSum) .padding_idx(5))), "torch::nn::EmbeddingBag(num_embeddings=10, embedding_dim=2, max_norm=2, norm_type=2.5, scale_grad_by_freq=true, sparse=true, mode=kSum, padding_idx=5)"); } TEST_F(ModulesTest, PrettyPrintL1Loss) { ASSERT_EQ(c10::str(L1Loss()), "torch::nn::L1Loss()"); } TEST_F(ModulesTest, PrettyPrintKLDivLoss) { ASSERT_EQ(c10::str(KLDivLoss()), "torch::nn::KLDivLoss()"); } TEST_F(ModulesTest, PrettyPrintMSELoss) { ASSERT_EQ(c10::str(MSELoss()), "torch::nn::MSELoss()"); } TEST_F(ModulesTest, PrettyPrintBCELoss) { ASSERT_EQ(c10::str(BCELoss()), "torch::nn::BCELoss()"); } TEST_F(ModulesTest, PrettyPrintHingeEmbeddingLoss) { ASSERT_EQ( c10::str(HingeEmbeddingLoss(HingeEmbeddingLossOptions().margin(4))), "torch::nn::HingeEmbeddingLoss(margin=4)"); } TEST_F(ModulesTest, PrettyPrintCosineEmbeddingLoss) { ASSERT_EQ( c10::str(CosineEmbeddingLoss(CosineEmbeddingLossOptions().margin(0.25))), "torch::nn::CosineEmbeddingLoss(margin=0.25)"); } TEST_F(ModulesTest, PrettyPrintTripletMarginLoss) { ASSERT_EQ( c10::str(TripletMarginLoss( TripletMarginLossOptions().margin(3).p(2).eps(1e-06).swap(false))), "torch::nn::TripletMarginLoss(margin=3, p=2, eps=1e-06, swap=false)"); } TEST_F(ModulesTest, PrettyPrintTripletMarginWithDistanceLoss) { auto distanceOptions = TripletMarginWithDistanceLossOptions() .distance_function([&](const torch::Tensor& x, const torch::Tensor& y) { return torch::pairwise_distance(x, y, 2.0, 1e-6); }) .margin(1.5) .swap(true) .reduction(torch::kMean); ASSERT_EQ( c10::str(TripletMarginWithDistanceLoss(distanceOptions)), "torch::nn::TripletMarginWithDistanceLoss(margin=1.5, swap=true)"); } TEST_F(ModulesTest, PrettyPrintNLLLoss) { ASSERT_EQ(c10::str(NLLLoss()), "torch::nn::NLLLoss()"); } TEST_F(ModulesTest, PrettyPrinCrossEntropyLoss) { ASSERT_EQ(c10::str(CrossEntropyLoss()), "torch::nn::CrossEntropyLoss()"); } TEST_F(ModulesTest, PrettyPrintMultiLabelMarginLoss) { ASSERT_EQ( c10::str(MultiLabelMarginLoss()), "torch::nn::MultiLabelMarginLoss()"); } TEST_F(ModulesTest, PrettyPrintMultiLabelSoftMarginLoss) { ASSERT_EQ( c10::str(MultiLabelSoftMarginLoss()), "torch::nn::MultiLabelSoftMarginLoss()"); } TEST_F(ModulesTest, PrettyPrintSoftMarginLoss) { ASSERT_EQ(c10::str(SoftMarginLoss()), "torch::nn::SoftMarginLoss()"); } TEST_F(ModulesTest, PrettyPrintCosineSimilarity) { ASSERT_EQ( c10::str(CosineSimilarity()), "torch::nn::CosineSimilarity(dim=1, eps=1e-08)"); ASSERT_EQ( c10::str(CosineSimilarity(CosineSimilarityOptions().dim(0).eps(0.5))), "torch::nn::CosineSimilarity(dim=0, eps=0.5)"); } TEST_F(ModulesTest, PrettyPrintPairwiseDistance) { ASSERT_EQ( c10::str(PairwiseDistance()), "torch::nn::PairwiseDistance(p=2, eps=1e-06, keepdim=false)"); ASSERT_EQ( c10::str(PairwiseDistance( PairwiseDistanceOptions().p(3).eps(0.5).keepdim(true))), "torch::nn::PairwiseDistance(p=3, eps=0.5, keepdim=true)"); } TEST_F(ModulesTest, PrettyPrintReflectionPad) { ASSERT_EQ( c10::str(ReflectionPad1d(ReflectionPad1dOptions(2))), "torch::nn::ReflectionPad1d(padding=[2, 2])"); ASSERT_EQ( c10::str(ReflectionPad1d(ReflectionPad1dOptions({3, 1}))), "torch::nn::ReflectionPad1d(padding=[3, 1])"); ASSERT_EQ( c10::str(ReflectionPad2d(ReflectionPad2dOptions(2))), "torch::nn::ReflectionPad2d(padding=[2, 2, 2, 2])"); ASSERT_EQ( c10::str(ReflectionPad2d(ReflectionPad2dOptions({1, 1, 2, 0}))), "torch::nn::ReflectionPad2d(padding=[1, 1, 2, 0])"); } TEST_F(ModulesTest, PrettyPrintReplicationPad) { ASSERT_EQ( c10::str(ReplicationPad1d(ReplicationPad1dOptions(2))), "torch::nn::ReplicationPad1d(padding=[2, 2])"); ASSERT_EQ( c10::str(ReplicationPad1d(ReplicationPad1dOptions({3, 1}))), "torch::nn::ReplicationPad1d(padding=[3, 1])"); ASSERT_EQ( c10::str(ReplicationPad2d(ReplicationPad2dOptions(2))), "torch::nn::ReplicationPad2d(padding=[2, 2, 2, 2])"); ASSERT_EQ( c10::str(ReplicationPad2d(ReplicationPad2dOptions({1, 1, 2, 0}))), "torch::nn::ReplicationPad2d(padding=[1, 1, 2, 0])"); ASSERT_EQ( c10::str(ReplicationPad3d(ReplicationPad3dOptions(1))), "torch::nn::ReplicationPad3d(padding=[1, 1, 1, 1, 1, 1])"); ASSERT_EQ( c10::str(ReplicationPad3d(ReplicationPad3dOptions({1, 2, 1, 2, 1, 2}))), "torch::nn::ReplicationPad3d(padding=[1, 2, 1, 2, 1, 2])"); } TEST_F(ModulesTest, PrettyPrintZeroPad) { ASSERT_EQ( c10::str(ZeroPad1d(ZeroPad1dOptions(2))), "torch::nn::ZeroPad1d(padding=[2, 2])"); ASSERT_EQ( c10::str(ZeroPad1d(ZeroPad1dOptions({3, 1}))), "torch::nn::ZeroPad1d(padding=[3, 1])"); ASSERT_EQ( c10::str(ZeroPad2d(ZeroPad2dOptions(2))), "torch::nn::ZeroPad2d(padding=[2, 2, 2, 2])"); ASSERT_EQ( c10::str(ZeroPad2d(ZeroPad2dOptions({1, 1, 2, 0}))), "torch::nn::ZeroPad2d(padding=[1, 1, 2, 0])"); ASSERT_EQ( c10::str(ZeroPad3d(ZeroPad3dOptions(1))), "torch::nn::ZeroPad3d(padding=[1, 1, 1, 1, 1, 1])"); ASSERT_EQ( c10::str(ZeroPad3d(ZeroPad3dOptions({1, 2, 1, 2, 1, 2}))), "torch::nn::ZeroPad3d(padding=[1, 2, 1, 2, 1, 2])"); } TEST_F(ModulesTest, PrettyPrintConstantPad) { ASSERT_EQ( c10::str(ConstantPad1d(ConstantPad1dOptions(2, 3.5))), "torch::nn::ConstantPad1d(padding=[2, 2], value=3.5)"); ASSERT_EQ( c10::str(ConstantPad1d(ConstantPad1dOptions({3, 1}, 3.5))), "torch::nn::ConstantPad1d(padding=[3, 1], value=3.5)"); ASSERT_EQ( c10::str(ConstantPad2d(ConstantPad2dOptions(2, 3.5))), "torch::nn::ConstantPad2d(padding=[2, 2, 2, 2], value=3.5)"); ASSERT_EQ( c10::str(ConstantPad2d(ConstantPad2dOptions({3, 0, 2, 1}, 3.5))), "torch::nn::ConstantPad2d(padding=[3, 0, 2, 1], value=3.5)"); ASSERT_EQ( c10::str(ConstantPad3d(ConstantPad3dOptions(1, 3.5))), "torch::nn::ConstantPad3d(padding=[1, 1, 1, 1, 1, 1], value=3.5)"); ASSERT_EQ( c10::str(ConstantPad3d(ConstantPad3dOptions({1, 2, 1, 2, 1, 2}, 3.5))), "torch::nn::ConstantPad3d(padding=[1, 2, 1, 2, 1, 2], value=3.5)"); } TEST_F(ModulesTest, PrettyPrintNestedModel) { struct InnerTestModule : torch::nn::Module { InnerTestModule() : torch::nn::Module("InnerTestModule"), fc(register_module("fc", torch::nn::Linear(3, 4))), table(register_module("table", torch::nn::Embedding(10, 2))) {} torch::nn::Linear fc; torch::nn::Embedding table; }; struct TestModule : torch::nn::Module { TestModule() : torch::nn::Module("TestModule"), fc(register_module("fc", torch::nn::Linear(4, 5))), table(register_module( "table", torch::nn::Embedding(EmbeddingOptions(10, 2)))), inner(register_module("inner", std::make_shared())) { } torch::nn::Linear fc; torch::nn::Embedding table; std::shared_ptr inner; }; ASSERT_EQ( c10::str(TestModule{}), "TestModule(\n" " (fc): torch::nn::Linear(in_features=4, out_features=5, bias=true)\n" " (table): torch::nn::Embedding(num_embeddings=10, embedding_dim=2)\n" " (inner): InnerTestModule(\n" " (fc): torch::nn::Linear(in_features=3, out_features=4, bias=true)\n" " (table): torch::nn::Embedding(num_embeddings=10, embedding_dim=2)\n" " )\n" ")"); } TEST_F(ModulesTest, PrettyPrintELU) { ASSERT_EQ(c10::str(ELU()), "torch::nn::ELU(alpha=1)"); ASSERT_EQ( c10::str(ELU(ELUOptions().alpha(42.42).inplace(true))), "torch::nn::ELU(alpha=42.42, inplace=true)"); } TEST_F(ModulesTest, PrettyPrintSELU) { ASSERT_EQ(c10::str(SELU()), "torch::nn::SELU()"); ASSERT_EQ( c10::str(SELU(SELUOptions().inplace(true))), "torch::nn::SELU(inplace=true)"); } TEST_F(ModulesTest, PrettyPrintGLU) { ASSERT_EQ(c10::str(GLU()), "torch::nn::GLU(dim=-1)"); ASSERT_EQ(c10::str(GLU(1)), "torch::nn::GLU(dim=1)"); } TEST_F(ModulesTest, PrettyPrintHardshrink) { ASSERT_EQ(c10::str(Hardshrink()), "torch::nn::Hardshrink(0.5)"); ASSERT_EQ( c10::str(Hardshrink(HardshrinkOptions().lambda(42.42))), "torch::nn::Hardshrink(42.42)"); } TEST_F(ModulesTest, PrettyPrintHardtanh) { ASSERT_EQ(c10::str(Hardtanh()), "torch::nn::Hardtanh(min_val=-1, max_val=1)"); ASSERT_EQ( c10::str(Hardtanh( HardtanhOptions().min_val(-42.42).max_val(0.42).inplace(true))), "torch::nn::Hardtanh(min_val=-42.42, max_val=0.42, inplace=true)"); } TEST_F(ModulesTest, PrettyPrintLeakyReLU) { ASSERT_EQ(c10::str(LeakyReLU()), "torch::nn::LeakyReLU(negative_slope=0.01)"); ASSERT_EQ( c10::str( LeakyReLU(LeakyReLUOptions().negative_slope(0.42).inplace(true))), "torch::nn::LeakyReLU(negative_slope=0.42, inplace=true)"); } TEST_F(ModulesTest, PrettyPrintLogSigmoid) { ASSERT_EQ(c10::str(LogSigmoid()), "torch::nn::LogSigmoid()"); } TEST_F(ModulesTest, PrettyPrintSoftmax) { ASSERT_EQ(c10::str(Softmax(SoftmaxOptions(1))), "torch::nn::Softmax(dim=1)"); } TEST_F(ModulesTest, PrettyPrintSoftmin) { ASSERT_EQ(c10::str(Softmin(SoftminOptions(1))), "torch::nn::Softmin(dim=1)"); } TEST_F(ModulesTest, PrettyPrintLogSoftmax) { ASSERT_EQ( c10::str(LogSoftmax(LogSoftmaxOptions(1))), "torch::nn::LogSoftmax(dim=1)"); } TEST_F(ModulesTest, PrettyPrintSoftmax2d) { ASSERT_EQ(c10::str(Softmax2d()), "torch::nn::Softmax2d()"); } TEST_F(ModulesTest, PrettyPrintPReLU) { ASSERT_EQ(c10::str(PReLU()), "torch::nn::PReLU(num_parameters=1)"); ASSERT_EQ( c10::str(PReLU(PReLUOptions().num_parameters(42))), "torch::nn::PReLU(num_parameters=42)"); } TEST_F(ModulesTest, PrettyPrintReLU) { ASSERT_EQ(c10::str(ReLU()), "torch::nn::ReLU()"); ASSERT_EQ( c10::str(ReLU(ReLUOptions().inplace(true))), "torch::nn::ReLU(inplace=true)"); ASSERT_EQ(c10::str(ReLU(/*inplace=*/true)), "torch::nn::ReLU(inplace=true)"); } TEST_F(ModulesTest, PrettyPrintReLU6) { ASSERT_EQ(c10::str(ReLU6()), "torch::nn::ReLU6()"); ASSERT_EQ( c10::str(ReLU6(ReLU6Options().inplace(true))), "torch::nn::ReLU6(inplace=true)"); ASSERT_EQ( c10::str(ReLU6(/*inplace=*/true)), "torch::nn::ReLU6(inplace=true)"); } TEST_F(ModulesTest, PrettyPrintRReLU) { ASSERT_EQ(c10::str(RReLU()), "torch::nn::RReLU(lower=0.125, upper=0.333333)"); ASSERT_EQ( c10::str(RReLU(RReLUOptions().lower(0.24).upper(0.42).inplace(true))), "torch::nn::RReLU(lower=0.24, upper=0.42, inplace=true)"); } TEST_F(ModulesTest, PrettyPrintCELU) { ASSERT_EQ(c10::str(CELU()), "torch::nn::CELU(alpha=1)"); ASSERT_EQ( c10::str(CELU(CELUOptions().alpha(42.42).inplace(true))), "torch::nn::CELU(alpha=42.42, inplace=true)"); } TEST_F(ModulesTest, PrettyPrintSigmoid) { ASSERT_EQ(c10::str(Sigmoid()), "torch::nn::Sigmoid()"); } TEST_F(ModulesTest, PrettyPrintPixelShuffle) { ASSERT_EQ( c10::str(PixelShuffle(PixelShuffleOptions(5))), "torch::nn::PixelShuffle(upscale_factor=5)"); } TEST_F(ModulesTest, PrettyPrintPixelUnshuffle) { ASSERT_EQ( c10::str(PixelUnshuffle(PixelUnshuffleOptions(5))), "torch::nn::PixelUnshuffle(downscale_factor=5)"); } TEST_F(ModulesTest, PrettyPrintSoftplus) { ASSERT_EQ(c10::str(Softplus()), "torch::nn::Softplus(beta=1, threshold=20)"); ASSERT_EQ( c10::str(Softplus(SoftplusOptions().beta(0.24).threshold(42.42))), "torch::nn::Softplus(beta=0.24, threshold=42.42)"); } TEST_F(ModulesTest, PrettyPrintSoftshrink) { ASSERT_EQ(c10::str(Softshrink()), "torch::nn::Softshrink(0.5)"); ASSERT_EQ( c10::str(Softshrink(SoftshrinkOptions(42.42))), "torch::nn::Softshrink(42.42)"); } TEST_F(ModulesTest, PrettyPrintSoftsign) { ASSERT_EQ(c10::str(Softsign()), "torch::nn::Softsign()"); } TEST_F(ModulesTest, PrettyPrintTanh) { ASSERT_EQ(c10::str(Tanh()), "torch::nn::Tanh()"); } TEST_F(ModulesTest, PrettyPrintTanhshrink) { ASSERT_EQ(c10::str(Tanhshrink()), "torch::nn::Tanhshrink()"); } TEST_F(ModulesTest, PrettyPrintThreshold) { ASSERT_EQ( c10::str(Threshold(24.24, 42.42)), "torch::nn::Threshold(threshold=24.24, value=42.42)"); ASSERT_EQ( c10::str(Threshold(ThresholdOptions(42.42, 24.24).inplace(true))), "torch::nn::Threshold(threshold=42.42, value=24.24, inplace=true)"); } TEST_F(ModulesTest, PrettyPrintCTCLoss) { ASSERT_EQ(c10::str(CTCLoss()), "torch::nn::CTCLoss()"); ASSERT_EQ( c10::str( CTCLoss(CTCLossOptions().blank(42).zero_infinity(false).reduction( torch::kSum))), "torch::nn::CTCLoss()"); } TEST_F(ModulesTest, PrettyPrintPoissonNLLLoss) { ASSERT_EQ(c10::str(PoissonNLLLoss()), "torch::nn::PoissonNLLLoss()"); ASSERT_EQ( c10::str(PoissonNLLLoss(PoissonNLLLossOptions() .log_input(false) .full(true) .eps(0.42) .reduction(torch::kSum))), "torch::nn::PoissonNLLLoss()"); } TEST_F(ModulesTest, PrettyPrintMarginRankingLoss) { ASSERT_EQ(c10::str(MarginRankingLoss()), "torch::nn::MarginRankingLoss()"); ASSERT_EQ( c10::str(MarginRankingLoss( MarginRankingLossOptions().margin(0.5).reduction(torch::kSum))), "torch::nn::MarginRankingLoss()"); } TEST_F(ModulesTest, PrettyPrintCrossMapLRN2d) { ASSERT_EQ( c10::str(CrossMapLRN2d(4)), "torch::nn::CrossMapLRN2d(4, alpha=0.0001, beta=0.75, k=1)"); ASSERT_EQ( c10::str( CrossMapLRN2d(CrossMapLRN2dOptions(3).alpha(1e-5).beta(0.1).k(10))), "torch::nn::CrossMapLRN2d(3, alpha=1e-05, beta=0.1, k=10)"); } TEST_F(ModulesTest, PrettyPrintAlphaDropout) { ASSERT_EQ( c10::str(AlphaDropout()), "torch::nn::AlphaDropout(p=0.5, inplace=false)"); ASSERT_EQ( c10::str(AlphaDropout(AlphaDropoutOptions(0.2))), "torch::nn::AlphaDropout(p=0.2, inplace=false)"); ASSERT_EQ( c10::str(AlphaDropout(AlphaDropoutOptions(0.2).inplace(true))), "torch::nn::AlphaDropout(p=0.2, inplace=true)"); } TEST_F(ModulesTest, PrettyPrintFeatureAlphaDropout) { ASSERT_EQ( c10::str(FeatureAlphaDropout()), "torch::nn::FeatureAlphaDropout(p=0.5, inplace=false)"); ASSERT_EQ( c10::str(FeatureAlphaDropout(FeatureAlphaDropoutOptions(0.2))), "torch::nn::FeatureAlphaDropout(p=0.2, inplace=false)"); ASSERT_EQ( c10::str( FeatureAlphaDropout(FeatureAlphaDropoutOptions(0.2).inplace(true))), "torch::nn::FeatureAlphaDropout(p=0.2, inplace=true)"); } TEST_F(ModulesTest, PrettyPrintBCEWithLogitsLoss) { ASSERT_EQ(c10::str(BCEWithLogitsLoss()), "torch::nn::BCEWithLogitsLoss()"); ASSERT_EQ( c10::str(BCEWithLogitsLoss(BCEWithLogitsLossOptions() .weight(torch::ones({3, 3})) .pos_weight(torch::ones({3, 3})) .reduction(torch::kSum))), "torch::nn::BCEWithLogitsLoss()"); } TEST_F(ModulesTest, PrettyPrintMultiheadAttention) { ASSERT_EQ( c10::str(MultiheadAttention(20, 10)), "torch::nn::MultiheadAttention(\n (out_proj): torch::nn::Linear(in_features=20, out_features=20, bias=true)\n)"); ASSERT_EQ( c10::str( MultiheadAttention(MultiheadAttentionOptions(20, 10).bias(false))), "torch::nn::MultiheadAttention(\n (out_proj): torch::nn::Linear(in_features=20, out_features=20, bias=false)\n)"); } TEST_F(ModulesTest, PrettyPrintRNNCell) { ASSERT_EQ(c10::str(RNNCell(20, 10)), "torch::nn::RNNCell(20, 10)"); ASSERT_EQ( c10::str(RNNCell( RNNCellOptions(20, 10).bias(false).nonlinearity(torch::kTanh))), "torch::nn::RNNCell(20, 10, bias=false)"); ASSERT_EQ( c10::str(RNNCell( RNNCellOptions(20, 10).bias(false).nonlinearity(torch::kReLU))), "torch::nn::RNNCell(20, 10, bias=false, nonlinearity=kReLU)"); } TEST_F(ModulesTest, PrettyPrintLSTMCell) { ASSERT_EQ(c10::str(LSTMCell(20, 10)), "torch::nn::LSTMCell(20, 10)"); ASSERT_EQ( c10::str(LSTMCell(LSTMCellOptions(20, 10).bias(false))), "torch::nn::LSTMCell(20, 10, bias=false)"); } TEST_F(ModulesTest, PrettyPrintGRUCell) { ASSERT_EQ(c10::str(GRUCell(20, 10)), "torch::nn::GRUCell(20, 10)"); ASSERT_EQ( c10::str(GRUCell(GRUCellOptions(20, 10).bias(false))), "torch::nn::GRUCell(20, 10, bias=false)"); } TEST_F(ModulesTest, PrettyPrintAdaptiveLogSoftmaxWithLoss) { { AdaptiveLogSoftmaxWithLoss asfm( AdaptiveLogSoftmaxWithLossOptions(8, 4, {2}).div_value(2.)); ASSERT_EQ( c10::str(asfm), "torch::nn::AdaptiveLogSoftmaxWithLoss(\n" " (head): torch::nn::Linear(in_features=8, out_features=3, bias=false)\n" " (tail): torch::nn::ModuleList(\n" " (0): torch::nn::Sequential(\n" " (0): torch::nn::Linear(in_features=8, out_features=4, bias=false)\n" " (1): torch::nn::Linear(in_features=4, out_features=2, bias=false)\n" " )\n" " )\n" ")"); } { AdaptiveLogSoftmaxWithLoss asfm( AdaptiveLogSoftmaxWithLossOptions(8, 10, {4, 8}) .div_value(2.) .head_bias(true)); ASSERT_EQ( c10::str(asfm), "torch::nn::AdaptiveLogSoftmaxWithLoss(\n" " (head): torch::nn::Linear(in_features=8, out_features=6, bias=true)\n" " (tail): torch::nn::ModuleList(\n" " (0): torch::nn::Sequential(\n" " (0): torch::nn::Linear(in_features=8, out_features=4, bias=false)\n" " (1): torch::nn::Linear(in_features=4, out_features=4, bias=false)\n" " )\n" " (1): torch::nn::Sequential(\n" " (0): torch::nn::Linear(in_features=8, out_features=2, bias=false)\n" " (1): torch::nn::Linear(in_features=2, out_features=2, bias=false)\n" " )\n" " )\n" ")"); } }