"""Script to generate baseline values from PyTorch initialization algorithms""" import sys import torch HEADER = """ #include #include namespace expected_parameters { """ FOOTER = "} // namespace expected_parameters" PARAMETERS = "inline std::vector> {}() {{" INITIALIZERS = { "Xavier_Uniform": lambda w: torch.nn.init.xavier_uniform(w), "Xavier_Normal": lambda w: torch.nn.init.xavier_normal(w), "Kaiming_Normal": lambda w: torch.nn.init.kaiming_normal(w), "Kaiming_Uniform": lambda w: torch.nn.init.kaiming_uniform(w), } def emit(initializer_parameter_map): # Don't write generated with an @ in front, else this file is recognized as generated. print("// @{} from {}".format("generated", __file__)) print(HEADER) for initializer_name, weights in initializer_parameter_map.items(): print(PARAMETERS.format(initializer_name)) print(" return {") for sample in weights: print(" {") for parameter in sample: parameter_values = "{{{}}}".format(", ".join(map(str, parameter))) print(f" torch::tensor({parameter_values}),") print(" },") print(" };") print("}\n") print(FOOTER) def run(initializer): torch.manual_seed(0) layer1 = torch.nn.Linear(7, 15) INITIALIZERS[initializer](layer1.weight) layer2 = torch.nn.Linear(15, 15) INITIALIZERS[initializer](layer2.weight) layer3 = torch.nn.Linear(15, 2) INITIALIZERS[initializer](layer3.weight) weight1 = layer1.weight.data.numpy() weight2 = layer2.weight.data.numpy() weight3 = layer3.weight.data.numpy() return [weight1, weight2, weight3] def main(): initializer_parameter_map = {} for initializer in INITIALIZERS.keys(): sys.stderr.write(f"Evaluating {initializer} ...\n") initializer_parameter_map[initializer] = run(initializer) emit(initializer_parameter_map) if __name__ == "__main__": main()