#include #include #include #include #include #include #include void check_exact_values( const std::vector& parameters, const std::vector>& expected_parameters) { ASSERT_EQ(parameters.size(), expected_parameters.size()); for (const auto i : c10::irange(parameters.size())) { auto layerParameters = parameters[i]; auto expectedLayerParameters = expected_parameters[i]; if (static_cast(layerParameters.size(0)) != expectedLayerParameters.size()) { std::cout << "layer #" << i << " layerParameters size: " << layerParameters.size(0) << " != " << " expectedLayerParameters size: " << expectedLayerParameters.size() << std::endl; ASSERT_TRUE(false); } for (const auto p : c10::irange(layerParameters.size(0))) { // Always compare using double dtype, regardless of the original dtype of // the tensors auto tensor = layerParameters[p].to(torch::kFloat64); auto expectedTensor = expectedLayerParameters[p].to(torch::kFloat64); if (!tensor.allclose(expectedTensor, /*rtol=*/1e-3, /*atol=*/5e-4)) { std::cout << "layer " << i << ": " << tensor << " != " << expectedTensor << " (parameter " << p << ")" << std::endl; ASSERT_TRUE(false); } } } } void check_initializer_against_baseline( std::function initializer, std::vector> expected) { torch::manual_seed(0); auto layer1 = torch::nn::Linear(7, 15); initializer(layer1->weight); layer1->to(torch::kFloat64); auto layer2 = torch::nn::Linear(15, 15); initializer(layer2->weight); layer2->to(torch::kFloat64); auto layer3 = torch::nn::Linear(15, 2); initializer(layer3->weight); layer3->to(torch::kFloat64); auto parameters = std::vector{ layer1->weight, layer2->weight, layer3->weight, }; check_exact_values(parameters, expected); } TEST(InitTest, ProducesPyTorchValues_XavierUniform) { auto expected = expected_parameters::Xavier_Uniform(); auto initializer = [](torch::Tensor tensor) { torch::nn::init::xavier_uniform_(tensor); }; check_initializer_against_baseline(initializer, expected); } TEST(InitTest, ProducesPyTorchValues_XavierNormal) { auto expected = expected_parameters::Xavier_Normal(); auto initializer = [](torch::Tensor tensor) { torch::nn::init::xavier_normal_(tensor); }; check_initializer_against_baseline(initializer, expected); } TEST(InitTest, ProducesPyTorchValues_KaimingNormal) { auto expected = expected_parameters::Kaiming_Normal(); auto initializer = [](torch::Tensor tensor) { torch::nn::init::kaiming_normal_(tensor); }; check_initializer_against_baseline(initializer, expected); } TEST(InitTest, ProducesPyTorchValues_KaimingUniform) { auto expected = expected_parameters::Kaiming_Uniform(); auto initializer = [](torch::Tensor tensor) { torch::nn::init::kaiming_uniform_(tensor); }; check_initializer_against_baseline(initializer, expected); } TEST(InitTest, CanInitializeTensorThatRequiresGrad) { auto tensor = torch::empty({3, 4}, torch::requires_grad()); ASSERT_THROWS_WITH( tensor.fill_(1), "a leaf Variable that requires grad " "is being used in an in-place operation"); ASSERT_EQ(torch::nn::init::ones_(tensor).sum().item(), 12); } TEST(InitTest, CalculateGainWithTanh) { double gain = torch::nn::init::calculate_gain(torch::kTanh); ASSERT_DOUBLE_EQ(gain, 5.0 / 3.0); } TEST(InitTest, CalculateGainWithRelu) { double gain = torch::nn::init::calculate_gain(torch::kReLU); ASSERT_DOUBLE_EQ(gain, std::sqrt(2.0)); } TEST(InitTest, CalculateGainWithLeakyRelu) { double gain = torch::nn::init::calculate_gain(torch::kLeakyReLU); ASSERT_DOUBLE_EQ(gain, std::sqrt(2.0 / (1 + pow(0.01, 2)))); } TEST(InitTest, CanInitializeCnnWithOrthogonal) { torch::nn::Conv2d conv_layer(torch::nn::Conv2dOptions(3, 2, 3).stride(2)); torch::nn::init::orthogonal_(conv_layer->named_parameters()["weight"]); }