#include #include #include #include namespace F = torch::nn::functional; using namespace torch::nn; struct FunctionalTest : torch::test::SeedingFixture {}; TEST_F(FunctionalTest, Conv1d) { auto x = torch::arange(30, torch::dtype(torch::kFloat).requires_grad(true)) .reshape({2, 3, 5}); auto weight = torch::arange(18, torch::dtype(torch::kFloat).requires_grad(true)) .reshape({2, 3, 3}); auto y = F::conv1d(x, weight, F::Conv1dFuncOptions().stride(1)); auto expected = torch::tensor( {{{312., 348., 384.}, {798., 915., 1032.}}, {{852., 888., 924.}, {2553., 2670., 2787.}}}, torch::kFloat); ASSERT_TRUE(torch::allclose(y, expected)); auto y_no_options = F::conv1d(x, weight); ASSERT_TRUE(torch::allclose(y_no_options, expected)); } TEST_F(FunctionalTest, Conv2dEven) { auto x = torch::arange(75, torch::dtype(torch::kFloat).requires_grad(true)) .reshape({1, 3, 5, 5}); auto weight = torch::arange(54, torch::dtype(torch::kFloat).requires_grad(true)) .reshape({2, 3, 3, 3}); auto y = F::conv2d(x, weight, F::Conv2dFuncOptions().stride(1)); auto expected = torch::tensor( {{{{15219., 15570., 15921.}, {16974., 17325., 17676.}, {18729., 19080., 19431.}}, {{37818., 38898., 39978.}, {43218., 44298., 45378.}, {48618., 49698., 50778.}}}}, torch::kFloat); ASSERT_TRUE(torch::allclose(y, expected)); auto y_no_options = F::conv2d(x, weight); ASSERT_TRUE(torch::allclose(y_no_options, expected)); } TEST_F(FunctionalTest, Conv2dUneven) { auto x = torch::arange(60, torch::dtype(torch::kFloat).requires_grad(true)) .reshape({1, 3, 5, 4}); auto weight = torch::arange(36, torch::dtype(torch::kFloat).requires_grad(true)) .reshape({2, 3, 3, 2}); auto y = F::conv2d(x, weight, F::Conv2dFuncOptions().stride(1)); auto expected = torch::tensor( {{{{5289., 5442., 5595.}, {5901., 6054., 6207.}, {6513., 6666., 6819.}}, {{13227., 13704., 14181.}, {15135., 15612., 16089.}, {17043., 17520., 17997.}}}}, torch::kFloat); ASSERT_TRUE(torch::allclose(y, expected)); auto y_no_options = F::conv2d(x, weight); ASSERT_TRUE(torch::allclose(y_no_options, expected)); } TEST_F(FunctionalTest, Conv3d) { auto x = torch::arange(375, torch::dtype(torch::kFloat).requires_grad(true)) .reshape({1, 3, 5, 5, 5}); auto weight = torch::arange(162, torch::dtype(torch::kFloat).requires_grad(true)) .reshape({2, 3, 3, 3, 3}); auto y = F::conv3d(x, weight, F::Conv3dFuncOptions().stride(1)); auto expected = torch::tensor( {{{{{700704., 703944., 707184.}, {716904., 720144., 723384.}, {733104., 736344., 739584.}}, {{781704., 784944., 788184.}, {797904., 801144., 804384.}, {814104., 817344., 820584.}}, {{862704., 865944., 869184.}, {878904., 882144., 885384.}, {895104., 898344., 901584.}}}, {{{1724220., 1734021., 1743822.}, {1773225., 1783026., 1792827.}, {1822230., 1832031., 1841832.}}, {{1969245., 1979046., 1988847.}, {2018250., 2028051., 2037852.}, {2067255., 2077056., 2086857.}}, {{2214270., 2224071., 2233872.}, {2263275., 2273076., 2282877.}, {2312280., 2322081., 2331882.}}}}}, torch::kFloat); ASSERT_TRUE(torch::allclose(y, expected)); auto y_no_options = F::conv3d(x, weight); ASSERT_TRUE(torch::allclose(y_no_options, expected)); } TEST_F(FunctionalTest, MaxPool1d) { auto x = torch::ones({1, 1, 5}); auto y = F::max_pool1d(x, F::MaxPool1dFuncOptions(3).stride(2)); ASSERT_EQ(y.ndimension(), 3); ASSERT_TRUE(torch::allclose(y, torch::ones({1, 1, 2}))); ASSERT_EQ(y.sizes(), std::vector({1, 1, 2})); } TEST_F(FunctionalTest, MaxPool2d) { auto x = torch::ones({2, 5, 5}); auto y = F::max_pool2d(x, F::MaxPool2dFuncOptions(3).stride(2)); ASSERT_EQ(y.ndimension(), 3); ASSERT_TRUE(torch::allclose(y, torch::ones({2, 2, 2}))); ASSERT_EQ(y.sizes(), std::vector({2, 2, 2})); } TEST_F(FunctionalTest, MaxPool2dBackward) { auto input = torch::rand( {1, 2, 4, 4}, torch::dtype(torch::kFloat).requires_grad(true)); auto output = F::max_pool2d(input, F::MaxPool2dFuncOptions(2)); auto s = output.sum(); s.backward(); ASSERT_TRUE(input.sizes() == input.grad().sizes()); } TEST_F(FunctionalTest, MaxPool3d) { auto x = torch::ones({2, 5, 5, 5}); auto y = F::max_pool3d(x, F::MaxPool3dFuncOptions(3).stride(2)); ASSERT_EQ(y.ndimension(), 4); ASSERT_TRUE(torch::allclose(y, torch::ones({2, 2, 2, 2}))); ASSERT_EQ(y.sizes(), std::vector({2, 2, 2, 2})); } TEST_F(FunctionalTest, AvgPool1d) { auto x = torch::ones({1, 1, 5}); auto y = F::avg_pool1d(x, F::AvgPool1dFuncOptions(3).stride(2)); ASSERT_EQ(y.ndimension(), 3); ASSERT_TRUE(torch::allclose(y, torch::ones({1, 1, 2}))); ASSERT_EQ(y.sizes(), std::vector({1, 1, 2})); } TEST_F(FunctionalTest, AvgPool2d) { auto x = torch::ones({2, 5, 5}); auto y = F::avg_pool2d(x, F::AvgPool2dFuncOptions(3).stride(2)); ASSERT_EQ(y.ndimension(), 3); ASSERT_TRUE(torch::allclose(y, torch::ones({2, 2, 2}))); ASSERT_EQ(y.sizes(), std::vector({2, 2, 2})); } TEST_F(FunctionalTest, AvgPool3d) { auto x = torch::ones({2, 5, 5, 5}); auto y = F::avg_pool3d(x, F::AvgPool3dFuncOptions(3).stride(2)); ASSERT_EQ(y.ndimension(), 4); ASSERT_TRUE(torch::allclose(y, torch::ones({2, 2, 2, 2}))); ASSERT_EQ(y.sizes(), std::vector({2, 2, 2, 2})); } TEST_F(FunctionalTest, FractionalMaxPool2d) { auto x = torch::ones({2, 5, 5}); auto y = F::fractional_max_pool2d( x, F::FractionalMaxPool2dFuncOptions(3).output_size(2)); ASSERT_EQ(y.ndimension(), 3); ASSERT_TRUE(torch::allclose(y, torch::ones({2, 2, 2}))); ASSERT_EQ(y.sizes(), std::vector({2, 2, 2})); auto y_with_indices = F::fractional_max_pool2d_with_indices( x, F::FractionalMaxPool2dFuncOptions(3).output_size(2)); ASSERT_TRUE(torch::equal(y, std::get<0>(y_with_indices))); ASSERT_TRUE(torch::allclose( std::get<1>(y_with_indices), torch::tensor({{{0, 2}, {10, 12}}, {{0, 2}, {10, 12}}}))); ASSERT_EQ( std::get<1>(y_with_indices).sizes(), std::vector({2, 2, 2})); auto x1 = torch::ones({2, 2, 5, 5}); auto y1 = F::fractional_max_pool2d( x1, F::FractionalMaxPool2dFuncOptions(3).output_size(2)); ASSERT_EQ(y1.ndimension(), 4); ASSERT_TRUE(torch::allclose(y1, torch::ones({2, 2, 2, 2}))); ASSERT_EQ(y1.sizes(), std::vector({2, 2, 2, 2})); auto y1_with_indices = F::fractional_max_pool2d_with_indices( x1, F::FractionalMaxPool2dFuncOptions(3).output_size(2)); ASSERT_TRUE(torch::equal(y1, std::get<0>(y1_with_indices))); ASSERT_TRUE(torch::allclose( std::get<1>(y1_with_indices), torch::tensor( {{{{0, 2}, {10, 12}}, {{0, 2}, {10, 12}}}, {{{0, 2}, {10, 12}}, {{0, 2}, {10, 12}}}}))); ASSERT_EQ( std::get<1>(y1_with_indices).sizes(), std::vector({2, 2, 2, 2})); } TEST_F(FunctionalTest, FractionalMaxPool3d) { auto x = torch::ones({2, 5, 5, 5}); auto y = F::fractional_max_pool3d( x, F::FractionalMaxPool3dFuncOptions(3).output_size(2)); ASSERT_EQ(y.ndimension(), 4); ASSERT_TRUE(torch::allclose(y, torch::ones({2, 2, 2, 2}))); ASSERT_EQ(y.sizes(), std::vector({2, 2, 2, 2})); auto y_with_indices = F::fractional_max_pool3d_with_indices( x, F::FractionalMaxPool3dFuncOptions(3).output_size(2)); ASSERT_TRUE(torch::equal(y, std::get<0>(y_with_indices))); ASSERT_TRUE(torch::allclose( std::get<1>(y_with_indices), torch::tensor( {{{{0, 2}, {10, 12}}, {{50, 52}, {60, 62}}}, {{{0, 2}, {10, 12}}, {{50, 52}, {60, 62}}}}))); ASSERT_EQ( std::get<1>(y_with_indices).sizes(), std::vector({2, 2, 2, 2})); } TEST_F(FunctionalTest, LPPool1d) { int norm_type = 2; int stride = 2; int kernel_size = 3; auto x = torch::ones({1, 1, 5}); auto y = F::lp_pool1d( x, F::LPPool1dFuncOptions(norm_type, kernel_size).stride(stride)); auto expected = (torch::pow(torch::tensor({{{1, 1}}}, torch::kFloat), norm_type) * kernel_size) .pow(1. / norm_type); ASSERT_EQ(y.ndimension(), 3); ASSERT_TRUE(torch::allclose(y, expected)); ASSERT_EQ(y.sizes(), torch::IntArrayRef({1, 1, 2})); } TEST_F(FunctionalTest, LPPool2d) { int norm_type = 2; int stride = 2; std::vector kernel_size({2, 3}); auto x = torch::ones({1, 1, 2, 5}); auto y = F::lp_pool2d( x, F::LPPool2dFuncOptions(norm_type, kernel_size).stride(stride)); auto expected = (torch::pow(torch::tensor({{{{1, 1}}}}, torch::kFloat), norm_type) * (kernel_size[0] * kernel_size[1])) .pow(1. / norm_type); ASSERT_EQ(y.ndimension(), 4); ASSERT_TRUE(torch::allclose(y, expected)); ASSERT_EQ(y.sizes(), torch::IntArrayRef({1, 1, 1, 2})); } TEST_F(FunctionalTest, LPPool3d) { int norm_type = 2; int stride = 2; std::vector kernel_size({1, 2, 3}); auto x = torch::ones({1, 1, 1, 2, 5}); auto y = F::lp_pool3d( x, F::LPPool3dFuncOptions(norm_type, kernel_size).stride(stride)); auto expected = (torch::pow(torch::tensor({{{{{1, 1}}}}}, torch::kFloat), norm_type) * (kernel_size[0] * kernel_size[1] * kernel_size[2])) .pow(1. / norm_type); ASSERT_EQ(y.ndimension(), 5); ASSERT_TRUE(torch::allclose(y, expected)); ASSERT_EQ(y.sizes(), torch::IntArrayRef({1, 1, 1, 1, 2})); } TEST_F(FunctionalTest, CosineSimilarity) { auto input1 = torch::tensor({{1, 2, 3}, {4, 5, 6}}, torch::kFloat); auto input2 = torch::tensor({{1, 8, 3}, {2, 1, 6}}, torch::kFloat); auto output = F::cosine_similarity( input1, input2, F::CosineSimilarityFuncOptions().dim(1)); auto expected = torch::tensor({0.8078, 0.8721}, torch::kFloat); ASSERT_TRUE(output.allclose(expected, 1e-04)); } TEST_F(FunctionalTest, SmoothL1LossDefaultOptions) { auto input = torch::tensor( {0.1, 1.2, 4.7}, torch::dtype(torch::kFloat).requires_grad(true)); auto target = torch::tensor({0., 1., 5.}, torch::kFloat); auto output = F::smooth_l1_loss(input, target); auto expected = torch::tensor(0.0233335, torch::kFloat); auto s = output.sum(); s.backward(); ASSERT_TRUE(output.allclose(expected)); ASSERT_TRUE(input.sizes() == input.grad().sizes()); } TEST_F(FunctionalTest, SmoothL1LossBeta) { auto input = torch::tensor( {0.1, 1.5, 10.0}, torch::dtype(torch::kFloat).requires_grad(true)); auto target = torch::tensor({0., 1., 5.}, torch::kFloat); auto output = // NOLINTNEXTLINE(cppcoreguidelines-avoid-magic-numbers,bugprone-argument-comment) F::smooth_l1_loss( input, target, /*reduction=*/torch::kMean, /*beta=*/0.5); auto expected = torch::tensor(1.67, torch::kFloat); auto s = output.sum(); s.backward(); ASSERT_TRUE(output.allclose(expected)); ASSERT_TRUE(input.sizes() == input.grad().sizes()); } TEST_F(FunctionalTest, SmoothL1LossBetaOptions) { auto input = torch::tensor( {0.1, 1.5, 10.0}, torch::dtype(torch::kFloat).requires_grad(true)); auto target = torch::tensor({0., 1., 5.}, torch::kFloat); auto output = // NOLINTNEXTLINE(cppcoreguidelines-avoid-magic-numbers) F::smooth_l1_loss( input, target, F::SmoothL1LossFuncOptions().reduction(torch::kMean).beta(0.5)); auto expected = torch::tensor(1.67, torch::kFloat); auto s = output.sum(); s.backward(); ASSERT_TRUE(output.allclose(expected)); ASSERT_TRUE(input.sizes() == input.grad().sizes()); } TEST_F(FunctionalTest, SmoothL1LossNoReduction) { auto input = torch::tensor( {0.1, 1.2, 4.7}, torch::dtype(torch::kFloat).requires_grad(true)); auto target = torch::tensor({0., 1., 5.}, torch::kFloat); auto output = // NOLINTNEXTLINE(bugprone-argument-comment) F::smooth_l1_loss(input, target, /*reduction=*/torch::kNone); auto expected = torch::tensor({0.005, 0.02, 0.045}, torch::kFloat); auto s = output.sum(); s.backward(); ASSERT_TRUE(output.allclose(expected)); ASSERT_TRUE(input.sizes() == input.grad().sizes()); } TEST_F(FunctionalTest, HuberLossDefaultOptions) { auto input = torch::tensor( {0.1, 1.2, 4.7}, torch::dtype(torch::kFloat).requires_grad(true)); auto target = torch::tensor({0., 1., 5.}, torch::kFloat); auto output = F::huber_loss(input, target); auto expected = torch::tensor(0.0233335, torch::kFloat); auto s = output.sum(); s.backward(); ASSERT_TRUE(output.allclose(expected)); ASSERT_TRUE(input.sizes() == input.grad().sizes()); } TEST_F(FunctionalTest, HuberLossDelta) { auto input = torch::tensor( {0.1, 1.5, 10.0}, torch::dtype(torch::kFloat).requires_grad(true)); auto target = torch::tensor({0., 1., 5.}, torch::kFloat); auto options = F::HuberLossFuncOptions().reduction(torch::kMean).delta(0.5); auto output = F::huber_loss(input, target, options); auto expected = torch::tensor(1.67 * 0.5, torch::kFloat); auto s = output.sum(); s.backward(); ASSERT_TRUE(output.allclose(expected)); ASSERT_TRUE(input.sizes() == input.grad().sizes()); } TEST_F(FunctionalTest, HuberLossNoReduction) { auto input = torch::tensor( {0.1, 1.2, 4.7}, torch::dtype(torch::kFloat).requires_grad(true)); auto target = torch::tensor({0., 1., 5.}, torch::kFloat); auto options = F::HuberLossFuncOptions().reduction(torch::kNone); auto output = F::huber_loss(input, target, options); auto expected = torch::tensor({0.005, 0.02, 0.045}, torch::kFloat); auto s = output.sum(); s.backward(); ASSERT_TRUE(output.allclose(expected)); ASSERT_TRUE(input.sizes() == input.grad().sizes()); } TEST_F(FunctionalTest, SoftMarginLossDefaultOptions) { auto input = torch::tensor( {2., 4., 1., 3.}, torch::dtype(torch::kFloat).requires_grad(true)); auto target = torch::tensor({-1., 1., 1., -1.}, torch::kFloat); auto output = F::soft_margin_loss(input, target); auto expected = torch::tensor({1.3767317}, torch::kFloat); auto s = output.sum(); s.backward(); ASSERT_TRUE(output.allclose(expected)); ASSERT_EQ(input.sizes(), input.grad().sizes()); } TEST_F(FunctionalTest, MultiLabelSoftMarginLossDefaultOptions) { auto input = torch::tensor( {{0., 2., 2., 0.}, {2., 1., 0., 1.}}, torch::dtype(torch::kFloat).requires_grad(true)); auto target = torch::tensor({{0., 0., 1., 0.}, {1., 0., 1., 1.}}, torch::kFloat); auto output = F::multilabel_soft_margin_loss(input, target); auto expected = torch::tensor({0.7608436}, torch::kFloat); auto s = output.sum(); s.backward(); ASSERT_TRUE(output.allclose(expected)); ASSERT_EQ(input.sizes(), input.grad().sizes()); } TEST_F(FunctionalTest, SoftMarginLossNoReduction) { auto input = torch::tensor( {2., 4., 1., 3.}, torch::dtype(torch::kFloat).requires_grad(true)); auto target = torch::tensor({-1., 1., 1., -1.}, torch::kFloat); auto output = F::soft_margin_loss(input, target, torch::kNone); auto expected = torch::tensor( {2.1269281, 0.01814993, 0.3132617, 3.0485873}, torch::kFloat); auto s = output.sum(); s.backward(); ASSERT_TRUE(output.allclose(expected)); ASSERT_EQ(input.sizes(), input.grad().sizes()); } TEST_F(FunctionalTest, MultiLabelSoftMarginLossWeightedNoReduction) { auto input = torch::tensor( {{0., 2., 2., 0.}, {2., 1., 0., 1.}}, torch::dtype(torch::kFloat).requires_grad(true)); auto target = torch::tensor({{0., 0., 1., 0.}, {1., 0., 1., 1.}}, torch::kFloat); auto weight = torch::tensor({0.1, 0.6, 0.4, 0.8}, torch::kFloat); auto options = F::MultilabelSoftMarginLossFuncOptions() .reduction(torch::kNone) .weight(weight); auto output = F::multilabel_soft_margin_loss(input, target, options); auto expected = torch::tensor({0.4876902, 0.3321295}, torch::kFloat); auto s = output.sum(); s.backward(); ASSERT_TRUE(output.allclose(expected)); ASSERT_EQ(input.sizes(), input.grad().sizes()); } TEST_F(FunctionalTest, PairwiseDistance) { auto input1 = torch::tensor({{1, 2, 3}, {4, 5, 6}}, torch::kFloat); auto input2 = torch::tensor({{1, 8, 3}, {2, 1, 6}}, torch::kFloat); auto output = F::pairwise_distance( input1, input2, F::PairwiseDistanceFuncOptions().p(1)); auto expected = torch::tensor({6, 6}, torch::kFloat); ASSERT_TRUE(output.allclose(expected)); } TEST_F(FunctionalTest, PDist) { { auto input = torch::tensor({{-1.0, -5.0, -1.0}, {2.0, 4.0, 6.0}}); auto output = F::pdist(input); auto expected = torch::tensor({11.7898}); ASSERT_TRUE(output.allclose(expected)); } { auto input = torch::tensor({{1.0, -1.0}, {1.0, 3.0}, {3.0, 3.0}}); auto output = F::pdist(input, 1.5); auto expected = torch::tensor({4.0, 4.8945, 2.0}); ASSERT_TRUE(output.allclose(expected)); } } TEST_F(FunctionalTest, AdaptiveMaxPool1d) { auto x = torch::ones({1, 1, 5}); auto y = F::adaptive_max_pool1d(x, F::AdaptiveMaxPool1dFuncOptions(3)); ASSERT_EQ(y.ndimension(), 3); ASSERT_TRUE(torch::allclose(y, torch::ones({1, 1, 3}))); ASSERT_EQ(y.sizes(), std::vector({1, 1, 3})); } TEST_F(FunctionalTest, AdaptiveMaxPool2d) { auto x = torch::ones({2, 5, 5}); auto y = F::adaptive_max_pool2d(x, F::AdaptiveMaxPool2dFuncOptions(3)); ASSERT_EQ(y.ndimension(), 3); ASSERT_TRUE(torch::allclose(y, torch::ones({2, 3, 3}))); ASSERT_EQ(y.sizes(), std::vector({2, 3, 3})); } TEST_F(FunctionalTest, AdaptiveMaxPool3d) { auto x = torch::ones({2, 5, 5, 5}); auto y = F::adaptive_max_pool3d(x, F::AdaptiveMaxPool3dFuncOptions(3)); ASSERT_EQ(y.ndimension(), 4); ASSERT_TRUE(torch::allclose(y, torch::ones({2, 3, 3, 3}))); ASSERT_EQ(y.sizes(), std::vector({2, 3, 3, 3})); } TEST_F(FunctionalTest, AdaptiveAvgPool1d) { auto x = torch::ones({1, 1, 5}); auto y = F::adaptive_avg_pool1d(x, F::AdaptiveAvgPool1dFuncOptions(3)); ASSERT_EQ(y.ndimension(), 3); ASSERT_TRUE(torch::allclose(y, torch::ones({1, 1, 3}))); ASSERT_EQ(y.sizes(), std::vector({1, 1, 3})); } TEST_F(FunctionalTest, AdaptiveAvgPool2d) { auto x = torch::ones({2, 5, 5}); auto y = F::adaptive_avg_pool2d(x, F::AdaptiveAvgPool2dFuncOptions(3)); ASSERT_EQ(y.ndimension(), 3); ASSERT_TRUE(torch::allclose(y, torch::ones({2, 3, 3}))); ASSERT_EQ(y.sizes(), std::vector({2, 3, 3})); } TEST_F(FunctionalTest, AdaptiveAvgPool3d) { auto x = torch::ones({2, 5, 5, 5}); auto y = F::adaptive_avg_pool3d(x, F::AdaptiveAvgPool3dFuncOptions(3)); ASSERT_EQ(y.ndimension(), 4); ASSERT_TRUE(torch::allclose(y, torch::ones({2, 3, 3, 3}))); ASSERT_EQ(y.sizes(), std::vector({2, 3, 3, 3})); } TEST_F(FunctionalTest, L1Loss) { auto input = torch::randn({5, 6}, torch::requires_grad()); auto target = torch::empty({5, 6}).random_(2); auto output = F::l1_loss(torch::sigmoid(input), target); auto s = output.sum(); s.backward(); ASSERT_EQ(output.sizes(), torch::IntArrayRef()); ASSERT_EQ(input.sizes(), input.grad().sizes()); } TEST_F(FunctionalTest, MSELoss) { auto input = torch::randn({5, 6}, torch::requires_grad()); auto target = torch::empty({5, 6}).random_(2); auto output = F::mse_loss(torch::sigmoid(input), target); auto s = output.sum(); s.backward(); ASSERT_EQ(output.sizes(), torch::IntArrayRef()); ASSERT_EQ(input.sizes(), input.grad().sizes()); } TEST_F(FunctionalTest, BCELoss) { auto input = torch::randn({5, 6}, torch::requires_grad()); auto target = torch::empty({5, 6}).random_(2); auto output = F::binary_cross_entropy(torch::sigmoid(input), target); auto s = output.sum(); s.backward(); ASSERT_EQ(output.sizes(), torch::IntArrayRef()); ASSERT_EQ(input.sizes(), input.grad().sizes()); } TEST_F(FunctionalTest, KLDivLoss) { KLDivLoss loss; auto input = torch::randn({5, 6}, torch::requires_grad()); auto target = torch::empty({5, 6}).random_(2); auto output = F::kl_div(torch::sigmoid(input), target); auto s = output.sum(); s.backward(); ASSERT_EQ(output.sizes(), torch::IntArrayRef()); ASSERT_EQ(input.sizes(), input.grad().sizes()); } TEST_F(FunctionalTest, HingeEmbeddingLoss) { auto input = torch::tensor({{2, 22, 4}, {20, 10, 0}}, torch::kFloat); auto target = torch::tensor({{2, 6, 4}, {1, 10, 0}}, torch::kFloat); auto output = F::hinge_embedding_loss( input, target, F::HingeEmbeddingLossFuncOptions().margin(2)); auto expected = torch::tensor({10}, torch::kFloat); ASSERT_TRUE(output.allclose(expected)); } TEST_F(FunctionalTest, GridSample) { auto input = torch::arange(9, torch::kFloat).view(std::vector({1, 1, 3, 3})); auto grid = torch::tensor( {{{{-2., -1.}, {-1., -1.}, {0., -1.}}, {{-1., 0.}, {0., 0.}, {1., 0.}}, {{0., 1.}, {1., 1.}, {2., 1.}}}}, torch::kFloat); // bilinear, zeros, true auto options = F::GridSampleFuncOptions() .mode(torch::kBilinear) .padding_mode(torch::kZeros) .align_corners(true); auto output = F::grid_sample(input, grid, options); auto expected = torch::tensor( {{{{0., 0., 1.}, {3., 4., 5.}, {7., 8., 0.}}}}, torch::kFloat); ASSERT_TRUE(output.allclose(expected)); // bilinear, zeros, false options = F::GridSampleFuncOptions() .mode(torch::kBilinear) .padding_mode(torch::kZeros) .align_corners(false); output = F::grid_sample(input, grid, options); expected = torch::tensor( {{{{0., 0., 0.5}, {1.5, 4., 2.5}, {3.5, 2., 0.}}}}, torch::kFloat); ASSERT_TRUE(output.allclose(expected)); // default options (bilinear, zeros, false) same result as above output = F::grid_sample(input, grid); ASSERT_TRUE(output.allclose(expected)); // nearest, zeros, true options = F::GridSampleFuncOptions() .mode(torch::kNearest) .padding_mode(torch::kZeros) .align_corners(true); output = F::grid_sample(input, grid, options); expected = torch::tensor( {{{{0., 0., 1.}, {3., 4., 5.}, {7., 8., 0.}}}}, torch::kFloat); ASSERT_TRUE(output.allclose(expected)); // bilinear, border, true options = F::GridSampleFuncOptions() .mode(torch::kBilinear) .padding_mode(torch::kBorder) .align_corners(true); output = F::grid_sample(input, grid, options); expected = torch::tensor( {{{{0., 0., 1.}, {3., 4., 5.}, {7., 8., 8.}}}}, torch::kFloat); ASSERT_TRUE(output.allclose(expected)); // bilinear, reflection, true options = F::GridSampleFuncOptions() .mode(torch::kBilinear) .padding_mode(torch::kReflection) .align_corners(true); output = F::grid_sample(input, grid, options); expected = torch::tensor( {{{{1., 0., 1.}, {3., 4., 5.}, {7., 8., 7.}}}}, torch::kFloat); ASSERT_TRUE(output.allclose(expected)); } TEST_F(FunctionalTest, AffineGrid) { { // 2D affine. auto theta = torch::arange(1., 13).view(std::vector({2, 2, 3})); auto size = std::vector({2, 3, 2, 2}); auto align_corners = true; auto output = F::affine_grid(theta, size, !align_corners); auto expected = torch::tensor( {{{{1.50, 1.50}, {2.50, 5.50}}, {{3.50, 6.50}, {4.50, 10.50}}}, {{{1.50, 1.50}, {8.50, 11.50}}, {{9.50, 12.50}, {16.50, 22.50}}}}); auto output_aligned = F::affine_grid(theta, size, align_corners); auto expected_aligned = torch::tensor( {{{{0.0, -3.0}, {2.0, 5.0}}, {{4.0, 7.0}, {6.0, 15.0}}}, {{{-6.0, -9.0}, {8.0, 11.0}}, {{10.0, 13.0}, {24.0, 33.0}}}}); ASSERT_TRUE(output.allclose(expected)); ASSERT_TRUE(output_aligned.allclose(expected_aligned)); } { // 3D affine. auto theta = torch::arange(1., 13).view(std::vector({1, 3, 4})); auto size = std::vector({1, 1, 3, 2, 2}); auto align_corners = true; auto output = F::affine_grid(theta, size, !align_corners); auto expected = torch::tensor( {{{{{0.5000, -2.1667, -4.8333}, {1.5000, 2.8333, 4.1667}}, {{2.5000, 3.8333, 5.1667}, {3.5000, 8.8333, 14.1667}}}, {{{2.5000, 2.5000, 2.5000}, {3.5000, 7.5000, 11.5000}}, {{4.5000, 8.5000, 12.5000}, {5.5000, 13.5000, 21.5000}}}, {{{4.5000, 7.1667, 9.8333}, {5.5000, 12.1667, 18.8333}}, {{6.5000, 13.1667, 19.8333}, {7.5000, 18.1667, 28.8333}}}}}); auto output_aligned = F::affine_grid(theta, size, align_corners); auto expected_aligned = torch::tensor( {{{{{-2.0, -10.0, -18.0}, {0.0, 0.0, 0.0}}, {{2.0, 2.0, 2.0}, {4.0, 12.0, 20.0}}}, {{{1.0, -3.0, -7.0}, {3.0, 7.0, 11.0}}, {{5.0, 9.0, 13.0}, {7.0, 19.0, 31.0}}}, {{{4.0, 4.0, 4.0}, {6.0, 14.0, 22.0}}, {{8.0, 16.0, 24.0}, {10.0, 26.0, 42.0}}}}}); ASSERT_TRUE(output.allclose(expected, 1e-2)); ASSERT_TRUE(output_aligned.allclose(expected_aligned)); } { auto theta = torch::empty({1, 2, 3}, torch::kDouble); auto size = std::vector({1, 1, 2, 2}); ASSERT_THROWS_WITH( F::affine_grid(torch::empty({2, 2, 3}), {-1, 1, 2, 2}), "Expected non-zero, positive output size. Got [-1, 1, 2, 2]"); ASSERT_THROWS_WITH( F::affine_grid(torch::empty({2, 2, 3}, torch::kInt), size), "Expected theta to have floating point type, but got int"); ASSERT_THROWS_WITH( F::affine_grid(theta[0], size), "Expected a batch of 2D affine matrices of shape Nx2x3 for size " "[1, 1, 2, 2]. Got [2, 3]."); ASSERT_THROWS_WITH( F::affine_grid(theta.unsqueeze(0), size), "Expected a batch of 2D affine matrices of shape Nx2x3 for size " "[1, 1, 2, 2]. Got [1, 1, 2, 3]."); ASSERT_THROWS_WITH( F::affine_grid(theta.repeat({1, 2, 1}), size), "Expected a batch of 2D affine matrices of shape Nx2x3 for size " "[1, 1, 2, 2]. Got [1, 4, 3]."); ASSERT_THROWS_WITH( F::affine_grid(theta.repeat({1, 1, 2}), size), "Expected a batch of 2D affine matrices of shape Nx2x3 for size " "[1, 1, 2, 2]. Got [1, 2, 6]."); } { auto theta = torch::empty({1, 3, 4}, torch::kDouble); auto size = std::vector({1, 1, 2, 2, 3}); ASSERT_THROWS_WITH( F::affine_grid(theta[0], size), "Expected a batch of 3D affine matrices of shape Nx3x4 for size " "[1, 1, 2, 2, 3]. Got [3, 4]."); ASSERT_THROWS_WITH( F::affine_grid(theta.unsqueeze(0), size), "Expected a batch of 3D affine matrices of shape Nx3x4 for size " "[1, 1, 2, 2, 3]. Got [1, 1, 3, 4]."); ASSERT_THROWS_WITH( F::affine_grid(theta.repeat({1, 2, 1}), size), "Expected a batch of 3D affine matrices of shape Nx3x4 for size " "[1, 1, 2, 2, 3]. Got [1, 6, 4]."); ASSERT_THROWS_WITH( F::affine_grid(theta.repeat({1, 1, 2}), size), "Expected a batch of 3D affine matrices of shape Nx3x4 for size " "[1, 1, 2, 2, 3]. Got [1, 3, 8]."); ASSERT_THROWS_WITH( F::affine_grid(theta, {1, 1, 1, 2, 2, 3}), "affine_grid only supports 4D and 5D sizes, for 2D and 3D affine " "transforms, respectively. Got size [1, 1, 1, 2, 2, 3]"); ASSERT_THROWS_WITH( F::affine_grid(theta, {1, 1}), "affine_grid only supports 4D and 5D sizes, for 2D and 3D affine " "transforms, respectively. Got size [1, 1]"); } } TEST_F(FunctionalTest, MultiMarginLoss) { auto weight = torch::tensor({0.3, 0.3, 0.4}, torch::kFloat); auto input = torch::tensor( {{0.2, 0.2, 0.6}, {0.1, 0.8, 0.1}, {0.9, 0.09, 0.01}}, torch::dtype(torch::kFloat).requires_grad(true)); auto target = torch::tensor({2, 1, 0}, torch::kLong); auto output = F::multi_margin_loss( input, target, F::MultiMarginLossFuncOptions().margin(2).weight(weight)); auto expected = torch::tensor({0.305556}, torch::kFloat); ASSERT_TRUE(output.allclose(expected, 1e-04)); } TEST_F(FunctionalTest, CosineEmbeddingLoss) { auto input1 = torch::tensor({{2, 3, 4}, {6, 2, 4}}); auto input2 = torch::tensor({{2, 3, 5}, {9, 12, 0}}); auto target = torch::tensor({1, -1}); auto output = F::cosine_embedding_loss( input1, input2, target, F::CosineEmbeddingLossFuncOptions().margin(0.5)); auto expected = torch::tensor({0.1004}, torch::kFloat); ASSERT_TRUE(output.allclose(expected, 1e-4)); } TEST_F(FunctionalTest, MultiLabelMarginLossDefaultOptions) { auto input = torch::tensor( {{0.1, 0.2, 0.4, 0.8}}, torch::dtype(torch::kFloat).requires_grad(true)); auto target = torch::tensor({{3, 0, -1, 1}}, torch::kLong); auto output = F::multilabel_margin_loss(input, target); auto expected = torch::tensor({0.8500}, torch::kFloat); auto s = output.sum(); s.backward(); ASSERT_TRUE(output.allclose(expected)); ASSERT_EQ(input.sizes(), input.grad().sizes()); } TEST_F(FunctionalTest, MultiLabelMarginLossNoReduction) { auto input = torch::tensor( {{0.1, 0.2, 0.4, 0.8}}, torch::dtype(torch::kFloat).requires_grad(true)); auto target = torch::tensor({{3, 0, -1, 1}}, torch::kLong); auto output = F::multilabel_margin_loss(input, target, torch::kNone); auto expected = torch::tensor({0.8500}, torch::kFloat); auto s = output.sum(); s.backward(); ASSERT_TRUE(output.allclose(expected)); ASSERT_EQ(input.sizes(), input.grad().sizes()); } TEST_F(FunctionalTest, TripletMarginLoss) { auto anchor = torch::tensor({{3., 3.}}, torch::kFloat); auto positive = torch::tensor({{2., 2.}}, torch::kFloat); auto negative = torch::tensor({{0., 0.}}, torch::kFloat); auto output = F::triplet_margin_loss( anchor, positive, negative, F::TripletMarginLossFuncOptions().margin(1.0)); auto expected = torch::tensor({0.}, torch::kFloat); ASSERT_TRUE(output.allclose(expected, 1e-04)); } TEST_F(FunctionalTest, TripletMarginWithDistanceLossDefaultParity) { // Check that if we use torch::pairwise_distance with the default // TripletMarginLoss options as our distance function, the outputs // are equal (i.e., equal under defaults). std::vector reductions = { torch::kSum, torch::kMean, torch::kNone}; std::vector margins = {0.5, 1.0, 1.5}; std::vector swaps = {true, false}; for (auto& reduction : reductions) { for (auto& margin : margins) { for (const auto& swap : swaps) { auto anchor = torch::randn( {100, 128}, torch::dtype(torch::kFloat).requires_grad(true)); auto positive = torch::randn( {100, 128}, torch::dtype(torch::kFloat).requires_grad(true)); auto negative = torch::randn( {100, 128}, torch::dtype(torch::kFloat).requires_grad(true)); auto basicOptions = F::TripletMarginLossFuncOptions() .reduction(reduction) .margin(margin) .swap(swap); auto distanceOptions = F::TripletMarginWithDistanceLossFuncOptions() .reduction(reduction) .margin(margin) .swap(swap); TripletMarginLoss basicLoss(basicOptions); TripletMarginWithDistanceLoss distanceLoss(distanceOptions); auto basicOutput = F::triplet_margin_loss(anchor, positive, negative, basicOptions); auto distanceOutput = F::triplet_margin_with_distance_loss( anchor, positive, negative, distanceOptions); ASSERT_TRUE(distanceOutput.allclose(basicOutput, 1e-6, 1e-6)); // handle for torch::kNone reduction auto sum = distanceOutput.sum(); sum.backward(); ASSERT_EQ(anchor.sizes(), anchor.grad().sizes()); ASSERT_EQ(positive.sizes(), positive.grad().sizes()); ASSERT_EQ(negative.sizes(), negative.grad().sizes()); } } } } TEST_F(FunctionalTest, NLLLoss) { auto input = torch::tensor( {{-0.1315, -3.1315, -2.5315}, {-3.7038, -0.1038, -2.6038}, {-2.3422, -1.3422, -0.4422}}, torch::kFloat); auto target = torch::tensor({1, 0, 2}, torch::kLong); auto output = F::nll_loss( input, target, F::NLLLossFuncOptions().ignore_index(-100).reduction(torch::kMean)); auto expected = torch::tensor(2.4258, torch::kFloat); ASSERT_TRUE(output.allclose(expected, 1e-04)); ASSERT_TRUE(F::nll_loss(input, target).allclose(expected, 1e-04)); } TEST_F(FunctionalTest, CrossEntropy) { auto input = torch::tensor({{3., 3.}, {2., 2.}}, torch::kFloat); auto target = torch::tensor({0, 1}, torch::kLong); auto output = F::cross_entropy( input, target, F::CrossEntropyFuncOptions().ignore_index(-100).reduction(torch::kMean)); auto expected = torch::tensor(0.6931, torch::kFloat); ASSERT_TRUE(output.allclose(expected, 1e-04)); ASSERT_TRUE(F::cross_entropy(input, target).allclose(expected, 1e-04)); // label smoothing with class indices input = torch::tensor({{3., 1.}, {1., 2.}}, torch::kFloat); output = F::cross_entropy( input, target, F::CrossEntropyFuncOptions().label_smoothing(0.15).reduction( torch::kMean)); expected = torch::tensor(0.3326, torch::kFloat); ASSERT_TRUE(output.allclose(expected, 1e-04)); // label smoothing with target probabilities target = torch::tensor({{0.8, 0.2}, {0.1, 0.9}}, torch::kFloat); output = F::cross_entropy( input, target, F::CrossEntropyFuncOptions().label_smoothing(0.2).reduction( torch::kMean)); expected = torch::tensor(0.5701, torch::kFloat); ASSERT_TRUE(output.allclose(expected, 1e-04)); } TEST_F(FunctionalTest, MaxUnpool1d) { auto x = torch::tensor( {{{2, 4, 5}}}, torch::dtype(torch::kFloat).requires_grad(true)); auto indices = torch::tensor({{{1, 3, 4}}}, torch::kLong); auto y = F::max_unpool1d(x, indices, F::MaxUnpool1dFuncOptions(3)); ASSERT_EQ(y.ndimension(), 3); ASSERT_TRUE(torch::allclose( y, torch::tensor({{{0, 2, 0, 4, 5, 0, 0, 0, 0}}}, torch::kFloat))); ASSERT_EQ(y.sizes(), std::vector({1, 1, 9})); x = torch::tensor( {{2, 4, 5}}, torch::dtype(torch::kFloat).requires_grad(true)); indices = torch::tensor({{1, 3, 4}}, torch::kLong); y = F::max_unpool1d(x, indices, F::MaxUnpool1dFuncOptions(3)); ASSERT_EQ(y.ndimension(), 2); ASSERT_TRUE(torch::allclose( y, torch::tensor({{0, 2, 0, 4, 5, 0, 0, 0, 0}}, torch::kFloat))); ASSERT_EQ(y.sizes(), std::vector({1, 9})); x = torch::tensor( {{{2, 4, 5}}}, torch::dtype(torch::kFloat).requires_grad(true)); indices = torch::tensor({{{1, 3, 4}}}, torch::kLong); y = F::max_unpool1d( x, indices, F::MaxUnpool1dFuncOptions(3).output_size( std::vector({1, 1, 9}))); ASSERT_EQ(y.ndimension(), 3); ASSERT_TRUE(torch::allclose( y, torch::tensor({{{0, 2, 0, 4, 5, 0, 0, 0, 0}}}, torch::kFloat))); ASSERT_EQ(y.sizes(), std::vector({1, 1, 9})); x = torch::tensor( {{{2, 4, 5}}}, torch::dtype(torch::kFloat).requires_grad(true)); indices = torch::tensor({{{1, 3, 4}}}, torch::kLong); y = F::max_unpool1d( x, indices, F::MaxUnpool1dFuncOptions(3).stride(2).padding(1)); ASSERT_EQ(y.ndimension(), 3); ASSERT_TRUE( torch::allclose(y, torch::tensor({{{0, 2, 0, 4, 5}}}, torch::kFloat))); ASSERT_EQ(y.sizes(), std::vector({1, 1, 5})); } TEST_F(FunctionalTest, MaxUnpool2d) { auto indices = torch::tensor( {{{{6, 8, 9}, {16, 18, 19}, {21, 23, 24}}}, {{{6, 8, 9}, {16, 18, 19}, {21, 23, 24}}}}, torch::kLong); auto x = torch::tensor( {{{{6, 8, 9}, {16, 18, 19}, {21, 23, 24}}}, {{{31, 33, 34}, {41, 43, 44}, {46, 48, 49}}}}, torch::dtype(torch::kFloat).requires_grad(true)); auto y = F::max_unpool2d( x, indices, F::MaxUnpool2dFuncOptions(3).stride(2).padding(1)); ASSERT_EQ(y.dim(), 4); ASSERT_TRUE(torch::allclose( y, torch::tensor( {{{{0, 0, 0, 0, 0}, {0, 6, 0, 8, 9}, {0, 0, 0, 0, 0}, {0, 16, 0, 18, 19}, {0, 21, 0, 23, 24}}}, {{{0, 0, 0, 0, 0}, {0, 31, 0, 33, 34}, {0, 0, 0, 0, 0}, {0, 41, 0, 43, 44}, {0, 46, 0, 48, 49}}}}, torch::kFloat))); ASSERT_EQ(y.sizes(), std::vector({2, 1, 5, 5})); indices = torch::tensor( {{{6, 8, 9}, {16, 18, 19}, {21, 23, 24}}, {{6, 8, 9}, {16, 18, 19}, {21, 23, 24}}}, torch::kLong); x = torch::tensor( {{{6, 8, 9}, {16, 18, 19}, {21, 23, 24}}, {{31, 33, 34}, {41, 43, 44}, {46, 48, 49}}}, torch::dtype(torch::kFloat).requires_grad(true)); y = F::max_unpool2d( x, indices, F::MaxUnpool2dFuncOptions(3).stride(2).padding(1)); ASSERT_EQ(y.dim(), 3); ASSERT_TRUE(torch::allclose( y, torch::tensor( {{{0, 0, 0, 0, 0}, {0, 6, 0, 8, 9}, {0, 0, 0, 0, 0}, {0, 16, 0, 18, 19}, {0, 21, 0, 23, 24}}, {{0, 0, 0, 0, 0}, {0, 31, 0, 33, 34}, {0, 0, 0, 0, 0}, {0, 41, 0, 43, 44}, {0, 46, 0, 48, 49}}}, torch::kFloat))); ASSERT_EQ(y.sizes(), std::vector({2, 5, 5})); } TEST_F(FunctionalTest, MaxUnpool3d) { auto indices = torch::tensor({{{{{26}}}}}, torch::kLong); auto x = torch::tensor( {{{{{26}}}}}, torch::dtype(torch::kFloat).requires_grad(true)); auto y = F::max_unpool3d(x, indices, F::MaxUnpool3dFuncOptions(3)); ASSERT_EQ(y.dim(), 5); ASSERT_TRUE(torch::allclose( y, torch::tensor( {{{{{0, 0, 0}, {0, 0, 0}, {0, 0, 0}}, {{0, 0, 0}, {0, 0, 0}, {0, 0, 0}}, {{0, 0, 0}, {0, 0, 0}, {0, 0, 26}}}}}, torch::kFloat))); ASSERT_EQ(y.sizes(), std::vector({1, 1, 3, 3, 3})); indices = torch::tensor({{{{26}}}}, torch::kLong); x = torch::tensor( {{{{26}}}}, torch::dtype(torch::kFloat).requires_grad(true)); y = F::max_unpool3d(x, indices, F::MaxUnpool3dFuncOptions(3)); ASSERT_EQ(y.dim(), 4); ASSERT_TRUE(torch::allclose( y, torch::tensor( {{{{0, 0, 0}, {0, 0, 0}, {0, 0, 0}}, {{0, 0, 0}, {0, 0, 0}, {0, 0, 0}}, {{0, 0, 0}, {0, 0, 0}, {0, 0, 26}}}}, torch::kFloat))); ASSERT_EQ(y.sizes(), std::vector({1, 3, 3, 3})); } TEST_F(FunctionalTest, ELU) { const auto size = 3; for (const auto inplace : {false, true}) { for (const auto alpha : {0.0, 0.42, 1.0, 4.2, 42.42}) { auto x = torch::linspace(-10.0, 10.0, size * size * size); x.resize_({size, size, size}); auto x_bf16 = torch::linspace(-10.0, 10.0, size * size * size).to(torch::kBFloat16); x_bf16.resize_({size, size, size}); auto y_exp = torch::max(torch::zeros_like(x), x) + torch::min(torch::zeros_like(x), alpha * (torch::exp(x) - 1.0)); auto y = F::elu(x, F::ELUFuncOptions().alpha(alpha).inplace(inplace)); auto y_bf16 = F::elu(x_bf16, F::ELUFuncOptions().alpha(alpha).inplace(inplace)); ASSERT_EQ(y.ndimension(), 3); ASSERT_EQ(y.sizes(), std::vector({size, size, size})); ASSERT_TRUE(torch::allclose(y, y_exp)); ASSERT_TRUE(torch::allclose(y_bf16.to(torch::kFloat), y, 1e-2, 1e-2)); if (inplace) { ASSERT_TRUE(torch::allclose(x, y_exp)); ASSERT_TRUE(torch::allclose(x_bf16.to(torch::kFloat), y, 1e-2, 1e-2)); } } } ASSERT_TRUE(F::elu(torch::tensor(1.)).defined()); } TEST_F(FunctionalTest, SELU) { { const double scale = 1.0507009873554804934193349852946; const double alpha = 1.6732632423543772848170429916717; for (const auto inplace : {false, true}) { auto input = torch::randn({5, 5}); auto input_bf16 = input.clone().to(torch::kBFloat16); auto expected = scale * (torch::max(torch::zeros_like(input), input) + torch::min( torch::zeros_like(input), alpha * (torch::exp(input) - 1))); auto output = F::selu(input, inplace); auto output_bf16 = F::selu(input_bf16, inplace); ASSERT_TRUE(output.allclose(expected)); ASSERT_TRUE(output_bf16.to(torch::kFloat).allclose(output, 1e-2, 1e-2)); if (inplace) { ASSERT_TRUE(input.allclose(expected)); ASSERT_TRUE(input_bf16.to(torch::kFloat).allclose(output, 1e-2, 1e-2)); } } } { auto input = torch::arange(0, 9, torch::kDouble).view({3, 3}); auto output = F::selu(input); auto expected = F::selu(input, false); ASSERT_TRUE(output.allclose(expected)); } ASSERT_TRUE(F::selu(torch::tensor(1.)).defined()); } TEST_F(FunctionalTest, GLU) { int64_t dim = 1; auto input = torch::randn({4, 2}, torch::requires_grad()); auto output = F::glu(input, dim); auto input_size = input.sizes()[dim] / 2; auto first_half = input.narrow(dim, 0, input_size); auto second_half = input.narrow(dim, input_size, input_size); auto expected = first_half * torch::sigmoid(second_half); ASSERT_TRUE(output.allclose(expected)); ASSERT_TRUE(F::glu(input).allclose(expected)); } TEST_F(FunctionalTest, GELU) { const auto x = torch::linspace(-3.0, 3.0, 100); const auto y_exp = x * 0.5 * (1.0 + torch::erf(x / std::sqrt(2.0))); const auto y = F::gelu(x, F::GELUFuncOptions().approximate("none")); ASSERT_TRUE(torch::allclose(y, y_exp, 1.4e-06, 1e-05)); } TEST_F(FunctionalTest, TanhGELU) { const auto x = torch::linspace(-3.0, 3.0, 100); const auto inner = std::sqrt(2 / M_PI) * (x + 0.044715 * x.pow(3.0)); const auto y_exp = 0.5 * x * (1.0 + inner.tanh()); const auto y = F::gelu(x, F::GELUFuncOptions().approximate("tanh")); ASSERT_TRUE(torch::allclose(y, y_exp, 1.4e-06, 1e-05)); } TEST_F(FunctionalTest, Hardshrink) { const auto size = 3; for (const auto lambda : {-4.2, -1.0, -0.42, 0.0, 0.42, 1.0, 4.2, 42.42}) { auto x = torch::linspace(-10.0, 10.0, size * size * size); x.resize_({size, size, size}).set_requires_grad(true); auto y = F::hardshrink(x, F::HardshrinkFuncOptions().lambda(lambda)); torch::Tensor s = y.sum(); s.backward(); ASSERT_EQ(s.ndimension(), 0); ASSERT_EQ(y.ndimension(), 3); ASSERT_EQ(y.sizes(), std::vector({size, size, size})); auto y_exp = (x.abs() > lambda) * x; ASSERT_TRUE(torch::allclose(y, y_exp)); } } TEST_F(FunctionalTest, OneHot) { { // Test #1 auto x = torch::arange(0, 5, torch::kLong); auto y = F::one_hot(x % 3); auto expected = torch::tensor( {{1, 0, 0}, {0, 1, 0}, {0, 0, 1}, {1, 0, 0}, {0, 1, 0}}, torch::kLong); ASSERT_EQ(y.ndimension(), 2); ASSERT_TRUE(torch::allclose(y, expected)); ASSERT_EQ(y.sizes(), std::vector({5, 3})); } { // Test #2 auto x = torch::arange(0, 5, torch::kLong); auto y = F::one_hot(x % 3, 5); auto expected = torch::tensor( {{1, 0, 0, 0, 0}, {0, 1, 0, 0, 0}, {0, 0, 1, 0, 0}, {1, 0, 0, 0, 0}, {0, 1, 0, 0, 0}}, torch::kLong); ASSERT_EQ(y.ndimension(), 2); ASSERT_TRUE(torch::allclose(y, expected)); ASSERT_EQ(y.sizes(), std::vector({5, 5})); } { // Test #3 auto x = torch::arange(0, 6, torch::kLong); auto y = F::one_hot(x.view(std::vector({3, 2})) % 3); auto expected = torch::tensor( {{{1, 0, 0}, {0, 1, 0}}, {{0, 0, 1}, {1, 0, 0}}, {{0, 1, 0}, {0, 0, 1}}}, torch::kLong); ASSERT_EQ(y.ndimension(), 3); ASSERT_TRUE(torch::allclose(y, expected)); ASSERT_EQ(y.sizes(), std::vector({3, 2, 3})); } } TEST_F(FunctionalTest, Hardtanh) { const auto size = 3; for (const auto min_val : {-4.2, -1.0, -0.42, 0.0}) { for (const auto max_val : {0.0, 0.42, 1.0, 4.2}) { for (const auto inplace : {false, true}) { auto x = torch::linspace(-10.0, 10.0, size * size * size); x.resize_({size, size, size}); auto y_exp = (x < min_val) * min_val + ((x >= min_val) * (x <= max_val)) * x + (x > max_val) * max_val; auto y = F::hardtanh( x, F::HardtanhFuncOptions().min_val(min_val).max_val(max_val).inplace( inplace)); ASSERT_EQ(y.ndimension(), 3); ASSERT_EQ(y.sizes(), std::vector({size, size, size})); ASSERT_TRUE(torch::allclose(y, y_exp)); if (inplace) { ASSERT_TRUE(torch::allclose(x, y_exp)); } } } } ASSERT_TRUE(F::hardtanh(torch::tensor(1.)).defined()); } TEST_F(FunctionalTest, LeakyReLU) { const auto size = 3; for (const auto negative_slope : {0.0, 0.42, 1.0}) { for (const auto inplace : {false, true}) { for (const auto type : {torch::kFloat, torch::kBFloat16}) { auto x = torch::linspace(-10.0, 10.0, size * size * size).to(type); x.resize_({size, size, size}); auto y_exp = (x < 0) * x * negative_slope + (x >= 0) * x; auto y = F::leaky_relu( x, F::LeakyReLUFuncOptions() .negative_slope(negative_slope) .inplace(inplace)); ASSERT_EQ(y.ndimension(), 3); ASSERT_EQ(y.sizes(), std::vector({size, size, size})); ASSERT_TRUE(torch::allclose(y, y_exp)); if (inplace) { ASSERT_TRUE(torch::allclose(x, y_exp)); } } } } ASSERT_TRUE(F::leaky_relu(torch::tensor(1.)).defined()); } TEST_F(FunctionalTest, LogSigmoid) { const auto size = 3; LogSigmoid model; auto x = torch::linspace(-10.0, 10.0, size * size * size); x.resize_({size, size, size}); auto y = F::logsigmoid(x); ASSERT_EQ(y.ndimension(), 3); ASSERT_EQ(y.sizes(), std::vector({size, size, size})); auto y_exp = torch::log( torch::ones_like(x) / (torch::ones_like(x) + torch::exp(torch::neg(x)))); ASSERT_TRUE(torch::allclose(y, y_exp, 1e-4, 1e-7)); } TEST_F(FunctionalTest, GumbelSoftmax) { // Test 1: No-options { auto logits = torch::randn({5}); int expected_count = 1; auto y_draw = F::gumbel_softmax(logits); // All values positive ASSERT_GE(y_draw.min().item(), 0); // Shape unchanged ASSERT_TRUE(y_draw.sizes() == logits.sizes()); // One choice per draw ASSERT_TRUE(torch::allclose( y_draw.sum(), torch::tensor(expected_count, torch::kFloat))); } // Test 2: 1D shape, 0 and -1 dim for (const auto dim : {0, -1}) { auto logits = torch::randn({5}); int expected_count = 1; auto y_draw = F::gumbel_softmax( logits, F::GumbelSoftmaxFuncOptions().hard(true).dim(dim)); // All values positive ASSERT_GE(y_draw.min().item(), 0); // Shape unchanged ASSERT_TRUE(y_draw.sizes() == logits.sizes()); // One choice per draw ASSERT_TRUE(torch::allclose( y_draw.sum(), torch::tensor(expected_count, torch::kFloat))); } { // Test 3: 2D shape, 1 dim auto logits = torch::randn({5, 4}); int expected_count = 5; auto y_draw = F::gumbel_softmax( logits, F::GumbelSoftmaxFuncOptions().hard(true).dim(1)); // All values positive ASSERT_GE(y_draw.min().item(), 0); // Shape unchanged ASSERT_TRUE(y_draw.sizes() == logits.sizes()); // One choice per draw ASSERT_TRUE(torch::allclose( y_draw.sum(), torch::tensor(expected_count, torch::kFloat))); } // Test 4: 3D shape, 1 and -1 dim // NOLINTNEXTLINE(cppcoreguidelines-avoid-c-arrays,modernize-avoid-c-arrays) int dims[] = {1, -1}; // NOLINTNEXTLINE(cppcoreguidelines-avoid-c-arrays,modernize-avoid-c-arrays,cppcoreguidelines-avoid-magic-numbers) int expected[] = {5 * 3, 5 * 4}; for (const auto i : c10::irange(2)) { auto logits = torch::randn({5, 4, 3}); int expected_count = expected[i]; auto y_draw = F::gumbel_softmax( logits, F::GumbelSoftmaxFuncOptions().hard(true).dim(dims[i])); // All values positive ASSERT_GE(y_draw.min().item(), 0); // Shape unchanged ASSERT_TRUE(y_draw.sizes() == logits.sizes()); // One choice per draw ASSERT_TRUE(torch::allclose( y_draw.sum(), torch::tensor(expected_count, torch::kFloat))); } { // Test 5: Straight through int num_draws = 100; auto logits = torch::tensor({{0.2, 0.8, 0.1}}); logits = logits.reshape({1, 3}); logits.requires_grad(); auto probs = logits.softmax(-1); auto counts = torch::zeros_like(logits); torch::Tensor y_draw; for (const auto i : c10::irange(num_draws)) { (void)i; // Suppress unused variable warning y_draw = F::gumbel_softmax(logits, F::GumbelSoftmaxFuncOptions().hard(true)); counts += y_draw; } // All values positive ASSERT_GE(y_draw.min().item(), 0); // Each experiment should result in 1 draw ASSERT_EQ(counts.sum().item(), num_draws); // Check results are asymptotically as expected auto expected = probs * num_draws; // ~z is approximately N(0,1) for unbiased count auto z = (counts - expected) / (expected * (1 - probs)).sqrt(); // A (lazy) approximate 99% two-sided test: // occurs with prob alpha~>=0.01 if unbiased ASSERT_LT(z.abs().max().item(), 2.58); } } TEST_F(FunctionalTest, Softmax) { auto input = torch::arange(10, torch::kFloat).reshape({2, 5}); // NOLINTNEXTLINE(bugprone-argument-comment) auto output = F::softmax(input, /*dim=*/1); auto sum = torch::sum(torch::exp(input), 1); for (const auto i : c10::irange(2)) { auto expected = torch::exp(input[i]) / sum[i]; ASSERT_TRUE(torch::allclose(output[i], expected)); } } TEST_F(FunctionalTest, Softmin) { auto input = torch::arange(10, torch::kFloat).reshape({2, 5}); // NOLINTNEXTLINE(bugprone-argument-comment) auto output = F::softmin(input, /*dim=*/1); auto sum = torch::sum(torch::exp(-input), 1); for (const auto i : c10::irange(2)) { auto expected = torch::exp(-input[i]) / sum[i]; ASSERT_TRUE(torch::allclose(output[i], expected)); } } TEST_F(FunctionalTest, LogSoftmax) { auto input = torch::arange(10, torch::kFloat).reshape({2, 5}); // NOLINTNEXTLINE(bugprone-argument-comment) auto output = F::log_softmax(input, /*dim=*/1); auto sum = torch::sum(torch::exp(input), 1); for (const auto i : c10::irange(2)) { auto expected = torch::log(torch::exp(input[i]) / sum[i]); ASSERT_TRUE(torch::allclose(output[i], expected)); } } TEST_F(FunctionalTest, PReLU) { const auto x = torch::rand({42, 24}) * 200 - 100; const auto w = torch::rand(24) * 200 - 100; const auto y = F::prelu(x, w); ASSERT_EQ(y.sizes(), std::vector({42, 24})); const auto y_exp = (x < 0) * w * x + (x >= 0) * x; ASSERT_TRUE(torch::allclose(y, y_exp)); } TEST_F(FunctionalTest, LayerNorm) { const auto input = torch::randn({2, 2}); auto y = F::layer_norm(input, F::LayerNormFuncOptions({2, 2}).eps(2e-5)); auto y_exp = torch::layer_norm(input, {2, 2}, torch::Tensor(), torch::Tensor(), 2e-5); ASSERT_TRUE(torch::allclose(y, y_exp)); } TEST_F(FunctionalTest, GroupNorm) { const auto input = torch::randn({2, 2}); auto y = F::group_norm(input, F::GroupNormFuncOptions(2).eps(2e-5)); auto y_exp = torch::group_norm(input, 2, torch::Tensor(), torch::Tensor(), 2e-5); ASSERT_TRUE(torch::allclose(y, y_exp)); } TEST_F(FunctionalTest, LocalResponseNorm) { const auto x = torch::arange(100, 118).resize_({3, 3, 2}); const auto y = F::local_response_norm(x, F::LocalResponseNormFuncOptions(2)); ASSERT_EQ(y.ndimension(), 3); ASSERT_EQ(y.sizes(), torch::IntArrayRef({3, 3, 2})); const auto y_exp = torch::tensor( {{{73.7788, 74.1462}, {60.1942, 60.3302}, {60.4609, 60.5865}}, {{75.8729, 76.2011}, {60.9331, 61.0390}, {61.1403, 61.2370}}, {{77.7387, 78.0303}, {61.5011, 61.5807}, {61.6563, 61.7279}}}, torch::kFloat); ASSERT_TRUE(torch::allclose(y, y_exp, 1e-4, 1e-7)); } TEST_F(FunctionalTest, Linear) { { const auto x = torch::arange(100., 118).resize_({3, 3, 2}); const auto w = torch::arange(200., 206).resize_({3, 2}); const auto b = torch::arange(300., 303); const auto y = F::linear(x, w, b); ASSERT_EQ(y.ndimension(), 3); ASSERT_EQ(y.sizes(), torch::IntArrayRef({3, 3, 3})); const auto y_exp = torch::tensor( {{{40601, 41004, 41407}, {41403, 41814, 42225}, {42205, 42624, 43043}}, {{43007, 43434, 43861}, {43809, 44244, 44679}, {44611, 45054, 45497}}, {{45413, 45864, 46315}, {46215, 46674, 47133}, {47017, 47484, 47951}}}, torch::kFloat); ASSERT_TRUE(torch::allclose(y, y_exp)); } { const auto x = torch::arange(100., 118).resize_({3, 3, 2}); const auto w = torch::arange(200., 206).resize_({3, 2}); const auto y = F::linear(x, w); ASSERT_EQ(y.ndimension(), 3); ASSERT_EQ(y.sizes(), torch::IntArrayRef({3, 3, 3})); const auto y_exp = torch::tensor( {{{40301, 40703, 41105}, {41103, 41513, 41923}, {41905, 42323, 42741}}, {{42707, 43133, 43559}, {43509, 43943, 44377}, {44311, 44753, 45195}}, {{45113, 45563, 46013}, {45915, 46373, 46831}, {46717, 47183, 47649}}}, torch::kFloat); ASSERT_TRUE(torch::allclose(y, y_exp)); } } TEST_F(FunctionalTest, Embedding) { const auto input = torch::tensor({{1, 2, 4, 5}, {4, 3, 2, 9}}, torch::kLong); auto weight = torch::empty({10, 3}); torch::nn::init::normal_(weight); auto y = F::embedding(input, weight); auto y_exp = torch::embedding(weight, input.contiguous(), -1, false, false); ASSERT_TRUE(torch::allclose(y, y_exp)); } TEST_F(FunctionalTest, EmbeddingBag) { const auto input = torch::tensor({1, 2, 4, 5, 4, 3, 2, 9}, torch::kLong); auto offsets = torch::tensor({0, 4}, torch::kLong); auto weight = torch::empty({10, 3}); torch::nn::init::normal_(weight); auto y = F::embedding_bag( input, weight, F::EmbeddingBagFuncOptions() .mode(torch::kSum) .offsets(offsets) .padding_idx(4)); auto y_exp = std::get<0>(torch::embedding_bag( weight, input, offsets, false, 0, false, torch::Tensor(), false, 4)); ASSERT_TRUE(torch::allclose(y, y_exp)); // no options test const auto input_ = torch::tensor({{1, 2, 4, 5}, {4, 3, 2, 9}}, torch::kLong); auto offsets_ = torch::arange( 0, input_.numel(), input_.size(1), torch::TensorOptions().dtype(torch::kLong).device(input.device())); y = F::embedding_bag(input_, weight); y_exp = std::get<0>(torch::embedding_bag( weight, input_.reshape(-1), offsets_, false, 1, false, torch::Tensor())); ASSERT_TRUE(torch::allclose(y, y_exp)); } TEST_F(FunctionalTest, Bilinear) { auto input1 = torch::tensor({{1, 2, 3}, {7, 6, 5}}); auto input2 = torch::tensor({{7, 4}, {8, 9}}); auto weight = torch::tensor({{{2, 3}, {9, 7}, {8, 6}}}); auto bias = torch::tensor({1}); auto y_with_bias = F::bilinear(input1, input2, weight, bias); ASSERT_EQ(y_with_bias.ndimension(), 2); ASSERT_EQ(y_with_bias.sizes(), torch::IntArrayRef({2, 1})); auto y_with_bias_exp = torch::tensor({{449}, {1702}}).reshape({2, 1}); ASSERT_TRUE(torch::allclose(y_with_bias, y_with_bias_exp, 1e-4, 1e-7)); auto y_no_bias = F::bilinear(input1, input2, weight); ASSERT_EQ(y_no_bias.ndimension(), 2); ASSERT_EQ(y_no_bias.sizes(), torch::IntArrayRef({2, 1})); auto y_no_bias_exp = torch::tensor({{448, 1701}}).reshape({2, 1}); ASSERT_TRUE(torch::allclose(y_no_bias, y_no_bias_exp, 1e-4, 1e-7)); input1 = input1.to(torch::kFloat64); input2 = input2.to(torch::kInt32); weight = weight.to(torch::kInt32); ASSERT_THROWS_WITH( F::bilinear(input1, input2, weight), "All tensors must have the same dtype, got input1: double, input2: int, weight: int"); } TEST_F(FunctionalTest, Normalize) { const auto expected = torch::tensor( {{{0.00000000, 0.10000000, 0.2000, 0.30000000, 0.40000000}, {0.14285715, 0.17142858, 0.2000, 0.22857143, 0.25714287}}}, torch::requires_grad().dtype(torch::kFloat)); { // Test #1 auto input = torch::tensor( {{{0, 1, 2, 3, 4}, {5, 6, 7, 8, 9}}}, torch::dtype(torch::kFloat).requires_grad(true)); auto norm = F::normalize(input, F::NormalizeFuncOptions().p(1).dim(-1)); // reduce to scalar to call .backward() torch::Tensor s = norm.sum(); s.backward(); ASSERT_EQ(s.ndimension(), 0); ASSERT_EQ(input.grad().numel(), 10); ASSERT_TRUE(torch::allclose(norm, expected)); } { // Test #2 Check variations of optional arguments auto input = torch::tensor( {{{0, 1, 2, 3, 4}, {5, 6, 7, 8, 9}}}, torch::dtype(torch::kFloat)); auto output = torch::randn({1, 2, 5}, torch::dtype(torch::kFloat)); // non-null output argument F::normalize(input, F::NormalizeFuncOptions().p(1).dim(-1).out(output)); // default options F::normalize(input); ASSERT_TRUE(torch::allclose(output, expected)); } { // Test #3 Base case of scalar tensor auto input = torch::randn({}, torch::requires_grad()); torch::Tensor norm = F::normalize(input, F::NormalizeFuncOptions().p(1).dim(-1)); norm.backward(); ASSERT_EQ(input.grad().numel(), 1); } } TEST_F(FunctionalTest, ReLU) { const auto size = 3; for (const auto inplace : {false, true}) { auto x = torch::linspace(-10.0, 10.0, size * size * size); x.resize_({size, size, size}); auto y_exp = (x < 0) * 0 + (x >= 0) * x; auto y = F::relu(x, F::ReLUFuncOptions().inplace(inplace)); ASSERT_EQ(y.ndimension(), 3); ASSERT_EQ(y.sizes(), std::vector({size, size, size})); ASSERT_TRUE(torch::allclose(y, y_exp)); if (inplace) { ASSERT_TRUE(torch::allclose(x, y_exp)); } // NOLINTNEXTLINE(bugprone-argument-comment) y = F::relu(x, /*inplace=*/inplace); ASSERT_EQ(y.ndimension(), 3); ASSERT_EQ(y.sizes(), std::vector({size, size, size})); ASSERT_TRUE(torch::allclose(y, y_exp)); if (inplace) { ASSERT_TRUE(torch::allclose(x, y_exp)); } } ASSERT_TRUE(F::relu(torch::tensor(1.)).defined()); } TEST_F(FunctionalTest, ReLUDefaultOptions) { const auto size = 3; auto x = torch::linspace(-10.0, 10.0, size * size * size); x.resize_({size, size, size}); auto y_exp = (x < 0) * 0 + (x >= 0) * x; auto y = F::relu(x); ASSERT_EQ(y.ndimension(), 3); ASSERT_EQ(y.sizes(), std::vector({size, size, size})); ASSERT_TRUE(torch::allclose(y, y_exp)); } TEST_F(FunctionalTest, ReLU6) { const auto size = 3; for (const auto inplace : {false, true}) { auto x = torch::linspace(-10.0, 10.0, size * size * size); x.resize_({size, size, size}); auto y_exp = (x < 0) * 0 + ((x >= 0) * (x <= 6)) * x + (x > 6) * 6; auto y = F::relu6(x, F::ReLU6FuncOptions().inplace(inplace)); ASSERT_EQ(y.ndimension(), 3); ASSERT_EQ(y.sizes(), std::vector({size, size, size})); ASSERT_TRUE(torch::allclose(y, y_exp)); if (inplace) { ASSERT_TRUE(torch::allclose(x, y_exp)); } // NOLINTNEXTLINE(bugprone-argument-comment) y = F::relu6(x, /*inplace=*/inplace); ASSERT_EQ(y.ndimension(), 3); ASSERT_EQ(y.sizes(), std::vector({size, size, size})); ASSERT_TRUE(torch::allclose(y, y_exp)); if (inplace) { ASSERT_TRUE(torch::allclose(x, y_exp)); } } ASSERT_TRUE(F::relu6(torch::tensor(1.)).defined()); } TEST_F(FunctionalTest, ReLU6DefaultOptions) { const auto size = 3; auto x = torch::linspace(-10.0, 10.0, size * size * size); x.resize_({size, size, size}); auto y_exp = (x < 0) * 0 + ((x >= 0) * (x <= 6)) * x + (x > 6) * 6; auto y = F::relu6(x); ASSERT_EQ(y.ndimension(), 3); ASSERT_EQ(y.sizes(), std::vector({size, size, size})); ASSERT_TRUE(torch::allclose(y, y_exp)); } TEST_F(FunctionalTest, RReLU) { const auto size = 3; for (const auto lower : {0.01, 0.1, 0.2}) { for (const auto upper : {0.3, 0.4, 0.5}) { for (const auto inplace : {false, true}) { for (const auto type : {torch::kFloat, torch::kBFloat16}) { auto x = torch::linspace(-10.0, 10.0, size * size * size).to(type); x.resize_({size, size, size}); auto x_copy = x.clone(); auto y = F::rrelu( x, F::RReLUFuncOptions().lower(lower).upper(upper).inplace(inplace)); auto z = ((x_copy >= 0) * (x_copy == y) + (x_copy < 0) * (y >= x_copy * upper) * (y <= lower * x_copy)) * 1.0; ASSERT_EQ(y.ndimension(), 3); ASSERT_EQ(y.sizes(), std::vector({size, size, size})); ASSERT_TRUE(torch::allclose(z, torch::ones_like(z))); if (inplace) { ASSERT_TRUE(torch::allclose(x, y)); } } } } } ASSERT_TRUE(F::rrelu(torch::tensor(1.)).defined()); } TEST_F(FunctionalTest, RReLUDefaultOptions) { const auto size = 3; const auto lower = 1.0 / 8.0; const auto upper = 1.0 / 3.0; for (const auto type : {torch::kFloat, torch::kBFloat16}) { auto x = torch::linspace(-10.0, 10.0, size * size * size).to(type); x.resize_({size, size, size}); auto x_copy = x.clone(); auto y = F::rrelu(x); auto z = ((x_copy >= 0) * (x_copy == y) + (x_copy < 0) * (y >= x_copy * upper) * (y <= lower * x_copy)) * 1.0; ASSERT_EQ(y.ndimension(), 3); ASSERT_EQ(y.sizes(), std::vector({size, size, size})); ASSERT_TRUE(torch::allclose(z, torch::ones_like(z))); } } TEST_F(FunctionalTest, CELU) { const auto size = 3; for (const auto inplace : {false, true}) { for (const auto alpha : {0.42, 1.0, 4.2, 42.42}) { auto x = torch::linspace(-10.0, 10.0, size * size * size); x.resize_({size, size, size}); auto x_bf16 = x.clone().to(torch::kBFloat16); auto y_exp = torch::max(torch::zeros_like(x), x) + torch::min(torch::zeros_like(x), alpha * (torch::exp(x / alpha) - 1.0)); auto y = F::celu(x, F::CELUFuncOptions().alpha(alpha).inplace(inplace)); auto y_bf16 = F::celu(x_bf16, F::CELUFuncOptions().alpha(alpha).inplace(inplace)); ASSERT_EQ(y.ndimension(), 3); ASSERT_EQ(y.sizes(), std::vector({size, size, size})); ASSERT_TRUE(torch::allclose(y, y_exp)); ASSERT_TRUE(torch::allclose(y_bf16.to(torch::kFloat), y, 1e-2, 1e-2)); if (inplace) { ASSERT_TRUE(torch::allclose(x, y_exp)); ASSERT_TRUE(torch::allclose(x_bf16.to(torch::kFloat), y, 1e-2, 1e-2)); } } } ASSERT_TRUE(F::celu(torch::tensor(1.)).defined()); } TEST_F(FunctionalTest, CELUDefaultOptions) { const auto size = 3; const auto alpha = 1.0; auto x = torch::linspace(-10.0, 10.0, size * size * size); x.resize_({size, size, size}); auto x_bf16 = x.clone().to(torch::kBFloat16); auto y_exp = torch::max(torch::zeros_like(x), x) + torch::min(torch::zeros_like(x), alpha * (torch::exp(x / alpha) - 1.0)); auto y = F::celu(x); auto y_bf16 = F::celu(x_bf16); ASSERT_EQ(y.ndimension(), 3); ASSERT_EQ(y.sizes(), std::vector({size, size, size})); ASSERT_TRUE(torch::allclose(y, y_exp)); ASSERT_TRUE(torch::allclose(y_bf16.to(torch::kFloat), y, 1e-2, 1e-2)); } TEST_F(FunctionalTest, PixelShuffle) { auto x = torch::tensor( {{{{-17, 19}, {-1, 2}}, {{7, 14}, {-3, 1}}, {{0, -2}, {-12, 14}}, {{-15, 0}, {-3, 9}}}}, torch::kFloat); auto y_exp = torch::tensor( {{{{-17, 7, 19, 14}, {0, -15, -2, 0}, {-1, -3, 2, 1}, {-12, -3, 14, 9}}}}, torch::kFloat); auto y = F::pixel_shuffle(x, 2); ASSERT_EQ(y.ndimension(), 4); ASSERT_EQ(y.sizes(), torch::IntArrayRef({1, 1, 4, 4})); ASSERT_TRUE(y.allclose(y_exp)); } TEST_F(FunctionalTest, PixelUnshuffle) { auto x = torch::tensor( {{{{-17, 7, 19, 14}, {0, -15, -2, 0}, {-1, -3, 2, 1}, {-12, -3, 14, 9}}}}, torch::kFloat); auto y_exp = torch::tensor( {{{{-17, 19}, {-1, 2}}, {{7, 14}, {-3, 1}}, {{0, -2}, {-12, 14}}, {{-15, 0}, {-3, 9}}}}, torch::kFloat); auto y = F::pixel_unshuffle(x, 2); ASSERT_EQ(y.ndimension(), 4); ASSERT_EQ(y.sizes(), torch::IntArrayRef({1, 4, 2, 2})); ASSERT_TRUE(y.allclose(y_exp)); } TEST_F(FunctionalTest, Softplus) { const auto size = 3; for (const auto beta : {0.5, 1.0, 2.0}) { for (const auto threshold : {1.0, 3.0, 5.0}) { auto x = torch::linspace(-3.0, 3.0, 61); x.resize_({size, size, size}); auto y_exp = (x <= threshold) * torch::log(1 + torch::exp(x * beta)) / beta + (x > threshold) * x; auto y = F::softplus( x, F::SoftplusFuncOptions().beta(beta).threshold(threshold)); ASSERT_EQ(y.ndimension(), 3); ASSERT_EQ(y.sizes(), std::vector({size, size, size})); ASSERT_TRUE(torch::allclose(y, y_exp)); } } } TEST_F(FunctionalTest, SoftplusDefaultOptions) { const auto size = 3; const auto beta = 1.0; const auto threshold = 20.0; auto x = torch::linspace(-3.0, 3.0, 61); x.resize_({size, size, size}); auto y_exp = (x <= threshold) * torch::log(1 + torch::exp(x * beta)) / beta + (x > threshold) * x; auto y = F::softplus(x); ASSERT_EQ(y.ndimension(), 3); ASSERT_EQ(y.sizes(), std::vector({size, size, size})); ASSERT_TRUE(torch::allclose(y, y_exp)); } TEST_F(FunctionalTest, Fold) { auto input = torch::ones({1, 3 * 2 * 2, 2}, torch::kDouble); auto output = F::fold(input, F::FoldFuncOptions({3, 2}, {2, 2})); auto expected = torch::tensor( {{{{1.0, 1.0}, {2.0, 2.0}, {1.0, 1.0}}, {{1.0, 1.0}, {2.0, 2.0}, {1.0, 1.0}}, {{1.0, 1.0}, {2.0, 2.0}, {1.0, 1.0}}}}, torch::kDouble); ASSERT_EQ(output.sizes(), std::vector({1, 3, 3, 2})); ASSERT_TRUE(output.allclose(expected)); } TEST_F(FunctionalTest, Unfold) { auto input = torch::arange(0, 12, torch::kDouble).view({1, 2, 2, 3}); auto output = F::unfold(input, F::UnfoldFuncOptions({2, 2}).padding(1).stride(2)); auto expected = torch::tensor( {{{0.0, 0.0, 0.0, 4.0}, {0.0, 0.0, 3.0, 5.0}, {0.0, 1.0, 0.0, 0.0}, {0.0, 2.0, 0.0, 0.0}, {0.0, 0.0, 0.0, 10.0}, {0.0, 0.0, 9.0, 11.0}, {0.0, 7.0, 0.0, 0.0}, {6.0, 8.0, 0.0, 0.0}}}, torch::kDouble); ASSERT_EQ(output.sizes(), std::vector({1, 8, 4})); ASSERT_TRUE(output.allclose(expected)); } TEST_F(FunctionalTest, Softshrink) { const auto size = 3; for (const auto lambda : {0.0, 0.42, 1.0, 4.2, 42.42}) { auto x = torch::linspace(-10.0, 10.0, size * size * size); x.resize_({size, size, size}).set_requires_grad(true); // NOLINTNEXTLINE(bugprone-argument-comment) auto y = F::softshrink(x, /*lambda=*/lambda); torch::Tensor s = y.sum(); s.backward(); ASSERT_EQ(s.ndimension(), 0); ASSERT_EQ(y.ndimension(), 3); ASSERT_EQ(y.sizes(), std::vector({size, size, size})); auto y_exp = (x < -lambda) * (x + lambda) + (x > lambda) * (x - lambda); ASSERT_TRUE(torch::allclose(y, y_exp)); } } TEST_F(FunctionalTest, SoftshrinkDefaultOptions) { const auto size = 3; const auto lambda = 0.5; auto x = torch::linspace(-10.0, 10.0, size * size * size); x.resize_({size, size, size}).set_requires_grad(true); auto y = F::softshrink(x); torch::Tensor s = y.sum(); s.backward(); ASSERT_EQ(s.ndimension(), 0); ASSERT_EQ(y.ndimension(), 3); ASSERT_EQ(y.sizes(), std::vector({size, size, size})); auto y_exp = (x < -lambda) * (x + lambda) + (x > lambda) * (x - lambda); } TEST_F(FunctionalTest, Softsign) { auto x = torch::randn(100) * 10; auto y_exp = x / (1 + x.abs()); auto y = F::softsign(x); ASSERT_TRUE(torch::allclose(y, y_exp)); } TEST_F(FunctionalTest, Mish) { auto x = torch::randn(100) * 10; auto y_exp = x * x.exp().log1p().tanh(); auto y = F::mish(x); ASSERT_TRUE(torch::allclose(y, y_exp)); } TEST_F(FunctionalTest, Tanhshrink) { auto x = torch::randn(100) * 10; auto y_exp = x - x.tanh(); auto y = F::tanhshrink(x); ASSERT_TRUE(torch::allclose(y, y_exp)); } TEST_F(FunctionalTest, Threshold) { const auto size = 3; for (const auto threshold : {0.5, 1.0, 2.0}) { for (const auto value : {0.5, 1.0, 2.0}) { for (const auto inplace : {false, true}) { auto x = torch::linspace(-3.0, 3.0, 61); x.resize_({size, size, size}); auto y_exp = (x <= threshold) * value + (x > threshold) * x; auto y = F::threshold( x, F::ThresholdFuncOptions(threshold, value).inplace(inplace)); ASSERT_EQ(y.ndimension(), 3); ASSERT_EQ(y.sizes(), std::vector({size, size, size})); ASSERT_TRUE(torch::allclose(y, y_exp)); if (inplace) { ASSERT_TRUE(torch::allclose(x, y_exp)); } } } } ASSERT_TRUE(F::threshold(torch::tensor(1.), F::ThresholdFuncOptions(0.5, 0.5)) .defined()); } TEST_F(FunctionalTest, BatchNorm1d) { int num_features = 5; double eps = 1e-05; double momentum = 0.1; auto input = torch::randn({2, 5}); auto mean = torch::randn(5); auto variance = torch::rand(5); auto weight = torch::ones({num_features}); auto bias = torch::zeros({num_features}); auto output = F::batch_norm( input, mean, variance, F::BatchNormFuncOptions() .weight(weight) .bias(bias) .momentum(momentum) .eps(eps) .training(false)); auto expected = (input - mean) / torch::sqrt(variance + eps); ASSERT_TRUE(output.allclose(expected)); } TEST_F(FunctionalTest, BatchNorm1dDefaultOptions) { auto input = torch::randn({2, 5}); auto mean = torch::randn(5); auto variance = torch::rand(5); auto output = F::batch_norm(input, mean, variance); auto expected = (input - mean) / torch::sqrt(variance + 1e-5); ASSERT_TRUE(output.allclose(expected)); } TEST_F(FunctionalTest, BatchNorm2d) { int num_features = 5; double eps = 1e-05; double momentum = 0.1; auto input = torch::randn({2, num_features, 4, 4}); auto mean = torch::randn(num_features); auto variance = torch::rand(num_features); auto weight = torch::ones({num_features}); auto bias = torch::zeros({num_features}); auto output = F::batch_norm( input, mean, variance, F::BatchNormFuncOptions() .weight(weight) .bias(bias) .momentum(momentum) .eps(eps) .training(false)); auto expected = torch::transpose( (torch::transpose(input, 1, 3) - mean) / torch::sqrt(variance + eps), 1, 3); ASSERT_TRUE(output.allclose(expected)); } TEST_F(FunctionalTest, BatchNorm2dDefaultOptions) { int num_features = 5; double eps = 1e-05; auto input = torch::randn({2, num_features, 4, 4}); auto mean = torch::randn(num_features); auto variance = torch::rand(num_features); auto output = F::batch_norm(input, mean, variance); auto expected = torch::transpose( (torch::transpose(input, 1, 3) - mean) / torch::sqrt(variance + eps), 1, 3); ASSERT_TRUE(output.allclose(expected)); } TEST_F(FunctionalTest, BatchNorm3d) { int num_features = 5; double eps = 1e-05; double momentum = 0.1; auto input = torch::randn({2, num_features, 2, 2, 2}); auto mean = torch::randn(num_features); auto variance = torch::rand(num_features); auto weight = torch::ones({num_features}); auto bias = torch::zeros({num_features}); auto output = F::batch_norm( input, mean, variance, F::BatchNormFuncOptions() .weight(weight) .bias(bias) .momentum(momentum) .eps(eps) .training(false)); auto expected = torch::transpose( (torch::transpose(input, 1, 4) - mean) / torch::sqrt(variance + eps), 1, 4); ASSERT_TRUE(output.allclose(expected)); } TEST_F(FunctionalTest, BatchNorm3dDefaultOptions) { int num_features = 5; double eps = 1e-05; auto input = torch::randn({2, num_features, 2, 2, 2}); auto mean = torch::randn(num_features); auto variance = torch::rand(num_features); auto output = F::batch_norm(input, mean, variance); auto expected = torch::transpose( (torch::transpose(input, 1, 4) - mean) / torch::sqrt(variance + eps), 1, 4); ASSERT_TRUE(output.allclose(expected)); } TEST_F(FunctionalTest, InstanceNorm1d) { int num_features = 5; double eps = 1e-05; double momentum = 0.1; auto input = torch::arange(40.).view({2, 5, 4}); auto mean = torch::arange(5.); auto variance = torch::arange(5.); auto weight = torch::arange((double)num_features); auto bias = torch::arange((double)num_features); auto output = F::instance_norm( input, F::InstanceNormFuncOptions() .running_mean(mean) .running_var(variance) .weight(weight) .bias(bias) .momentum(momentum) .eps(eps)); auto expected = torch::tensor( {{{0.0000, 0.0000, 0.0000, 0.0000}, {-0.3416, 0.5528, 1.4472, 2.3416}, {-0.6833, 1.1056, 2.8944, 4.6833}, {-1.0249, 1.6584, 4.3416, 7.0249}, {-1.3665, 2.2112, 5.7888, 9.3665}}, {{0.0000, 0.0000, 0.0000, 0.0000}, {-0.3416, 0.5528, 1.4472, 2.3416}, {-0.6833, 1.1056, 2.8944, 4.6833}, {-1.0249, 1.6584, 4.3416, 7.0249}, {-1.3665, 2.2112, 5.7888, 9.3665}}}); ASSERT_TRUE(output.allclose(expected, 2e-04)); } TEST_F(FunctionalTest, InstanceNorm1dDefaultOptions) { auto input = torch::arange(40.).view({2, 5, 4}); auto output = F::instance_norm(input); auto expected = torch::tensor( {{{-1.3416, -0.4472, 0.4472, 1.3416}, {-1.3416, -0.4472, 0.4472, 1.3416}, {-1.3416, -0.4472, 0.4472, 1.3416}, {-1.3416, -0.4472, 0.4472, 1.3416}, {-1.3416, -0.4472, 0.4472, 1.3416}}, {{-1.3416, -0.4472, 0.4472, 1.3416}, {-1.3416, -0.4472, 0.4472, 1.3416}, {-1.3416, -0.4472, 0.4472, 1.3416}, {-1.3416, -0.4472, 0.4472, 1.3416}, {-1.3416, -0.4472, 0.4472, 1.3416}}}); ASSERT_TRUE(output.allclose(expected, 2e-04)); } TEST_F(FunctionalTest, InstanceNorm2d) { int num_features = 5; double eps = 1e-05; double momentum = 0.1; auto input = torch::arange(2. * num_features * 2 * 2).view({2, num_features, 2, 2}); auto mean = torch::arange((double)num_features); auto variance = torch::arange((double)num_features); auto weight = torch::arange((double)num_features); auto bias = torch::arange((double)num_features); auto output = F::instance_norm( input, F::InstanceNormFuncOptions() .running_mean(mean) .running_var(variance) .weight(weight) .bias(bias) .momentum(momentum) .eps(eps)); auto expected = torch::tensor( {{{{0.0000, 0.0000}, {0.0000, 0.0000}}, {{-0.3416, 0.5528}, {1.4472, 2.3416}}, {{-0.6833, 1.1056}, {2.8944, 4.6833}}, {{-1.0249, 1.6584}, {4.3416, 7.0249}}, {{-1.3665, 2.2112}, {5.7888, 9.3665}}}, {{{0.0000, 0.0000}, {0.0000, 0.0000}}, {{-0.3416, 0.5528}, {1.4472, 2.3416}}, {{-0.6833, 1.1056}, {2.8944, 4.6833}}, {{-1.0249, 1.6584}, {4.3416, 7.0249}}, {{-1.3665, 2.2112}, {5.7888, 9.3665}}}}); ASSERT_TRUE(output.allclose(expected, 2e-04)); } TEST_F(FunctionalTest, InstanceNorm2dDefaultOptions) { int num_features = 5; auto input = torch::arange(2. * num_features * 2 * 2).view({2, num_features, 2, 2}); auto output = F::instance_norm(input); auto expected = torch::tensor( {{{{-1.3416, -0.4472}, {0.4472, 1.3416}}, {{-1.3416, -0.4472}, {0.4472, 1.3416}}, {{-1.3416, -0.4472}, {0.4472, 1.3416}}, {{-1.3416, -0.4472}, {0.4472, 1.3416}}, {{-1.3416, -0.4472}, {0.4472, 1.3416}}}, {{{-1.3416, -0.4472}, {0.4472, 1.3416}}, {{-1.3416, -0.4472}, {0.4472, 1.3416}}, {{-1.3416, -0.4472}, {0.4472, 1.3416}}, {{-1.3416, -0.4472}, {0.4472, 1.3416}}, {{-1.3416, -0.4472}, {0.4472, 1.3416}}}}); ASSERT_TRUE(output.allclose(expected, 2e-04)); } TEST_F(FunctionalTest, InstanceNorm3d) { int num_features = 5; double eps = 1e-05; double momentum = 0.1; auto input = torch::arange(2. * num_features * 2 * 2 * 2) .view({2, num_features, 2, 2, 2}); auto mean = torch::arange((double)num_features); auto variance = torch::arange((double)num_features); auto weight = torch::arange((double)num_features); auto bias = torch::arange((double)num_features); auto output = F::instance_norm( input, F::InstanceNormFuncOptions() .running_mean(mean) .running_var(variance) .weight(weight) .bias(bias) .momentum(momentum) .eps(eps)); auto expected = torch::tensor( {{{{{0.0000, 0.0000}, {0.0000, 0.0000}}, {{0.0000, 0.0000}, {0.0000, 0.0000}}}, {{{-0.5275, -0.0911}, {0.3453, 0.7818}}, {{1.2182, 1.6547}, {2.0911, 2.5275}}}, {{{-1.0550, -0.1822}, {0.6907, 1.5636}}, {{2.4364, 3.3093}, {4.1822, 5.0550}}}, {{{-1.5826, -0.2733}, {1.0360, 2.3453}}, {{3.6547, 4.9640}, {6.2733, 7.5826}}}, {{{-2.1101, -0.3644}, {1.3814, 3.1271}}, {{4.8729, 6.6186}, {8.3644, 10.1101}}}}, {{{{0.0000, 0.0000}, {0.0000, 0.0000}}, {{0.0000, 0.0000}, {0.0000, 0.0000}}}, {{{-0.5275, -0.0911}, {0.3453, 0.7818}}, {{1.2182, 1.6547}, {2.0911, 2.5275}}}, {{{-1.0550, -0.1822}, {0.6907, 1.5636}}, {{2.4364, 3.3093}, {4.1822, 5.0550}}}, {{{-1.5826, -0.2733}, {1.0360, 2.3453}}, {{3.6547, 4.9640}, {6.2733, 7.5826}}}, {{{-2.1101, -0.3644}, {1.3814, 3.1271}}, {{4.8729, 6.6186}, {8.3644, 10.1101}}}}}); ASSERT_TRUE(output.allclose(expected, 2e-04)); } TEST_F(FunctionalTest, InstanceNorm3dDefaultOptions) { int num_features = 5; auto input = torch::arange(2. * num_features * 2 * 2 * 2) .view({2, num_features, 2, 2, 2}); auto output = F::instance_norm(input); auto expected = torch::tensor( {{{{{-1.5275, -1.0911}, {-0.6547, -0.2182}}, {{0.2182, 0.6547}, {1.0911, 1.5275}}}, {{{-1.5275, -1.0911}, {-0.6547, -0.2182}}, {{0.2182, 0.6547}, {1.0911, 1.5275}}}, {{{-1.5275, -1.0911}, {-0.6547, -0.2182}}, {{0.2182, 0.6547}, {1.0911, 1.5275}}}, {{{-1.5275, -1.0911}, {-0.6547, -0.2182}}, {{0.2182, 0.6547}, {1.0911, 1.5275}}}, {{{-1.5275, -1.0911}, {-0.6547, -0.2182}}, {{0.2182, 0.6547}, {1.0911, 1.5275}}}}, {{{{-1.5275, -1.0911}, {-0.6547, -0.2182}}, {{0.2182, 0.6547}, {1.0911, 1.5275}}}, {{{-1.5275, -1.0911}, {-0.6547, -0.2182}}, {{0.2182, 0.6547}, {1.0911, 1.5275}}}, {{{-1.5275, -1.0911}, {-0.6547, -0.2182}}, {{0.2182, 0.6547}, {1.0911, 1.5275}}}, {{{-1.5275, -1.0911}, {-0.6547, -0.2182}}, {{0.2182, 0.6547}, {1.0911, 1.5275}}}, {{{-1.5275, -1.0911}, {-0.6547, -0.2182}}, {{0.2182, 0.6547}, {1.0911, 1.5275}}}}}); ASSERT_TRUE(output.allclose(expected, 2e-04)); } TEST_F(FunctionalTest, Interpolate) { { // 1D interpolation auto input = torch::ones({1, 1, 2}); auto options = F::InterpolateFuncOptions() .size(std::vector({4})) .mode(torch::kNearest); auto output = F::interpolate(input, options); auto expected = torch::ones({1, 1, 4}); ASSERT_TRUE(output.allclose(expected)); } { // 2D interpolation for (const auto align_corners : {true, false}) { // test float scale factor up & down sampling for (const auto scale_factor : {0.5, 1.5, 2.0}) { auto input = torch::ones({1, 1, 2, 2}); auto options = F::InterpolateFuncOptions() .scale_factor(std::vector({scale_factor, scale_factor})) .mode(torch::kBilinear) .align_corners(align_corners); auto output = F::interpolate(input, options); auto expected_size = static_cast(std::floor(input.size(-1) * scale_factor)); auto expected = torch::ones({1, 1, expected_size, expected_size}); ASSERT_TRUE(output.allclose(expected)); } } } { // 3D interpolation for (const auto align_corners : {true, false}) { for (const auto scale_factor : {0.5, 1.5, 2.0}) { auto input = torch::ones({1, 1, 2, 2, 2}); auto options = F::InterpolateFuncOptions() .scale_factor(std::vector( {scale_factor, scale_factor, scale_factor})) .mode(torch::kTrilinear) .align_corners(align_corners); auto output = F::interpolate(input, options); auto expected_size = static_cast(std::floor(input.size(-1) * scale_factor)); auto expected = torch::ones({1, 1, expected_size, expected_size, expected_size}); ASSERT_TRUE(output.allclose(expected)); } } } { ASSERT_THROWS_WITH( F::interpolate( torch::randn({1}), F::InterpolateFuncOptions().size(std::vector({1}))), "Input Error: Only 3D, 4D and 5D input Tensors supported (got 1D) "); } { auto input = torch::randn({3, 2, 2}); ASSERT_THROWS_WITH( F::interpolate( input[0], F::InterpolateFuncOptions().size(std::vector({4, 4}))), "Input Error: Only 3D, 4D and 5D input Tensors supported (got 2D) " "for the modes: nearest | linear | bilinear | bicubic | trilinear (got kNearest)"); ASSERT_THROWS_WITH( F::interpolate( torch::reshape(input, {1, 1, 1, 3, 2, 2}), F::InterpolateFuncOptions().size( std::vector({1, 1, 1, 3, 4, 4}))), "Input Error: Only 3D, 4D and 5D input Tensors supported (got 6D) " "for the modes: nearest | linear | bilinear | bicubic | trilinear (got kNearest)"); ASSERT_THROWS_WITH( F::interpolate(input, F::InterpolateFuncOptions()), "either size or scale_factor should be defined"); ASSERT_THROWS_WITH( F::interpolate( input, F::InterpolateFuncOptions() .size(std::vector({3, 4, 4})) .scale_factor(std::vector({0.5}))), "only one of size or scale_factor should be defined"); ASSERT_THROWS_WITH( F::interpolate( input, F::InterpolateFuncOptions().scale_factor( std::vector({3, 2}))), "scale_factor shape must match input shape. " "Input is 1D, scale_factor size is [3, 2]"); ASSERT_THROWS_WITH( F::interpolate( input, F::InterpolateFuncOptions() .mode(torch::kNearest) .align_corners(true)), "align_corners option can only be set with the " "interpolating modes: linear | bilinear | bicubic | trilinear"); } { auto tensor = torch::rand({2, 3, 32, 32}); std::vector osize = {8, 10}; auto expected = at::native::_upsample_nearest_exact2d(tensor, osize, torch::nullopt); auto options = F::InterpolateFuncOptions() .size(osize) .mode(torch::kNearestExact) .align_corners(false); auto output = F::interpolate(tensor, options); ASSERT_TRUE(output.allclose(expected)); } { auto tensor = torch::rand({2, 3, 32, 32}); std::vector osize = {8, 10}; auto expected = at::native::_upsample_bilinear2d_aa( tensor, osize, false, torch::nullopt); auto options = F::InterpolateFuncOptions() .size(osize) .mode(torch::kBilinear) .align_corners(false) .antialias(true); auto output = F::interpolate(tensor, options); ASSERT_TRUE(output.allclose(expected)); } { auto tensor = torch::rand({2, 3, 32, 32}); std::vector osize = {8, 10}; auto expected = at::native::_upsample_bicubic2d_aa( tensor, osize, false, torch::nullopt); auto options = F::InterpolateFuncOptions() .size(osize) .mode(torch::kBicubic) .align_corners(false) .antialias(true); auto output = F::interpolate(tensor, options); ASSERT_TRUE(output.allclose(expected)); } } TEST_F(FunctionalTest, Pad1) { { auto input = torch::arange(6, torch::kDouble).reshape({1, 2, 3}); auto output = F::pad(input, F::PadFuncOptions({1, 2}).mode(torch::kCircular)); auto expected = torch::tensor( {{{2., 0., 1., 2., 0., 1.}, {5., 3., 4., 5., 3., 4.}}}, torch::kDouble); ASSERT_EQ(output.sizes(), std::vector({1, 2, 6})); ASSERT_TRUE(output.allclose(expected, 1e-04)); } } TEST_F(FunctionalTest, Pad2) { { auto input = torch::arange(9, torch::kDouble).reshape({1, 1, 3, 3}); auto output = F::pad(input, F::PadFuncOptions({3, 3, 3, 1}).mode(torch::kCircular)); auto expected = torch::tensor( {{{{0., 1., 2., 0., 1., 2., 0., 1., 2.}, {3., 4., 5., 3., 4., 5., 3., 4., 5.}, {6., 7., 8., 6., 7., 8., 6., 7., 8.}, {0., 1., 2., 0., 1., 2., 0., 1., 2.}, {3., 4., 5., 3., 4., 5., 3., 4., 5.}, {6., 7., 8., 6., 7., 8., 6., 7., 8.}, {0., 1., 2., 0., 1., 2., 0., 1., 2.}}}}, torch::kDouble); ASSERT_EQ(output.sizes(), std::vector({1, 1, 7, 9})); ASSERT_TRUE(output.allclose(expected, 1e-04)); } } TEST_F(FunctionalTest, Pad3) { { auto input = torch::arange(12, torch::kDouble).reshape({1, 1, 2, 2, 3}); auto output = F::pad( input, F::PadFuncOptions({3, 3, 2, 1, 2, 2}).mode(torch::kCircular)); auto expected = torch::tensor( {{{{{0., 1., 2., 0., 1., 2., 0., 1., 2.}, {3., 4., 5., 3., 4., 5., 3., 4., 5.}, {0., 1., 2., 0., 1., 2., 0., 1., 2.}, {3., 4., 5., 3., 4., 5., 3., 4., 5.}, {0., 1., 2., 0., 1., 2., 0., 1., 2.}}, {{6., 7., 8., 6., 7., 8., 6., 7., 8.}, {9., 10., 11., 9., 10., 11., 9., 10., 11.}, {6., 7., 8., 6., 7., 8., 6., 7., 8.}, {9., 10., 11., 9., 10., 11., 9., 10., 11.}, {6., 7., 8., 6., 7., 8., 6., 7., 8.}}, {{0., 1., 2., 0., 1., 2., 0., 1., 2.}, {3., 4., 5., 3., 4., 5., 3., 4., 5.}, {0., 1., 2., 0., 1., 2., 0., 1., 2.}, {3., 4., 5., 3., 4., 5., 3., 4., 5.}, {0., 1., 2., 0., 1., 2., 0., 1., 2.}}, {{6., 7., 8., 6., 7., 8., 6., 7., 8.}, {9., 10., 11., 9., 10., 11., 9., 10., 11.}, {6., 7., 8., 6., 7., 8., 6., 7., 8.}, {9., 10., 11., 9., 10., 11., 9., 10., 11.}, {6., 7., 8., 6., 7., 8., 6., 7., 8.}}, {{0., 1., 2., 0., 1., 2., 0., 1., 2.}, {3., 4., 5., 3., 4., 5., 3., 4., 5.}, {0., 1., 2., 0., 1., 2., 0., 1., 2.}, {3., 4., 5., 3., 4., 5., 3., 4., 5.}, {0., 1., 2., 0., 1., 2., 0., 1., 2.}}, {{6., 7., 8., 6., 7., 8., 6., 7., 8.}, {9., 10., 11., 9., 10., 11., 9., 10., 11.}, {6., 7., 8., 6., 7., 8., 6., 7., 8.}, {9., 10., 11., 9., 10., 11., 9., 10., 11.}, {6., 7., 8., 6., 7., 8., 6., 7., 8.}}}}}, torch::kDouble); ASSERT_EQ(output.sizes(), std::vector({1, 1, 6, 5, 9})); ASSERT_TRUE(output.allclose(expected, 1e-04)); } } TEST_F(FunctionalTest, Pad4) { { auto input = torch::arange(16, torch::kDouble).reshape({2, 2, 2, 2}); auto output = F::pad(input, F::PadFuncOptions({1, 1, 1, 1}).mode(torch::kReflect)); auto expected = torch::tensor( {{{{3., 2., 3., 2.}, {1., 0., 1., 0.}, {3., 2., 3., 2.}, {1., 0., 1., 0.}}, {{7., 6., 7., 6.}, {5., 4., 5., 4.}, {7., 6., 7., 6.}, {5., 4., 5., 4.}}}, {{{11., 10., 11., 10.}, {9., 8., 9., 8.}, {11., 10., 11., 10.}, {9., 8., 9., 8.}}, {{15., 14., 15., 14.}, {13., 12., 13., 12.}, {15., 14., 15., 14.}, {13., 12., 13., 12.}}}}, torch::kDouble); ASSERT_EQ(output.sizes(), std::vector({2, 2, 4, 4})); ASSERT_TRUE(output.allclose(expected, 1e-04)); } } TEST_F(FunctionalTest, Pad5) { { auto input = torch::arange(12, torch::kDouble).reshape({1, 1, 2, 2, 3}); auto output = F::pad( input, F::PadFuncOptions({1, 2, 2, 1, 1, 2}).mode(torch::kReplicate)); auto expected = torch::tensor( {{{{{0., 0., 1., 2., 2., 2.}, {0., 0., 1., 2., 2., 2.}, {0., 0., 1., 2., 2., 2.}, {3., 3., 4., 5., 5., 5.}, {3., 3., 4., 5., 5., 5.}}, {{0., 0., 1., 2., 2., 2.}, {0., 0., 1., 2., 2., 2.}, {0., 0., 1., 2., 2., 2.}, {3., 3., 4., 5., 5., 5.}, {3., 3., 4., 5., 5., 5.}}, {{6., 6., 7., 8., 8., 8.}, {6., 6., 7., 8., 8., 8.}, {6., 6., 7., 8., 8., 8.}, {9., 9., 10., 11., 11., 11.}, {9., 9., 10., 11., 11., 11.}}, {{6., 6., 7., 8., 8., 8.}, {6., 6., 7., 8., 8., 8.}, {6., 6., 7., 8., 8., 8.}, {9., 9., 10., 11., 11., 11.}, {9., 9., 10., 11., 11., 11.}}, {{6., 6., 7., 8., 8., 8.}, {6., 6., 7., 8., 8., 8.}, {6., 6., 7., 8., 8., 8.}, {9., 9., 10., 11., 11., 11.}, {9., 9., 10., 11., 11., 11.}}}}}, torch::kDouble); ASSERT_EQ(output.sizes(), std::vector({1, 1, 5, 5, 6})); ASSERT_TRUE(output.allclose(expected, 1e-04)); } } TEST_F(FunctionalTest, Pad6) { { auto input = torch::arange(18, torch::kDouble).reshape({1, 1, 3, 2, 3}); auto output = F::pad( input, F::PadFuncOptions({0, 2, 1, 0, 1, 2}).mode(torch::kReflect)); auto expected = torch::tensor( {{{{{9., 10., 11., 10., 9.}, {6., 7., 8., 7., 6.}, {9., 10., 11., 10., 9.}}, {{3., 4., 5., 4., 3.}, {0., 1., 2., 1., 0.}, {3., 4., 5., 4., 3.}}, {{9., 10., 11., 10., 9.}, {6., 7., 8., 7., 6.}, {9., 10., 11., 10., 9.}}, {{15., 16., 17., 16., 15.}, {12., 13., 14., 13., 12.}, {15., 16., 17., 16., 15.}}, {{9., 10., 11., 10., 9.}, {6., 7., 8., 7., 6.}, {9., 10., 11., 10., 9.}}, {{3., 4., 5., 4., 3.}, {0., 1., 2., 1., 0.}, {3., 4., 5., 4., 3.}}}}}, torch::kDouble); ASSERT_EQ(output.sizes(), std::vector({1, 1, 6, 3, 5})); ASSERT_TRUE(output.allclose(expected, 1e-04)); } } TEST_F(FunctionalTest, Pad7) { { auto input = torch::ones({1, 1, 1, 1}, torch::kDouble); auto output = F::pad( input, F::PadFuncOptions({1, 1}).mode(torch::kConstant).value(0)); ASSERT_EQ(output.sizes(), std::vector({1, 1, 1, 3})); auto expected = torch::tensor({{{{0., 1., 0.}}}}, torch::kDouble); } } TEST_F(FunctionalTest, Pad8) { { auto input = torch::ones({1, 1, 1, 1}, torch::kDouble); auto output = F::pad(input, F::PadFuncOptions({1, 1})); ASSERT_EQ(output.sizes(), std::vector({1, 1, 1, 3})); auto expected = torch::tensor({{{{0., 1., 0.}}}}, torch::kDouble); } } TEST_F(FunctionalTest, CTCLoss) { { // test CTCLoss typechecks const auto target_lengths = torch::tensor({30, 25, 20}); const auto input_lengths = torch::tensor({50, 50, 50}); const auto targets = torch::randint(1, 15, {target_lengths.sum().item()}, torch::kInt); const auto log_probs = torch::randn({50, 3, 15}, torch::kFloat).log_softmax(2); const auto _input_lengths = input_lengths.to(torch::kFloat); ASSERT_THROWS_WITH( F::ctc_loss(log_probs, targets, _input_lengths, target_lengths), "input_lengths must be integral"); const auto target_lengths_ = target_lengths.to(torch::kFloat); ASSERT_THROWS_WITH( F::ctc_loss(log_probs, targets, input_lengths, target_lengths_), "target_lengths must be integral"); } { // test CTCLoss length checks const auto target_lengths = torch::tensor({30, 25, 20}); const auto input_lengths = torch::tensor({50, 50, 50}); const auto targets = torch::randint(1, 15, {3, 29}, torch::kInt); const auto log_probs = torch::randn({50, 3, 15}, torch::kFloat).log_softmax(2); ASSERT_THROWS_WITH( F::ctc_loss(log_probs, targets, input_lengths, target_lengths), "Expected tensor to have size at least 30 at dimension 1"); } { // test CTCLoss empty target { const auto target_lengths = torch::tensor({0, 0, 0}); const auto input_lengths = torch::tensor({50, 50, 50}); const auto targets = torch::randint(1, 15, at::IntArrayRef({0}), torch::kLong); const auto log_probs = torch::randn({50, 3, 15}, torch::kDouble).log_softmax(2); const auto loss = F::ctc_loss( log_probs, targets, input_lengths, target_lengths, F::CTCLossFuncOptions().reduction(torch::kNone)); ASSERT_TRUE(loss.ge(0).all().item()); ASSERT_TRUE(torch::allclose( -log_probs.sum(0).slice(1, 0, 1).view_as(loss), loss)); } { const auto target_lengths = torch::tensor({0, 9, 0}); const auto input_lengths = torch::tensor({50, 50, 50}); const auto targets = torch::randint(1, 15, {9}, torch::kLong); const auto log_probs = torch::randn({50, 3, 15}, torch::kDouble).log_softmax(2); const auto loss = F::ctc_loss( log_probs, targets, input_lengths, target_lengths, F::CTCLossFuncOptions().reduction(torch::kNone)); ASSERT_TRUE(loss.ge(0).all().item()); ASSERT_TRUE(torch::allclose( -log_probs.sum(0) .index_select(0, torch::tensor({0, 2}, torch::kLong)) .slice(1, 0, 1) .view({2}), loss.index_select(0, torch::tensor({0, 2}, torch::kLong)))); } } } TEST_F(FunctionalTest, PoissonNLLLoss) { const auto input = torch::tensor({0.5, 1.5, 2.5}); const auto target = torch::tensor({1., 2., 3.}); const auto component_wise_loss = torch::exp(input) - target * input; ASSERT_TRUE(torch::allclose( torch::mean(component_wise_loss), F::poisson_nll_loss(input, target))); ASSERT_TRUE(torch::allclose( component_wise_loss, F::poisson_nll_loss( input, target, F::PoissonNLLLossFuncOptions().reduction(torch::kNone)))); ASSERT_TRUE(torch::allclose( torch::sum(component_wise_loss), F::poisson_nll_loss( input, target, F::PoissonNLLLossFuncOptions().reduction(torch::kSum)))); ASSERT_TRUE(torch::allclose( torch::mean(component_wise_loss), F::poisson_nll_loss( input, target, F::PoissonNLLLossFuncOptions().reduction(torch::kMean)))); } TEST_F(FunctionalTest, MarginRankingLoss) { { const auto input1 = torch::randn(15) * 10; const auto input2 = torch::randn(15) * 10; const auto target = torch::randn(15).sign(); ASSERT_TRUE(torch::allclose( F::margin_ranking_loss(input1, input2, target), (-target * (input1 - input2)).clamp(0).mean())); } { const auto input1 = torch::randn(15) * 10; const auto input2 = torch::randn(15) * 10; const auto target = torch::randn(15).sign(); const auto margin = 0.5; ASSERT_TRUE(torch::allclose( F::margin_ranking_loss( input1, input2, target, F::MarginRankingLossFuncOptions().margin(0.5).reduction( torch::kSum)), (-target * (input1 - input2) + margin).clamp(0).sum())); } { const auto input1 = torch::randn(15) * 10; const auto input2 = torch::randn(15) * 10; const auto target = torch::randn(15).sign(); const auto margin = 0.5; ASSERT_TRUE(torch::allclose( F::margin_ranking_loss( input1, input2, target, F::MarginRankingLossFuncOptions().margin(0.5).reduction( torch::kMean)), (-target * (input1 - input2) + margin).clamp(0).mean())); } } TEST_F(FunctionalTest, ConvTranspose1d) { auto x = torch::arange(20.).view({2, 2, 5}); auto weight = torch::arange(18.).view({2, 3, 3}); auto y = F::conv_transpose1d(x, weight, F::ConvTranspose1dFuncOptions().stride(1)); auto expected = torch::tensor( {{{45., 104., 179., 212., 245., 188., 107.}, {60., 140., 242., 293., 344., 260., 146.}, {75., 176., 305., 374., 443., 332., 185.}}, {{135., 304., 509., 542., 575., 428., 237.}, {210., 460., 752., 803., 854., 620., 336.}, {285., 616., 995., 1064., 1133., 812., 435.}}}); ASSERT_TRUE(torch::allclose(y, expected)); auto y_no_options = F::conv_transpose1d(x, weight); ASSERT_TRUE(torch::allclose(y_no_options, expected)); } TEST_F(FunctionalTest, ConvTranspose2dEven) { auto x = torch::arange(50.).view({1, 2, 5, 5}); auto weight = torch::arange(54.).view({2, 3, 3, 3}); auto y = F::conv_transpose2d(x, weight, F::ConvTranspose2dFuncOptions().stride(1)); auto expected = torch::tensor( {{{{675., 1402., 2183., 2270., 2357., 1634., 849.}, {1560., 3240., 5044., 5236., 5428., 3760., 1952.}, {2685., 5574., 8673., 8988., 9303., 6438., 3339.}, {3180., 6594., 10248., 10563., 10878., 7518., 3894.}, {3675., 7614., 11823., 12138., 12453., 8598., 4449.}, {2820., 5832., 9040., 9268., 9496., 6544., 3380.}, {1605., 3314., 5129., 5252., 5375., 3698., 1907.}}, {{900., 1870., 2912., 3053., 3194., 2210., 1146.}, {2100., 4356., 6772., 7072., 7372., 5092., 2636.}, {3630., 7518., 11670., 12147., 12624., 8706., 4500.}, {4395., 9078., 14055., 14532., 15009., 10326., 5325.}, {5160., 10638., 16440., 16917., 17394., 11946., 6150.}, {3900., 8028., 12388., 12724., 13060., 8956., 4604.}, {2190., 4502., 6938., 7115., 7292., 4994., 2564.}}, {{1125., 2338., 3641., 3836., 4031., 2786., 1443.}, {2640., 5472., 8500., 8908., 9316., 6424., 3320.}, {4575., 9462., 14667., 15306., 15945., 10974., 5661.}, {5610., 11562., 17862., 18501., 19140., 13134., 6756.}, {6645., 13662., 21057., 21696., 22335., 15294., 7851.}, {4980., 10224., 15736., 16180., 16624., 11368., 5828.}, {2775., 5690., 8747., 8978., 9209., 6290., 3221.}}}}); ASSERT_TRUE(torch::allclose(y, expected)); auto y_no_options = F::conv_transpose2d(x, weight); ASSERT_TRUE(torch::allclose(y_no_options, expected)); } TEST_F(FunctionalTest, ConvTranspose2dUneven) { auto x = torch::arange(40.).view({1, 2, 5, 4}); auto weight = torch::arange(36.).view({2, 3, 3, 2}); auto y = F::conv_transpose2d(x, weight, F::ConvTranspose2dFuncOptions().stride(1)); auto expected = torch::tensor( {{{{360., 758., 796., 834., 440.}, {832., 1752., 1836., 1920., 1012.}, {1432., 3014., 3152., 3290., 1732.}, {1696., 3566., 3704., 3842., 2020.}, {1960., 4118., 4256., 4394., 2308.}, {1504., 3152., 3252., 3352., 1756.}, {856., 1790., 1844., 1898., 992.}}, {{480., 1010., 1072., 1134., 596.}, {1120., 2352., 2484., 2616., 1372.}, {1936., 4058., 4268., 4478., 2344.}, {2344., 4898., 5108., 5318., 2776.}, {2752., 5738., 5948., 6158., 3208.}, {2080., 4328., 4476., 4624., 2404.}, {1168., 2426., 2504., 2582., 1340.}}, {{600., 1262., 1348., 1434., 752.}, {1408., 2952., 3132., 3312., 1732.}, {2440., 5102., 5384., 5666., 2956.}, {2992., 6230., 6512., 6794., 3532.}, {3544., 7358., 7640., 7922., 4108.}, {2656., 5504., 5700., 5896., 3052.}, {1480., 3062., 3164., 3266., 1688.}}}}); ASSERT_TRUE(torch::allclose(y, expected)); auto y_no_options = F::conv_transpose2d(x, weight); ASSERT_TRUE(torch::allclose(y_no_options, expected)); } TEST_F(FunctionalTest, ConvTranspose3d) { auto x = torch::arange(16.).view({1, 2, 2, 2, 2}); auto weight = torch::arange(32.).view({2, 2, 2, 2, 2}); auto y = F::conv_transpose3d(x, weight, F::ConvTranspose3dFuncOptions().stride(1)); auto expected = torch::tensor( {{{{{128., 280., 154.}, {304., 664., 364.}, {184., 400., 218.}}, {{352., 768., 420.}, {832., 1808., 984.}, {496., 1072., 580.}}, {{256., 552., 298.}, {592., 1272., 684.}, {344., 736., 394.}}}, {{{192., 424., 234.}, {464., 1016., 556.}, {280., 608., 330.}}, {{544., 1184., 644.}, {1280., 2768., 1496.}, {752., 1616., 868.}}, {{384., 824., 442.}, {880., 1880., 1004.}, {504., 1072., 570.}}}}}); ASSERT_TRUE(torch::allclose(y, expected)); auto y_no_options = F::conv_transpose3d(x, weight); ASSERT_TRUE(torch::allclose(y_no_options, expected)); } TEST_F(FunctionalTest, AlphaDropout) { auto input = torch::randn(5000); auto input_mean = input.mean(); auto input_std = input.std(); for (const auto rate : {0.2, 0.5, 0.8}) { for (const auto inplace : {false, true}) { auto input_ = input.clone(); auto output = F::alpha_dropout( input_, F::AlphaDropoutFuncOptions().p(rate).training(false).inplace( inplace)); ASSERT_TRUE(torch::allclose(input_mean, output.mean(), 0.1)); ASSERT_TRUE(torch::allclose(input_std, output.std(), 0.1)); if (inplace) { ASSERT_TRUE(torch::allclose(input_, output)); } } } auto output = F::detail::alpha_dropout(input, 0.5, false, false); ASSERT_TRUE(torch::allclose(input_mean, output.mean(), 0.1)); ASSERT_TRUE(torch::allclose(input_std, output.std(), 0.1)); } TEST_F(FunctionalTest, FeatureAlphaDropout) { auto input = torch::randn(5000); auto input_mean = input.mean(); auto input_std = input.std(); for (const auto rate : {0.2, 0.5, 0.8}) { for (const auto inplace : {false, true}) { auto input_ = input.clone(); auto output = F::feature_alpha_dropout( input_, F::FeatureAlphaDropoutFuncOptions().p(rate).training(false).inplace( inplace)); ASSERT_TRUE(torch::allclose(input_mean, output.mean(), 0.1)); ASSERT_TRUE(torch::allclose(input_std, output.std(), 0.1)); if (inplace) { ASSERT_TRUE(torch::allclose(input_, output)); } } } auto output = F::feature_alpha_dropout(input); ASSERT_TRUE(torch::allclose(input_mean, output.mean(), 0.1)); ASSERT_TRUE(torch::allclose(input_std, output.std(), 0.1)); } TEST_F(FunctionalTest, Dropout) { auto input = torch::randn(5000); auto input_mean = input.mean(); auto input_std = input.std(); for (const auto rate : {0.2, 0.5, 0.8}) { auto output = F::dropout(input, F::DropoutFuncOptions().p(rate)); ASSERT_TRUE(torch::allclose(input_mean, output.mean(), 0.01, 0.05)); ASSERT_TRUE((input_std <= output.std()).all().item()); } auto output = F::dropout(input); ASSERT_TRUE(torch::allclose(input_mean, output.mean(), 0.01, 0.05)); ASSERT_TRUE((input_std <= output.std()).all().item()); ASSERT_TRUE(F::dropout(torch::tensor(1.)).defined()); } TEST_F(FunctionalTest, Dropout2d) { auto input = torch::randn({2, 2, 50, 100}); auto input_mean = input.mean(); auto input_std = input.std(); for (const auto rate : {0.2, 0.5, 0.8}) { auto output = F::dropout2d(input, F::Dropout2dFuncOptions().p(rate)); ASSERT_TRUE(torch::allclose(input_mean, output.mean(), 0.01, 0.05)); } auto output = F::dropout2d(input); ASSERT_TRUE(torch::allclose(input_mean, output.mean(), 0.01, 0.05)); ASSERT_TRUE(F::dropout2d(torch::randn({2, 50, 100})).defined()); } TEST_F(FunctionalTest, Dropout3d) { auto input = torch::randn({2, 2, 50, 10, 10}); auto input_mean = input.mean(); auto input_std = input.std(); for (const auto rate : {0.2, 0.5, 0.8}) { auto output = F::dropout3d(input, F::Dropout3dFuncOptions().p(rate)); ASSERT_TRUE(torch::allclose(input_mean, output.mean(), 0.01, 0.05)); } auto output = F::dropout3d(input); ASSERT_TRUE(torch::allclose(input_mean, output.mean(), 0.01, 0.05)); ASSERT_TRUE(F::dropout3d(torch::randn({2, 50, 10, 10})).defined()); } template void test_isfinite(const at::Device& device) { const std::vector values = { std::numeric_limits::lowest(), 0, 1, 42, std::numeric_limits::min(), std::numeric_limits::max()}; for (const auto value : values) { const auto x = torch::full( {3, 3}, value, torch::TensorOptions().dtype(S).device(device)); ASSERT_TRUE(torch::isfinite(x).all().template item()); } if (std::numeric_limits::has_infinity) { const auto inf = std::numeric_limits::infinity(); const auto x = torch::tensor( {-inf, std::numeric_limits::lowest(), static_cast(0), static_cast(1), static_cast(42), std::numeric_limits::min(), std::numeric_limits::max(), inf}, torch::TensorOptions().dtype(S).device(device)); ASSERT_TRUE(torch::allclose( // torch::allclose does not support comparing torch::kBool torch::isfinite(x).toType(torch::kInt), torch::tensor( {false, true, true, true, true, true, true, false}, torch::TensorOptions().device(device)) .toType(torch::kInt))); } if (std::numeric_limits::has_quiet_NaN) { const auto x = torch::tensor( {std::numeric_limits::quiet_NaN()}, torch::TensorOptions().dtype(S).device(device)); ASSERT_FALSE(torch::isfinite(x).all().template item()); } if (std::numeric_limits::has_signaling_NaN) { const auto x = torch::tensor( {std::numeric_limits::signaling_NaN()}, torch::TensorOptions().dtype(S).device(device)); ASSERT_FALSE(torch::isfinite(x).all().template item()); } } TEST_F(FunctionalTest, isfinite) { const at::Device device("cpu"); test_isfinite(device); test_isfinite(device); test_isfinite(device); test_isfinite(device); test_isfinite(device); test_isfinite(device); test_isfinite(device); } TEST_F(FunctionalTest, isfinite_CUDA) { const at::Device device("cuda"); test_isfinite(device); test_isfinite(device); test_isfinite(device); test_isfinite(device); test_isfinite(device); test_isfinite(device); test_isfinite(device); test_isfinite(device); } template void test_isinf(const at::Device& device) { const std::vector values = { std::numeric_limits::lowest(), 0, 1, 42, std::numeric_limits::min(), std::numeric_limits::max()}; for (const auto value : values) { const auto x = torch::full( {3, 3}, value, torch::TensorOptions().dtype(S).device(device)); ASSERT_FALSE(torch::isinf(x).all().template item()); } if (std::numeric_limits::has_infinity) { const auto inf = std::numeric_limits::infinity(); const auto x = torch::tensor( {-inf, std::numeric_limits::lowest(), static_cast(0), static_cast(1), static_cast(42), std::numeric_limits::min(), std::numeric_limits::max(), inf}, torch::TensorOptions().dtype(S).device(device)); ASSERT_TRUE(torch::allclose( // torch::allclose does not support comparing torch::kBool torch::isinf(x).toType(torch::kInt), torch::tensor( {true, false, false, false, false, false, false, true}, torch::TensorOptions().device(device)) .toType(torch::kInt))); } if (std::numeric_limits::has_quiet_NaN) { const auto x = torch::tensor( {std::numeric_limits::quiet_NaN()}, torch::TensorOptions().dtype(S).device(device)); ASSERT_FALSE(torch::isinf(x).all().template item()); } if (std::numeric_limits::has_signaling_NaN) { const auto x = torch::tensor( {std::numeric_limits::signaling_NaN()}, torch::TensorOptions().dtype(S).device(device)); ASSERT_FALSE(torch::isinf(x).all().template item()); } } TEST_F(FunctionalTest, isinf) { const at::Device device("cpu"); test_isinf(device); test_isinf(device); test_isinf(device); test_isinf(device); test_isinf(device); test_isinf(device); test_isinf(device); } TEST_F(FunctionalTest, isinf_CUDA) { const at::Device device("cuda"); test_isinf(device); test_isinf(device); test_isinf(device); test_isinf(device); test_isinf(device); test_isinf(device); test_isinf(device); test_isinf(device); } template void test_allclose(const at::Device& device) { const std::vector values = { std::numeric_limits::lowest(), 0, 1, 42, std::numeric_limits::min(), std::numeric_limits::max()}; for (const auto value : values) { const auto x = torch::full({1}, value, torch::TensorOptions().dtype(S).device(device)); const auto y = torch::full({1}, value, torch::TensorOptions().dtype(S).device(device)); ASSERT_TRUE(torch::allclose(x, x)); ASSERT_TRUE(torch::allclose(x, y)); ASSERT_TRUE(torch::allclose(y, x)); ASSERT_FALSE(torch::allclose(1.1 * x + 0.1, 1.0 * x)); ASSERT_TRUE(torch::allclose(0.99 * x + 0.1, 1.0 * x, 1.1, 0.1)); } if (std::numeric_limits::has_infinity) { const auto inf = std::numeric_limits::infinity(); const auto x = torch::tensor( {-inf, inf}, torch::TensorOptions().dtype(S).device(device)); const auto y = torch::tensor( {-inf, inf}, torch::TensorOptions().dtype(S).device(device)); ASSERT_TRUE(torch::allclose(x, x)); ASSERT_TRUE(torch::allclose(x, y)); ASSERT_TRUE(torch::allclose(y, x)); } if (std::numeric_limits::has_quiet_NaN) { const auto x = torch::tensor( {std::numeric_limits::quiet_NaN()}, torch::TensorOptions().dtype(S).device(device)); const auto y = torch::tensor( {std::numeric_limits::quiet_NaN()}, torch::TensorOptions().dtype(S).device(device)); ASSERT_TRUE(torch::allclose(x, x, 1.0, 0.0, /*equal_nan=*/true)); ASSERT_TRUE(torch::allclose(x, y, 1.0, 0.0, /*equal_nan=*/true)); ASSERT_TRUE(torch::allclose(y, x, 1.0, 0.0, /*equal_nan=*/true)); } if (std::numeric_limits::has_signaling_NaN) { const auto x = torch::tensor( {std::numeric_limits::signaling_NaN()}, torch::TensorOptions().dtype(S).device(device)); const auto y = torch::tensor( {std::numeric_limits::signaling_NaN()}, torch::TensorOptions().dtype(S).device(device)); ASSERT_TRUE(torch::allclose(x, x, 1.0, 0.0, /*equal_nan=*/true)); ASSERT_TRUE(torch::allclose(x, y, 1.0, 0.0, /*equal_nan=*/true)); ASSERT_TRUE(torch::allclose(y, x, 1.0, 0.0, /*equal_nan=*/true)); } } TEST_F(FunctionalTest, AllClose) { const at::Device device("cpu"); test_allclose(device); test_allclose(device); test_allclose(device); test_allclose(device); test_allclose(device); test_allclose(device); test_allclose(device); } TEST_F(FunctionalTest, AllClose_CUDA) { const at::Device device("cuda"); test_allclose(device); test_allclose(device); test_allclose(device); test_allclose(device); test_allclose(device); test_allclose(device); test_allclose(device); test_allclose(device); } TEST_F(FunctionalTest, BCEWithLogitsLoss) { { // test BCE with logits raises if target and input are different size { const auto target = torch::rand(5); const auto input = torch::rand({5, 1}); ASSERT_THROWS_WITH( F::binary_cross_entropy_with_logits(input, target), "must be the same as input size"); } { const auto target = torch::rand({5, 1}); const auto input = torch::rand(5); ASSERT_THROWS_WITH( F::binary_cross_entropy_with_logits(input, target), "must be the same as input size"); } } { // test BCE with logits gives same result as sigmoid and bce loss auto sigmoid = Sigmoid(); auto target = torch::rand({64, 4}); auto output = torch::rand({64, 4}) - 0.5; ASSERT_TRUE(torch::allclose( F::binary_cross_entropy_with_logits(output, target), F::binary_cross_entropy(sigmoid(output), target))); auto weight = torch::rand(4); ASSERT_TRUE(torch::allclose( F::binary_cross_entropy_with_logits( output, target, F::BinaryCrossEntropyWithLogitsFuncOptions().weight(weight)), F::binary_cross_entropy( sigmoid(output), target, F::BinaryCrossEntropyFuncOptions().weight(weight)))); target = torch::zeros({4, 1}, torch::kFloat); output = torch::empty({4, 1}, torch::kFloat).fill_(-100); ASSERT_TRUE(torch::allclose( F::binary_cross_entropy_with_logits(output, target), F::binary_cross_entropy(sigmoid(output), target))); ASSERT_TRUE(torch::allclose( F::binary_cross_entropy_with_logits( output, target, F::BinaryCrossEntropyWithLogitsFuncOptions().reduction( torch::kNone)), F::binary_cross_entropy( sigmoid(output), target, F::BinaryCrossEntropyFuncOptions().reduction(torch::kNone)))); weight = torch::rand({1}, torch::kFloat); ASSERT_TRUE(torch::allclose( F::binary_cross_entropy_with_logits( output, target, F::BinaryCrossEntropyWithLogitsFuncOptions().weight(weight)), F::binary_cross_entropy( sigmoid(output), target, F::BinaryCrossEntropyFuncOptions().weight(weight)))); } { // test BCE with logits has correct grad at zero const auto output = torch::zeros({3, 1}, torch::requires_grad()); const auto target = torch::zeros({3, 1}); F::binary_cross_entropy_with_logits( output, target, F::BinaryCrossEntropyWithLogitsFuncOptions().reduction(torch::kSum)) .backward(); const auto expected_grad = torch::empty({3, 1}).fill_(0.5); ASSERT_TRUE(torch::allclose(output.grad(), expected_grad)); } { // test BCE with logits broadcasts weights const auto target = torch::rand({16, 4}); const auto output = torch::rand({16, 4}) - 0.5; auto weight = torch::rand(4); auto out1 = F::binary_cross_entropy_with_logits( output, target, F::BinaryCrossEntropyWithLogitsFuncOptions().weight(weight)); weight = weight.expand({16, 4}).contiguous(); auto out2 = F::binary_cross_entropy_with_logits( output, target, F::BinaryCrossEntropyWithLogitsFuncOptions().weight(weight)); ASSERT_TRUE(torch::allclose(out1, out2)); weight = torch::rand({16, 1}); out1 = F::binary_cross_entropy_with_logits( output, target, F::BinaryCrossEntropyWithLogitsFuncOptions().weight(weight)); weight = weight.expand({16, 4}).contiguous(); out2 = F::binary_cross_entropy_with_logits( output, target, F::BinaryCrossEntropyWithLogitsFuncOptions().weight(weight)); ASSERT_TRUE(torch::allclose(out1, out2)); } { // test BCE with logits ones in pos weights are the same as none const auto target = torch::rand({64, 4}); const auto output = torch::rand({64, 4}) - 0.5; const auto pos_weight = torch::ones({64, 4}); ASSERT_TRUE(torch::allclose( F::binary_cross_entropy_with_logits(output, target), F::binary_cross_entropy_with_logits( output, target, F::BinaryCrossEntropyWithLogitsFuncOptions().pos_weight( pos_weight)))); } { // test BCE with logits broadcasts pos weights const auto target = torch::rand({64, 4}); const auto output = torch::rand({64, 4}) - 0.5; const auto pos_weight = torch::rand(4); const auto out1 = F::binary_cross_entropy_with_logits( output, target, F::BinaryCrossEntropyWithLogitsFuncOptions().pos_weight(pos_weight)); const auto pos_weight1 = pos_weight.expand({1, 4}); const auto out2 = F::binary_cross_entropy_with_logits( output, target, F::BinaryCrossEntropyWithLogitsFuncOptions().pos_weight(pos_weight)); const auto pos_weight2 = pos_weight.expand({64, 4}); const auto out3 = F::binary_cross_entropy_with_logits( output, target, F::BinaryCrossEntropyWithLogitsFuncOptions().pos_weight(pos_weight)); ASSERT_TRUE(torch::allclose(out1, out2)); ASSERT_TRUE(torch::allclose(out1, out3)); } { // test BCE with logits with pos weight has correct grad at zero const auto output = torch::zeros({3, 1}, torch::requires_grad()); const auto target = torch::zeros({3, 1}); const auto pos_weight = torch::ones({3, 1}); F::binary_cross_entropy_with_logits( output, target, F::BinaryCrossEntropyWithLogitsFuncOptions() .pos_weight(pos_weight) .reduction(torch::kSum)) .backward(); const auto expected_grad = torch::empty({3, 1}).fill_(0.5); // NOLINTNEXTLINE(performance-unnecessary-copy-initialization) const auto grad = output.grad(); ASSERT_TRUE(torch::allclose(grad, expected_grad)); } { // test BCE with logits stability const auto output = torch::tensor({0., -120.}); const auto target = torch::tensor({0., 1.}); const auto pos_weight = torch::tensor({1., 1.}); const auto out1 = F::binary_cross_entropy_with_logits(output, target); ASSERT_TRUE(torch::isfinite(out1).all().item()); const auto out2 = F::binary_cross_entropy_with_logits( output, target, F::BinaryCrossEntropyWithLogitsFuncOptions().pos_weight(pos_weight)); ASSERT_TRUE(torch::isfinite(out2).all().item()); } }