import argparse import math import pickle import random from dataclasses import dataclass from itertools import chain from pathlib import Path from typing import Dict, List import common import pandas as pd import torchtext from torchtext.functional import to_tensor from tqdm import tqdm import torch import torch.nn as nn XLMR_BASE = torchtext.models.XLMR_BASE_ENCODER # This should not be here but it works for now device = "cuda" if torch.cuda.is_available() else "cpu" HAS_IMBLEARN = False try: import imblearn HAS_IMBLEARN = True except ImportError: HAS_IMBLEARN = False # 94% of all files are captured at len 5, good hyperparameter to play around with. MAX_LEN_FILE = 6 UNKNOWN_TOKEN = "" # Utilities for working with a truncated file graph def truncate_file(file: Path, max_len: int = 5): return ("/").join(file.parts[:max_len]) def build_file_set(all_files: List[Path], max_len: int): truncated_files = [truncate_file(file, max_len) for file in all_files] return set(truncated_files) @dataclass class CommitClassifierInputs: title: List[str] files: List[str] author: List[str] @dataclass class CategoryConfig: categories: List[str] input_dim: int = 768 inner_dim: int = 128 dropout: float = 0.1 activation = nn.ReLU embedding_dim: int = 8 file_embedding_dim: int = 32 class CommitClassifier(nn.Module): def __init__( self, encoder_base: torchtext.models.XLMR_BASE_ENCODER, author_map: Dict[str, int], file_map: [str, int], config: CategoryConfig, ): super().__init__() self.encoder = encoder_base.get_model().requires_grad_(False) self.transform = encoder_base.transform() self.author_map = author_map self.file_map = file_map self.categories = config.categories self.num_authors = len(author_map) self.num_files = len(file_map) self.embedding_table = nn.Embedding(self.num_authors, config.embedding_dim) self.file_embedding_bag = nn.EmbeddingBag( self.num_files, config.file_embedding_dim, mode="sum" ) self.dense_title = nn.Linear(config.input_dim, config.inner_dim) self.dense_files = nn.Linear(config.file_embedding_dim, config.inner_dim) self.dense_author = nn.Linear(config.embedding_dim, config.inner_dim) self.dropout = nn.Dropout(config.dropout) self.out_proj_title = nn.Linear(config.inner_dim, len(self.categories)) self.out_proj_files = nn.Linear(config.inner_dim, len(self.categories)) self.out_proj_author = nn.Linear(config.inner_dim, len(self.categories)) self.activation_fn = config.activation() def forward(self, input_batch: CommitClassifierInputs): # Encode input title title: List[str] = input_batch.title model_input = to_tensor(self.transform(title), padding_value=1).to(device) title_features = self.encoder(model_input) title_embed = title_features[:, 0, :] title_embed = self.dropout(title_embed) title_embed = self.dense_title(title_embed) title_embed = self.activation_fn(title_embed) title_embed = self.dropout(title_embed) title_embed = self.out_proj_title(title_embed) files: list[str] = input_batch.files batch_file_indexes = [] for file in files: paths = [ truncate_file(Path(file_part), MAX_LEN_FILE) for file_part in file.split(" ") ] batch_file_indexes.append( [ self.file_map.get(file, self.file_map[UNKNOWN_TOKEN]) for file in paths ] ) flat_indexes = torch.tensor( list(chain.from_iterable(batch_file_indexes)), dtype=torch.long, device=device, ) offsets = [0] offsets.extend(len(files) for files in batch_file_indexes[:-1]) offsets = torch.tensor(offsets, dtype=torch.long, device=device) offsets = offsets.cumsum(dim=0) files_embed = self.file_embedding_bag(flat_indexes, offsets) files_embed = self.dense_files(files_embed) files_embed = self.activation_fn(files_embed) files_embed = self.dropout(files_embed) files_embed = self.out_proj_files(files_embed) # Add author embedding authors: List[str] = input_batch.author author_ids = [ self.author_map.get(author, self.author_map[UNKNOWN_TOKEN]) for author in authors ] author_ids = torch.tensor(author_ids).to(device) author_embed = self.embedding_table(author_ids) author_embed = self.dense_author(author_embed) author_embed = self.activation_fn(author_embed) author_embed = self.dropout(author_embed) author_embed = self.out_proj_author(author_embed) return title_embed + files_embed + author_embed def convert_index_to_category_name(self, most_likely_index): if isinstance(most_likely_index, int): return self.categories[most_likely_index] elif isinstance(most_likely_index, torch.Tensor): return [self.categories[i] for i in most_likely_index] def get_most_likely_category_name(self, inpt): # Input will be a dict with title and author keys logits = self.forward(inpt) most_likely_index = torch.argmax(logits, dim=1) return self.convert_index_to_category_name(most_likely_index) def get_train_val_data(data_folder: Path, regen_data: bool, train_percentage=0.95): if ( not regen_data and Path(data_folder / "train_df.csv").exists() and Path(data_folder / "val_df.csv").exists() ): train_data = pd.read_csv(data_folder / "train_df.csv") val_data = pd.read_csv(data_folder / "val_df.csv") return train_data, val_data else: print("Train, Val, Test Split not found generating from scratch.") commit_list_df = pd.read_csv(data_folder / "commitlist.csv") test_df = commit_list_df[commit_list_df["category"] == "Uncategorized"] all_train_df = commit_list_df[commit_list_df["category"] != "Uncategorized"] # We are going to drop skip from training set since it is so imbalanced print( "We are removing skip categories, YOU MIGHT WANT TO CHANGE THIS, BUT THIS IS A MORE HELPFUL CLASSIFIER FOR LABELING." ) all_train_df = all_train_df[all_train_df["category"] != "skip"] all_train_df = all_train_df.sample(frac=1).reset_index(drop=True) split_index = math.floor(train_percentage * len(all_train_df)) train_df = all_train_df[:split_index] val_df = all_train_df[split_index:] print("Train data size: ", len(train_df)) print("Val data size: ", len(val_df)) test_df.to_csv(data_folder / "test_df.csv", index=False) train_df.to_csv(data_folder / "train_df.csv", index=False) val_df.to_csv(data_folder / "val_df.csv", index=False) return train_df, val_df def get_author_map(data_folder: Path, regen_data, assert_stored=False): if not regen_data and Path(data_folder / "author_map.pkl").exists(): with open(data_folder / "author_map.pkl", "rb") as f: return pickle.load(f) else: if assert_stored: raise FileNotFoundError( "Author map not found, you are loading for inference you need to have an author map!" ) print("Regenerating Author Map") all_data = pd.read_csv(data_folder / "commitlist.csv") authors = all_data.author.unique().tolist() authors.append(UNKNOWN_TOKEN) author_map = {author: i for i, author in enumerate(authors)} with open(data_folder / "author_map.pkl", "wb") as f: pickle.dump(author_map, f) return author_map def get_file_map(data_folder: Path, regen_data, assert_stored=False): if not regen_data and Path(data_folder / "file_map.pkl").exists(): with open(data_folder / "file_map.pkl", "rb") as f: return pickle.load(f) else: if assert_stored: raise FileNotFoundError( "File map not found, you are loading for inference you need to have a file map!" ) print("Regenerating File Map") all_data = pd.read_csv(data_folder / "commitlist.csv") # Lets explore files files = all_data.files_changed.to_list() all_files = [] for file in files: paths = [Path(file_part) for file_part in file.split(" ")] all_files.extend(paths) all_files.append(Path(UNKNOWN_TOKEN)) file_set = build_file_set(all_files, MAX_LEN_FILE) file_map = {file: i for i, file in enumerate(file_set)} with open(data_folder / "file_map.pkl", "wb") as f: pickle.dump(file_map, f) return file_map # Generate a dataset for training def get_title_files_author_categories_zip_list(dataframe: pd.DataFrame): title = dataframe.title.to_list() files_str = dataframe.files_changed.to_list() author = dataframe.author.fillna(UNKNOWN_TOKEN).to_list() category = dataframe.category.to_list() return list(zip(title, files_str, author, category)) def generate_batch(batch): title, files, author, category = zip(*batch) title = list(title) files = list(files) author = list(author) category = list(category) targets = torch.tensor([common.categories.index(cat) for cat in category]).to( device ) return CommitClassifierInputs(title, files, author), targets def train_step(batch, model, optimizer, loss): inpt, targets = batch optimizer.zero_grad() output = model(inpt) l = loss(output, targets) l.backward() optimizer.step() return l @torch.no_grad() def eval_step(batch, model, loss): inpt, targets = batch output = model(inpt) l = loss(output, targets) return l def balance_dataset(dataset: List): if not HAS_IMBLEARN: return dataset title, files, author, category = zip(*dataset) category = [common.categories.index(cat) for cat in category] inpt_data = list(zip(title, files, author)) from imblearn.over_sampling import RandomOverSampler # from imblearn.under_sampling import RandomUnderSampler rus = RandomOverSampler(random_state=42) X, y = rus.fit_resample(inpt_data, category) merged = list(zip(X, y)) merged = random.sample(merged, k=2 * len(dataset)) X, y = zip(*merged) rebuilt_dataset = [] for i in range(len(X)): rebuilt_dataset.append((*X[i], common.categories[y[i]])) return rebuilt_dataset def gen_class_weights(dataset: List): from collections import Counter epsilon = 1e-1 title, files, author, category = zip(*dataset) category = [common.categories.index(cat) for cat in category] counter = Counter(category) percentile_33 = len(category) // 3 most_common = counter.most_common(percentile_33) least_common = counter.most_common()[-percentile_33:] smoothed_top = sum(i[1] + epsilon for i in most_common) / len(most_common) smoothed_bottom = sum(i[1] + epsilon for i in least_common) / len(least_common) // 3 class_weights = torch.tensor( [ 1.0 / (min(max(counter[i], smoothed_bottom), smoothed_top) + epsilon) for i in range(len(common.categories)) ], device=device, ) return class_weights def train(save_path: Path, data_folder: Path, regen_data: bool, resample: bool): train_data, val_data = get_train_val_data(data_folder, regen_data) train_zip_list = get_title_files_author_categories_zip_list(train_data) val_zip_list = get_title_files_author_categories_zip_list(val_data) classifier_config = CategoryConfig(common.categories) author_map = get_author_map(data_folder, regen_data) file_map = get_file_map(data_folder, regen_data) commit_classifier = CommitClassifier( XLMR_BASE, author_map, file_map, classifier_config ).to(device) # Lets train this bag of bits class_weights = gen_class_weights(train_zip_list) loss = torch.nn.CrossEntropyLoss(weight=class_weights) optimizer = torch.optim.Adam(commit_classifier.parameters(), lr=3e-3) num_epochs = 25 batch_size = 256 if resample: # Lets not use this train_zip_list = balance_dataset(train_zip_list) data_size = len(train_zip_list) print(f"Training on {data_size} examples.") # We can fit all of val into one batch val_batch = generate_batch(val_zip_list) for i in tqdm(range(num_epochs), desc="Epochs"): start = 0 random.shuffle(train_zip_list) while start < data_size: end = start + batch_size # make the last batch bigger if needed if end > data_size: end = data_size train_batch = train_zip_list[start:end] train_batch = generate_batch(train_batch) l = train_step(train_batch, commit_classifier, optimizer, loss) start = end val_l = eval_step(val_batch, commit_classifier, loss) tqdm.write( f"Finished epoch {i} with a train loss of: {l.item()} and a val_loss of: {val_l.item()}" ) with torch.no_grad(): commit_classifier.eval() val_inpts, val_targets = val_batch val_output = commit_classifier(val_inpts) val_preds = torch.argmax(val_output, dim=1) val_acc = torch.sum(val_preds == val_targets).item() / len(val_preds) print(f"Final Validation accuracy is {val_acc}") print(f"Jobs done! Saving to {save_path}") torch.save(commit_classifier.state_dict(), save_path) def main(): parser = argparse.ArgumentParser( description="Tool to create a classifier for helping to categorize commits" ) parser.add_argument("--train", action="store_true", help="Train a new classifier") parser.add_argument("--commit_data_folder", default="results/classifier/") parser.add_argument( "--save_path", default="results/classifier/commit_classifier.pt" ) parser.add_argument( "--regen_data", action="store_true", help="Regenerate the training data, helps if labeled more examples and want to re-train.", ) parser.add_argument( "--resample", action="store_true", help="Resample the training data to be balanced. (Only works if imblearn is installed.)", ) args = parser.parse_args() if args.train: train( Path(args.save_path), Path(args.commit_data_folder), args.regen_data, args.resample, ) return print( "Currently this file only trains a new classifier please pass in --train to train a new classifier" ) if __name__ == "__main__": main()