import torch from . import benchmark class SwishBench(benchmark.Benchmark): def __init__(self, mode, device, dtype, M, N): super().__init__(mode, device, dtype) self.M = M self.N = N self.data = self.rand( [M, N], device=device, dtype=dtype, requires_grad=self.requires_grad ) self.inputs = [self.data] self.zeros = torch.zeros(M, N, device=device) self.six = self.zeros + 6.0 self.three = self.zeros + 3.0 self.sixth = self.zeros + 1.0 / 6.0 def forward(self, inp): y = inp * (torch.min(torch.relu(inp), self.six) + self.three) * self.sixth return y def reference(self): return self.numpy(self.forward(self.data)) def config(self): return [self.M, self.N] @staticmethod def module(): return "swish" def memory_workload(self): if self.mode == "fwd": sol_count = 1 + 1 algorithmic_count = 3 + 1 else: sol_count = (1 + 1) + (1 + 1) algorithmic_count = (3 + 1) + (3 + 1) buffer_size = self.M * self.N return { "sol": buffer_size * sol_count, "algorithmic": buffer_size * algorithmic_count, } @staticmethod def default_configs(): return [[128, 1 << 16]] benchmark.register_benchmark_class(SwishBench)