import scipy.special from . import benchmark class SoftmaxBench(benchmark.Benchmark): def __init__(self, mode, device, dtype, M, N): super().__init__(mode, device, dtype) self.M = M self.N = N self.dtype = dtype self.inputs = [ self.randn( [M, N], device=device, dtype=dtype, requires_grad=self.requires_grad ) ] def forward(self, inputs): x = self.add(inputs, 0.001) y = self.softmax(x, dim=-1, dtype=self.dtype) return y def reference(self): return scipy.special.softmax(self.numpy(self.inputs), axis=-1) def config(self): return [self.M, self.N] @staticmethod def module(): return "softmax" def memory_workload(self): if self.mode == "fwd": sol_count = 1 + 1 algorithmic_count = 3 + 1 else: sol_count = (1 + 1) + (1 + 1) algorithmic_count = (3 + 1) + (3 + 1) buffer_size = self.M * self.N return { "sol": buffer_size * sol_count, "algorithmic": buffer_size * algorithmic_count, } @staticmethod def default_configs(): return [ [480, 20], [1 << 15, 32], [128, 1 << 16], ] benchmark.register_benchmark_class(SoftmaxBench)