import logging import os import re from collections import defaultdict import click import pandas as pd from tabulate import tabulate def gmean(s): return s.product() ** (1 / len(s)) def find_csv_files(path, perf_compare): """ Recursively search for all CSV files in directory and subdirectories whose name contains a target string. """ def is_csv(f): if perf_compare: regex = r"training_(torchbench|huggingface|timm_models)\.csv" return re.match(regex, f) is not None else: return f.endswith("_performance.csv") csv_files = [] for root, dirs, files in os.walk(path): for file in files: if is_csv(file): csv_files.append(os.path.join(root, file)) return csv_files @click.command() @click.argument("directory", default="artifacts") @click.option("--amp", is_flag=True) @click.option("--float32", is_flag=True) @click.option( "--perf-compare", is_flag=True, help="Set if the CSVs were generated by running manually the action rather than picking them from the nightly job", ) def main(directory, amp, float32, perf_compare): """ Given a directory containing multiple CSVs from --performance benchmark runs, aggregates and generates summary statistics similar to the web UI at https://torchci-git-fork-huydhn-add-compilers-bench-74abf8-fbopensource.vercel.app/benchmark/compilers This is most useful if you've downloaded CSVs from CI and need to quickly look at aggregate stats. The CSVs are expected to follow exactly the same naming convention that is used in CI. You may also be interested in https://docs.google.com/document/d/1DQQxIgmKa3eF0HByDTLlcJdvefC4GwtsklJUgLs09fQ/edit# which explains how to interpret the raw csv data. """ dtypes = ["amp", "float32"] if amp and not float32: dtypes = ["amp"] if float32 and not amp: dtypes = ["float32"] dfs = defaultdict(list) for f in find_csv_files(directory, perf_compare): try: dfs[os.path.basename(f)].append(pd.read_csv(f)) except Exception: logging.warning("failed parsing %s", f) raise # dtype -> statistic -> benchmark -> compiler -> value results = defaultdict( # dtype lambda: defaultdict( # statistic lambda: defaultdict(dict) # benchmark # compiler -> value ) ) for k, v in sorted(dfs.items()): if perf_compare: regex = r"training_(torchbench|huggingface|timm_models)\.csv" m = re.match(regex, k) assert m is not None, k compiler = "inductor" benchmark = m.group(1) dtype = "float32" mode = "training" device = "cuda" else: regex = ( "(.+)_" "(torchbench|huggingface|timm_models)_" "(float32|amp)_" "(inference|training)_" "(cpu|cuda)_" r"performance\.csv" ) m = re.match(regex, k) compiler = m.group(1) benchmark = m.group(2) dtype = m.group(3) mode = m.group(4) device = m.group(5) df = pd.concat(v) df = df.dropna().query("speedup != 0") statistics = { "speedup": gmean(df["speedup"]), "comptime": df["compilation_latency"].mean(), "memory": gmean(df["compression_ratio"]), } if dtype not in dtypes: continue for statistic, v in statistics.items(): results[f"{device} {dtype} {mode}"][statistic][benchmark][compiler] = v descriptions = { "speedup": "Geometric mean speedup", "comptime": "Mean compilation time", "memory": "Peak memory compression ratio", } for dtype_mode, r in results.items(): print(f"# {dtype_mode} performance results") for statistic, data in r.items(): print(f"## {descriptions[statistic]}") table = [] for row_name in data[next(iter(data.keys()))]: row = [row_name] for col_name in data: row.append(round(data[col_name][row_name], 2)) table.append(row) headers = list(data.keys()) print(tabulate(table, headers=headers)) print() main()