#!/usr/bin/env python3 import importlib import logging import os import re import subprocess import sys import warnings try: from .common import ( BenchmarkRunner, download_retry_decorator, load_yaml_file, main, reset_rng_state, ) except ImportError: from common import ( BenchmarkRunner, download_retry_decorator, load_yaml_file, main, reset_rng_state, ) import torch from torch._dynamo.testing import collect_results from torch._dynamo.utils import clone_inputs log = logging.getLogger(__name__) # Enable FX graph caching if "TORCHINDUCTOR_FX_GRAPH_CACHE" not in os.environ: torch._inductor.config.fx_graph_cache = True def pip_install(package): subprocess.check_call([sys.executable, "-m", "pip", "install", package]) # Disable the flake warnings for the imports. Flake8 does not provide a way to # disable just warning for the entire file. Disabling flake8 entirely. # flake8: noqa imports = [ "AlbertForPreTraining", "AutoConfig", "AutoModelForCausalLM", "AutoModelForMaskedLM", "AutoModelForSeq2SeqLM", "BigBirdConfig", "BlenderbotForConditionalGeneration", "BlenderbotModel", "BlenderbotSmallForConditionalGeneration", "BlenderbotSmallModel", "CLIPModel", "CLIPVisionModel", "ElectraForPreTraining", "GPT2ForSequenceClassification", "GPTJForSequenceClassification", "GPTNeoForSequenceClassification", "HubertForSequenceClassification", "LxmertForPreTraining", "LxmertForQuestionAnswering", "MarianForCausalLM", "MarianModel", "MarianMTModel", "PegasusForConditionalGeneration", "PegasusModel", "ReformerConfig", "ViTForImageClassification", "ViTForMaskedImageModeling", "ViTModel", ] def process_hf_reformer_output(out): assert isinstance(out, list) # second output is unstable return [elem for i, elem in enumerate(out) if i != 1] try: mod = importlib.import_module("transformers") for cls in imports: if not hasattr(mod, cls): raise ModuleNotFoundError except ModuleNotFoundError: print("Installing HuggingFace Transformers...") pip_install("git+https://github.com/huggingface/transformers.git#egg=transformers") finally: for cls in imports: exec(f"from transformers import {cls}") # These models contain the models present in huggingface_models_list. It is a # combination of models supported by HF Fx parser and some manually supplied # models. For these models, we already know the largest batch size that can fit # on A100 GPUs - 40 GB. BATCH_SIZE_KNOWN_MODELS = {} # TODO(sdym): use batch-size-file parameter of common.main, like torchbench.py # Get the list of models and their batch sizes MODELS_FILENAME = os.path.join(os.path.dirname(__file__), "huggingface_models_list.txt") assert os.path.exists(MODELS_FILENAME) with open(MODELS_FILENAME, "r") as fh: lines = fh.readlines() lines = [line.rstrip() for line in lines] for line in lines: model_name, batch_size = line.split(",") batch_size = int(batch_size) BATCH_SIZE_KNOWN_MODELS[model_name] = batch_size assert len(BATCH_SIZE_KNOWN_MODELS) def get_module_cls_by_model_name(model_cls_name): _module_by_model_name = { "Speech2Text2Decoder": "transformers.models.speech_to_text_2.modeling_speech_to_text_2", "TrOCRDecoder": "transformers.models.trocr.modeling_trocr", } module_name = _module_by_model_name.get(model_cls_name, "transformers") module = importlib.import_module(module_name) return getattr(module, model_cls_name) def get_sequence_length(model_cls, model_name): if model_name.startswith(("Blenderbot",)): seq_length = 128 elif model_name.startswith(("GPT2", "Bart", "T5", "PLBart", "MBart")): seq_length = 1024 elif model_name in ("AllenaiLongformerBase", "BigBird"): seq_length = 1024 elif model_name.startswith("OPT"): seq_length = 2048 elif "Reformer" in model_name: seq_length = 4096 elif model_name.startswith( ( "Albert", "Deberta", "Layout", "Electra", "XLNet", "MegatronBert", "Bert", "Roberta", ) ) or model_name in ("DistillGPT2", "GoogleFnet", "YituTechConvBert", "CamemBert"): seq_length = 512 elif model_name in ("TrOCRForCausalLM"): seq_length = 256 elif model_name.startswith("MobileBert"): seq_length = 128 elif model_name.startswith("Wav2Vec2"): # If too short, will fail with something like # ValueError: `mask_length` has to be smaller than `sequence_length`, # but got `mask_length`: 10 and `sequence_length`: 9` seq_length = 10000 # NB: a more realistic size is 155136 else: log.info( f"Sequence Length not defined for {model_name}. Choosing 128 arbitrarily" ) seq_length = 128 return seq_length def generate_inputs_for_model( model_cls, model, model_name, bs, device, include_loss_args=False ): # TODO - Check if following values are representative num_choices = 3 num_visual_features = 42 seq_length = get_sequence_length(model_cls, model_name) vocab_size = model.config.vocab_size if model_name.startswith("Wav2Vec2"): # TODO: If we add more input_values style models, try to work this # into the overall control flow target_length = 100 return { "input_values": torch.randn((bs, seq_length), device=device), # Added because that's what the example training script has "attention_mask": rand_int_tensor(device, 0, 2, (bs, seq_length)), "labels": rand_int_tensor(device, 0, vocab_size, (bs, target_length)), } if model_name.endswith("MultipleChoice"): input = rand_int_tensor(device, 0, vocab_size, (bs, num_choices, seq_length)) elif model_name.startswith("Roberta"): input = rand_int_tensor(device, 0, 1, (bs, seq_length)) else: input = rand_int_tensor(device, 0, vocab_size, (bs, seq_length)) if "Bart" in model_name: input[:, -1] = model.config.eos_token_id input_dict = {"input_ids": input} if ( model_name.startswith("T5") or model_name.startswith("M2M100") or model_name.startswith("MT5") or model_cls in [ BlenderbotModel, BlenderbotSmallModel, BlenderbotForConditionalGeneration, BlenderbotSmallForConditionalGeneration, PegasusModel, PegasusForConditionalGeneration, MarianModel, MarianMTModel, ] ): input_dict["decoder_input_ids"] = input if model_name.startswith("Lxmert"): visual_feat_dim, visual_pos_dim = ( model.config.visual_feat_dim, model.config.visual_pos_dim, ) input_dict["visual_feats"] = torch.randn( bs, num_visual_features, visual_feat_dim ) input_dict["visual_pos"] = torch.randn(bs, num_visual_features, visual_pos_dim) if include_loss_args: if model_name.endswith("PreTraining"): if model_cls in [ElectraForPreTraining, LxmertForPreTraining]: input_dict["labels"] = rand_int_tensor(device, 0, 1, (bs, seq_length)) else: label_name = ( "sentence_order_label" if model_cls in [AlbertForPreTraining] else "next_sentence_label" ) input_dict["labels"] = ( rand_int_tensor(device, 0, vocab_size, (bs, seq_length)), ) input_dict[label_name] = rand_int_tensor(device, 0, 1, (bs,)) elif model_name.endswith("QuestionAnswering"): input_dict["start_positions"] = rand_int_tensor( device, 0, seq_length, (bs,) ) input_dict["end_positions"] = rand_int_tensor(device, 0, seq_length, (bs,)) elif ( model_name.endswith("MaskedLM") or model_name.endswith("HeadModel") or model_name.endswith("CausalLM") or model_name.endswith("DoubleHeadsModel") ): input_dict["labels"] = rand_int_tensor( device, 0, vocab_size, (bs, seq_length) ) elif model_name.endswith("TokenClassification"): input_dict["labels"] = rand_int_tensor( device, 0, model.config.num_labels - 1, (bs, seq_length) ) elif model_name.endswith("MultipleChoice"): input_dict["labels"] = rand_int_tensor(device, 0, num_choices, (bs,)) elif model_name.endswith("SequenceClassification"): input_dict["labels"] = rand_int_tensor( device, 0, model.config.num_labels - 1, (bs,) ) elif model_name.endswith("NextSentencePrediction"): input_dict["labels"] = rand_int_tensor(device, 0, 1, (bs,)) elif model_name.endswith("ForConditionalGeneration"): input_dict["labels"] = rand_int_tensor( device, 0, vocab_size - 1, (bs, seq_length) ) elif model_name in EXTRA_MODELS: input_dict["labels"] = rand_int_tensor( device, 0, vocab_size, (bs, seq_length) ) else: raise NotImplementedError( f"Class {model_name} unsupported for training test " ) return input_dict def rand_int_tensor(device, low, high, shape): return torch.randint( low, high, shape, device=device, dtype=torch.int64, requires_grad=False, ) EXTRA_MODELS = { "AllenaiLongformerBase": ( AutoConfig.from_pretrained("allenai/longformer-base-4096"), AutoModelForMaskedLM, ), "Reformer": ( ReformerConfig(), AutoModelForMaskedLM, ), "T5Small": ( AutoConfig.from_pretrained("t5-small"), AutoModelForSeq2SeqLM, ), # "BigBird": ( # BigBirdConfig(attention_type="block_sparse"), # AutoModelForMaskedLM, # ), "DistillGPT2": ( AutoConfig.from_pretrained("distilgpt2"), AutoModelForCausalLM, ), "GoogleFnet": ( AutoConfig.from_pretrained("google/fnet-base"), AutoModelForMaskedLM, ), "YituTechConvBert": ( AutoConfig.from_pretrained("YituTech/conv-bert-base"), AutoModelForMaskedLM, ), "CamemBert": ( AutoConfig.from_pretrained("camembert-base"), AutoModelForMaskedLM, ), } class HuggingfaceRunner(BenchmarkRunner): def __init__(self): super().__init__() self.suite_name = "huggingface" @property def _config(self): return load_yaml_file("huggingface.yaml") @property def _skip(self): return self._config["skip"] @property def _accuracy(self): return self._config["accuracy"] @property def skip_models(self): return self._skip["all"] @property def skip_models_for_cpu(self): return self._skip["device"]["cpu"] @property def fp32_only_models(self): return self._config["only_fp32"] @property def skip_models_due_to_control_flow(self): return self._skip["control_flow"] def _get_model_cls_and_config(self, model_name): if model_name not in EXTRA_MODELS: model_cls = get_module_cls_by_model_name(model_name) config_cls = model_cls.config_class config = config_cls() # NB: some models need a pad token defined to handle BS > 1 if ( model_cls in [ GPT2ForSequenceClassification, GPTNeoForSequenceClassification, GPTJForSequenceClassification, ] or model_cls.__name__.startswith("Roberta") or model_cls.__name__.startswith("Marian") ): config.pad_token_id = 0 else: config, model_cls = EXTRA_MODELS[model_name] return model_cls, config @download_retry_decorator def _download_model(self, model_name): model_cls, config = self._get_model_cls_and_config(model_name) if "auto" in model_cls.__module__: # Handle auto classes model = model_cls.from_config(config) else: model = model_cls(config) return model def load_model( self, device, model_name, batch_size=None, extra_args=None, ): is_training = self.args.training use_eval_mode = self.args.use_eval_mode dtype = torch.float32 reset_rng_state() model_cls, config = self._get_model_cls_and_config(model_name) model = self._download_model(model_name) model = model.to(device, dtype=dtype) if self.args.enable_activation_checkpointing: model.gradient_checkpointing_enable() if model_name in BATCH_SIZE_KNOWN_MODELS: batch_size_default = BATCH_SIZE_KNOWN_MODELS[model_name] elif batch_size is None: batch_size_default = 16 log.info( f"Batch size not specified for {model_name}. Setting batch_size=16" ) if batch_size is None: batch_size = batch_size_default batch_size_divisors = self._config["batch_size"]["divisors"] if model_name in batch_size_divisors: batch_size = max(int(batch_size / batch_size_divisors[model_name]), 1) log.info( f"Running smaller batch size={batch_size} for {model_name}, orig batch_size={batch_size_default}" ) example_inputs = generate_inputs_for_model( model_cls, model, model_name, batch_size, device, include_loss_args=True ) # So we can check for correct gradients without eliminating the dropout computation for attr in dir(config): if "drop" in attr and isinstance(getattr(config, attr), float): setattr(config, attr, 1e-30) if ( is_training and not use_eval_mode and not ( self.args.accuracy and model_name in self._config["only_inference"] ) ): model.train() else: model.eval() self.validate_model(model, example_inputs) return device, model_name, model, example_inputs, batch_size def iter_model_names(self, args): model_names = list(BATCH_SIZE_KNOWN_MODELS.keys()) + list(EXTRA_MODELS.keys()) model_names = set(model_names) model_names = sorted(model_names) start, end = self.get_benchmark_indices(len(model_names)) for index, model_name in enumerate(model_names): if index < start or index >= end: continue if ( not re.search("|".join(args.filter), model_name, re.I) or re.search("|".join(args.exclude), model_name, re.I) or model_name in args.exclude_exact or model_name in self.skip_models ): continue yield model_name @property def skip_accuracy_checks_large_models_dashboard(self): if self.args.dashboard or self.args.accuracy: return self._accuracy["skip"]["large_models"] return set() @property def get_output_amp_train_process_func(self): return {} def pick_grad(self, name, is_training): if is_training: return torch.enable_grad() else: return torch.no_grad() def get_tolerance_and_cosine_flag(self, is_training, current_device, name): cosine = self.args.cosine if is_training: from torch._inductor import config as inductor_config if (name in self._config["tolerance"]["higher_training"]) or ( inductor_config.max_autotune and name in self._config["tolerance"]["higher_max_autotune_training"] ): return 2e-2, cosine else: return 1e-2, cosine else: if name in self._config["tolerance"]["higher_inference"]: return 4e-3, cosine if ( current_device == "cpu" and name in self._config["tolerance"]["higher_inference_cpu"] ): return 4e-3, cosine return 1e-3, cosine def compute_loss(self, pred): return pred[0] def forward_pass(self, mod, inputs, collect_outputs=True): with self.autocast(**self.autocast_arg): return mod(**inputs) def forward_and_backward_pass(self, mod, inputs, collect_outputs=True): cloned_inputs = clone_inputs(inputs) self.optimizer_zero_grad(mod) with self.autocast(**self.autocast_arg): pred = mod(**cloned_inputs) loss = self.compute_loss(pred) self.grad_scaler.scale(loss).backward() self.optimizer_step() if collect_outputs: return collect_results(mod, pred, loss, cloned_inputs) return None def refresh_model_names_and_batch_sizes(): """ This function reads the HF Fx tracer supported models and finds the largest batch size that could fit on the GPU with PyTorch eager. The resulting data is written in huggingface_models_list.txt. Note - We only need to run this function if we believe that HF Fx tracer now supports more models. """ import transformers.utils.fx as hf_fx family = {} lm_seen = set() family_seen = set() for cls_name in hf_fx._SUPPORTED_MODELS: if "For" not in cls_name: continue model_cls = get_module_cls_by_model_name(cls_name) # TODO: AttributeError: '*Config' object has no attribute 'vocab_size' if model_cls in [ CLIPModel, CLIPVisionModel, # SwinForImageClassification, # SwinForImageClassification, # SwinForMaskedImageModeling, # SwinModel, ViTForImageClassification, ViTForMaskedImageModeling, ViTModel, ]: continue # TODO: AssertionError: Padding_idx must be within num_embeddings if model_cls in [MarianForCausalLM, MarianMTModel, MarianModel]: continue # TODO: "model is not supported yet" from HFTracer if model_cls in [HubertForSequenceClassification]: continue # TODO: shape mismatch in loss calculation if model_cls in [LxmertForQuestionAnswering]: continue family_name = cls_name.split("For")[0] if family_name not in family: family[family_name] = [] if cls_name.endswith(("MaskedLM", "CausalLM")) and family_name not in lm_seen: family[family_name].append(cls_name) lm_seen.add(family_name) elif ( cls_name.endswith( ("SequenceClassification", "ConditionalGeneration", "QuestionAnswering") ) and family_name not in family_seen ): family[family_name].append(cls_name) family_seen.add(family_name) elif cls_name.endswith("ImageClassification"): family[family_name].append(cls_name) chosen_models = set() for members in family.values(): chosen_models.update(set(members)) # Add the EXTRA_MODELS chosen_models.update(set(EXTRA_MODELS.keys())) for model_name in sorted(chosen_models): try: subprocess.check_call( [sys.executable] + sys.argv + ["--find-batch-sizes"] + [f"--only={model_name}"] + [f"--output={MODELS_FILENAME}"] ) except subprocess.SubprocessError: log.warning(f"Failed to find suitable batch size for {model_name}") def huggingface_main(): # Code to refresh model names and batch sizes # if "--find-batch-sizes" not in sys.argv: # refresh_model_names_and_batch_sizes() logging.basicConfig(level=logging.WARNING) warnings.filterwarnings("ignore") main(HuggingfaceRunner()) if __name__ == "__main__": huggingface_main()