// Copyright (c) 2018 MathInf GmbH, Thomas Viehmann // Licensed under the BSD-3-Clause license // This is the CPU implementation of the Connectionist Temporal Loss. // We mostly follow Graves. // 1. Graves et al.: http://www.cs.toronto.edu/~graves/icml_2006.pdf // We use the equations from above link, but note that [1] has 1-based indexing and we (of course) use 0-based. // Graves et al. call the probabilities y, we use log_probs (also calling them inputs) #define TORCH_ASSERT_ONLY_METHOD_OPERATORS #include #include #include #include #include #include #include #include #ifndef AT_PER_OPERATOR_HEADERS #include #include #else #include #include #include #include #include #include #include #include #include #include #include #include #include #endif #include #include namespace at::native { namespace { // this ad-hoc converts from targets (l in [1]) to augmented targets (l' in [1]) note that no bound-checking is done template static inline int64_t get_target_prime(target_t* target, int64_t offset, int64_t stride, int64_t idx, int64_t BLANK) { if (idx % 2 == 0) { return BLANK; } else { return target[offset + stride * (idx / 2)]; } } template std::tuple> ctc_loss_allocate_outputs(const Tensor& log_probs, const Tensor& targets, IntArrayRef input_lengths, IntArrayRef target_lengths, int64_t BLANK) { // log_probs: input_len x batch_size x num_labels // targets [int64]: batch_size x target_length OR sum(target_lengths) CheckedFrom c = "ctc_loss_allocate_outputs"; auto log_probs_arg = TensorArg(log_probs, "log_probs", 1); auto targets_arg = TensorArg(targets, "targets", 2); checkScalarType(c, targets_arg, target_scalar_type); checkDim(c, log_probs_arg, 3); checkDimRange(c, targets_arg, 1, 3); int64_t batch_size = log_probs.size(1); int64_t num_labels = log_probs.size(2); TORCH_CHECK((0 <= BLANK) && (BLANK < num_labels), "blank must be in label range"); TORCH_CHECK((int64_t) input_lengths.size() == batch_size, "input_lengths must be of size batch_size"); TORCH_CHECK((int64_t) target_lengths.size() == batch_size, "target_lengths must be of size batch_size"); // NOLINTNEXTLINE(cppcoreguidelines-init-variables) size_t tg_target_stride; int64_t max_target_length = 0; std::vector tg_batch_offsets(batch_size); if (targets.dim() == 1) { // concatenated targets int64_t pos = 0; for (const auto i : c10::irange(batch_size)) { TORCH_CHECK(target_lengths[i] >= 0, "Expected target_lengths to have value at least ", 0, ", but got value ", target_lengths[i], " (while checking arguments for ", c, ")"); tg_batch_offsets[i] = pos; pos += target_lengths[i]; if (max_target_length < target_lengths[i]) max_target_length = target_lengths[i]; } tg_target_stride = targets.stride(0); checkSize(c, targets_arg, 0, pos); } else { // batch x max_target_length // dim is 2 int64_t tg_batch_stride = targets.stride(0); for (const auto i : c10::irange(batch_size)) { TORCH_CHECK(target_lengths[i] >= 0, "Expected target_lengths to have value at least ", 0, ", but got value ", target_lengths[i], " (while checking arguments for ", c, ")"); tg_batch_offsets[i] = i * tg_batch_stride; if (max_target_length < target_lengths[i]) max_target_length = target_lengths[i]; } tg_target_stride = targets.stride(1); checkSize(c, targets_arg, 0, batch_size); TORCH_CHECK(targets.size(1) >= max_target_length, "Expected tensor to have size at least ", max_target_length, " at dimension 1, but got size ", targets.size(1), " for ", targets_arg, " (while checking arguments for ", c, ")"); } int64_t max_input_length = log_probs.size(0); for (const auto b : c10::irange(batch_size)) { TORCH_CHECK(input_lengths[b] >= 0, "Expected input_lengths to have value at least ", 0, ", but got value ", input_lengths[b], " (while checking arguments for ", c, ")"); TORCH_CHECK(input_lengths[b] <= max_input_length, "Expected input_lengths to have value at most ", max_input_length, ", but got value ", input_lengths[b], " (while checking arguments for ", c, ")"); } Tensor log_alpha = at::empty({batch_size, log_probs.size(0), 2*max_target_length+1}, log_probs.options()); Tensor neg_log_likelihood = at::empty({batch_size}, log_probs.options()); return std::make_tuple(neg_log_likelihood, log_alpha, tg_target_stride, tg_batch_offsets); } // This kernel is a relatively straightforward implementation of the alpha calculation in the forward backward algorithm (section 4.1). // A (minor) twist is that we are using log-calculations to enhance numerical stability (log_probs and log_alpha). // The function returns the loss and the alphas, the alphas are kept for the backward step. The wrapper (ctc_loss below) hides // the alphas from the user by only returning the loss. template std::tuple ctc_loss_cpu_template(const Tensor& log_probs, const Tensor& targets, IntArrayRef input_lengths, IntArrayRef target_lengths, int64_t BLANK) { // log_probs: input_len x batch_size x num_labels // targets [int64]: batch_size x target_length OR sum(target_lengths) constexpr scalar_t neginf = -std::numeric_limits::infinity(); using target_t = typename std::conditional::type; Tensor neg_log_likelihood, log_alpha; size_t tg_target_stride; std::vector tg_batch_offsets; if (targets.scalar_type() == kLong) { std::tie(neg_log_likelihood, log_alpha,tg_target_stride, tg_batch_offsets) = ctc_loss_allocate_outputs( log_probs, targets, input_lengths, target_lengths, BLANK); } else { std::tie(neg_log_likelihood, log_alpha, tg_target_stride, tg_batch_offsets) = ctc_loss_allocate_outputs( log_probs, targets, input_lengths, target_lengths, BLANK); } int64_t batch_size = log_probs.size(1); auto lpp = log_probs.permute({1,0,2}); auto log_probs_a_global = lpp.accessor(); auto log_alpha_a_global = log_alpha.accessor(); auto targets_data = targets.const_data_ptr(); auto neg_log_likelihood_a = neg_log_likelihood.accessor(); // alpha calculation for the first row, the three equations for alpha_1 above eq (6) // first the default log_alpha.narrow(1, 0, 1).fill_(neginf); at::parallel_for(0, batch_size, 0, [&](int64_t start, int64_t end) { for (const auto b : c10::irange(start, end)) { int64_t input_length = input_lengths[b]; int64_t target_length = target_lengths[b]; auto log_probs_a = log_probs_a_global[b]; auto log_alpha_a = log_alpha_a_global[b]; int64_t tg_batch_offset = tg_batch_offsets[b]; if (input_length == 0) { scalar_t log_likelihood = target_length == 0 ? 0 : neginf; neg_log_likelihood_a[b] = -log_likelihood; continue; } // the first two items of alpha_t above eq (6) log_alpha_a[0][0] = log_probs_a[0][BLANK]; if (target_length > 0) log_alpha_a[0][1] = log_probs_a[0][get_target_prime(targets_data, tg_batch_offset, tg_target_stride, 1, BLANK)]; // now the loop over the inputs for (const auto t : c10::irange(1, input_length)) { for (const auto s : c10::irange(2*target_length+1)) { auto current_target_prime = get_target_prime(targets_data, tg_batch_offset, tg_target_stride, s, BLANK); // this loop over s could be parallel/vectorized, too, but the required items are one index apart // alternatively, one might consider moving s to the outer loop to cache current_target_prime more (but then it needs to be descending) // for the cuda implementation, that gave a speed boost. // This is eq (6) and (7), la1,2,3 are the three summands. We keep track of the maximum for the logsumexp calculation. scalar_t la1 = log_alpha_a[t-1][s]; scalar_t lamax = la1; scalar_t la2, la3; if (s > 0) { la2 = log_alpha_a[t-1][s-1]; if (la2 > lamax) lamax = la2; } else { la2 = neginf; } if ((s > 1) && (get_target_prime(targets_data, tg_batch_offset, tg_target_stride, s-2, BLANK) != current_target_prime)) { la3 = log_alpha_a[t-1][s-2]; if (la3 > lamax) lamax = la3; } else { la3 = neginf; } if (lamax == neginf) // cannot do neginf-neginf lamax = 0; // this is the assignment of eq (6) log_alpha_a[t][s] = std::log(std::exp(la1-lamax)+std::exp(la2-lamax)+std::exp(la3-lamax))+lamax + log_probs_a[t][current_target_prime]; } } // the likelihood is the sum of the last two alphas, eq (8), the loss is the negative log likelihood if (target_length == 0) { // if the target is empty then there is no preceding BLANK state and hence there is no path to merge neg_log_likelihood_a[b] = -log_alpha_a[input_length-1][0]; } else { scalar_t l1 = log_alpha_a[input_length-1][target_length*2]; scalar_t l2 = log_alpha_a[input_length-1][target_length*2-1]; scalar_t m = std::max(l1, l2); m = ((m == neginf) ? 0 : m); scalar_t log_likelihood = std::log(std::exp(l1-m)+std::exp(l2-m))+m; neg_log_likelihood_a[b] = -log_likelihood; } } }); return std::make_tuple(neg_log_likelihood, log_alpha); } // This is the backward. It consists of two phases: // a) computing the beta analogous to the alphas in the forward (backward half of the forward-backward algorithm) (eq (10) and (11)) // b) collecting the per-activation characters for all s and wrapping the gradient (eq (16), the collection is the sum) template Tensor ctc_loss_backward_cpu_template(const Tensor& grad_out, const Tensor& log_probs, const Tensor& targets, IntArrayRef input_lengths, IntArrayRef target_lengths, const Tensor& neg_log_likelihood, const Tensor& log_alpha, int64_t BLANK, bool zero_infinity) { constexpr scalar_t neginf = -std::numeric_limits::infinity(); using target_t = typename std::conditional::type; int64_t max_input_length = log_probs.size(0); int64_t batch_size = log_probs.size(1); int64_t num_labels = log_probs.size(2); Tensor grad = at::full_like(log_probs, neginf, LEGACY_CONTIGUOUS_MEMORY_FORMAT); // at this point, this is log of empty sum // The admin bits. We don't do much checking and assume that the forward did. // NOLINTNEXTLINE(cppcoreguidelines-init-variables) int64_t tg_target_stride; // NOLINTNEXTLINE(cppcoreguidelines-init-variables) int64_t max_target_length; std::vector tg_batch_offsets(batch_size); if (targets.dim() == 1) { // concatenated targets int64_t pos = 0; max_target_length = 0; for (const auto i : c10::irange(batch_size)) { tg_batch_offsets[i] = pos; pos += target_lengths[i]; if (max_target_length < target_lengths[i]) max_target_length = target_lengths[i]; } tg_target_stride = targets.stride(0); } else { // batch x max_target_length // dim is 2 int64_t tg_batch_stride = targets.stride(0); for (const auto i : c10::irange(batch_size)) { tg_batch_offsets[i] = i * tg_batch_stride; } tg_target_stride = targets.stride(1); max_target_length = targets.size(1); } Tensor log_beta = at::empty_like(log_alpha, LEGACY_CONTIGUOUS_MEMORY_FORMAT); // could be optimized to use only 2 rows auto lpp = log_probs.permute({1,0,2}); auto log_probs_a_global = lpp.accessor(); auto log_alpha_a_global = log_alpha.accessor(); auto log_beta_a_global = log_beta.accessor(); auto gp = grad.permute({1,0,2}); auto grad_a_global = gp.accessor(); auto targets_data = targets.const_data_ptr(); auto grad_out_a = grad_out.accessor(); auto create_fill_iterator = [](const Tensor& tensor, IntArrayRef squash_dims) { return TensorIteratorConfig() .set_check_mem_overlap(false) // Fill is idempotent, so overlap is okay .check_all_same_dtype(false) .add_output(tensor) .resize_outputs(false) .declare_static_shape(tensor.sizes(), squash_dims) .build(); }; const auto fill_iter = create_fill_iterator(grad, /*squash_dims=*/1); const auto fill_1d_iter = create_fill_iterator(grad, /*squash_dims=*/{0, 1}); const auto fill_log_beta_1d_iter = create_fill_iterator(log_beta, /*squash_dims=*/{0, 1}); at::parallel_for(0, batch_size, 0, [&](int64_t start, int64_t end) { TensorIterator fill_iter_local(fill_iter); TensorIterator fill_1d_iter_local(fill_1d_iter); TensorIterator fill_log_beta_1d_iter_local(fill_log_beta_1d_iter); for (const auto b : c10::irange(start, end)) { scalar_t nll = neg_log_likelihood.accessor()[b]; auto grad_a = grad_a_global[b]; if (zero_infinity && nll == std::numeric_limits::infinity()) { // grad_batch.zero_(); fill_iter_local.unsafe_replace_operand(0, grad_a.data()); fill_stub(kCPU, fill_iter_local, 0); continue; } auto log_probs_a = log_probs_a_global[b]; auto log_alpha_a = log_alpha_a_global[b]; auto log_beta_a = log_beta_a_global[b]; int64_t input_length = input_lengths[b]; int64_t target_length = target_lengths[b]; int64_t tg_batch_offset = tg_batch_offsets[b]; // the initialization of beta before eq (10) // here we do the fill for each batch item separately, as the input lengths will differ, so the t in which // we start varies if (input_length > 0) { // log_beta.select(0, b).select(1, input_length-1).fill_(neginf); fill_log_beta_1d_iter_local.unsafe_replace_operand( 0, log_beta_a[input_length - 1].data()); fill_stub(kCPU, fill_log_beta_1d_iter_local, neginf); log_beta_a[input_length-1][2*target_length] = log_probs_a[input_length-1][BLANK]; grad_a[input_length-1][BLANK] = log_alpha_a[input_length-1][2*target_length] + log_beta_a[input_length-1][2*target_length]; if (target_length > 0) { auto current_target_prime = get_target_prime(targets_data, tg_batch_offset, tg_target_stride, 2*target_length-1, BLANK); log_beta_a[input_length-1][2*target_length-1] = log_probs_a[input_length-1][current_target_prime]; // the first two are a blank and a non-blank, so we know they are different and we don't need to do log+ grad_a[input_length-1][current_target_prime] = log_alpha_a[input_length-1][2*target_length-1] + log_beta_a[input_length-1][2*target_length-1]; } } // now loop applying eq (10) / (11) for (int64_t t=input_length-2; t>=0; t--) { // this loop over s could be parallel/vectorized and doesn't really need to be descending... // alternatively, one might consider moving s to the outer loop to cache current_target_prime more (but then it needs to be descending) // for the cuda implementation, that gave a speed boost. for (int64_t s=2*target_length; s>=0; s--) { scalar_t lb1 = log_beta_a[t+1][s]; scalar_t lbmax = lb1; scalar_t lb2, lb3; auto current_target_prime = get_target_prime(targets_data, tg_batch_offset, tg_target_stride, s, BLANK); if (s < 2*target_length) { lb2 = log_beta_a[t+1][s+1]; if (lb2 > lbmax) lbmax = lb2; } else { lb2 = neginf; } if ((s < 2*target_length-1) && (get_target_prime(targets_data, tg_batch_offset, tg_target_stride, s+2, BLANK) != current_target_prime)) { lb3 = log_beta_a[t+1][s+2]; if (lb3 > lbmax) lbmax = lb3; } else { lb3 = neginf; } if (lbmax == neginf) lbmax = 0; log_beta_a[t][s] = std::log(std::exp(lb1-lbmax)+std::exp(lb2-lbmax)+std::exp(lb3-lbmax))+lbmax + log_probs_a[t][current_target_prime]; // one might check whether one can vectorize this better when done after the t-loop... // now that we have beta, we fill in the sum of alpha*beta in eq (16) // in contrast to the cuda implementation, we only parallelize over the batch, so we don't have a concurrency // issue (several s can map to the same target character) // collected[b, t, target'[s]] "log+=" log_alpha[t, s]+log_beta[t, s] scalar_t log_alpha_beta = log_alpha_a[t][s] + log_beta_a[t][s]; scalar_t &lcab = grad_a[t][current_target_prime]; if (lcab == neginf) { lcab = log_alpha_beta; } else { scalar_t max = std::max(lcab, log_alpha_beta); lcab = std::log(std::exp(lcab-max)+std::exp(log_alpha_beta-max))+max; } } } // now grad has the sum of eq (16) // now we wrap up the calculation by adding in the remaining items of eq (16) // this could be a great target for further vectorization. // grad is the output gradient, nll is the loss. Note that the likelihood -nll is the Z of eq (16) scalar_t gr = grad_out_a[b]; for (const auto t : c10::irange(input_length)) { // or go for the full thing? for (const auto c : c10::irange(num_labels)) { scalar_t& res = grad_a[t][c]; scalar_t lp = log_probs_a[t][c]; res = (std::exp(lp)-std::exp(res + nll - lp)) * gr; } } // zero the remainder for (auto l : c10::irange(input_length, max_input_length)) { // grad_batch.select(0, l).zero_(); fill_1d_iter_local.unsafe_replace_operand(0, grad_a[l].data()); fill_stub(kCPU, fill_1d_iter_local, 0); } } }); return grad; } } // namespace std::tuple ctc_loss_meta(const Tensor& log_probs, const Tensor& targets, IntArrayRef input_lengths, IntArrayRef target_lengths, int64_t BLANK, bool zero_infinity) { (void)zero_infinity; // only used for backwards return AT_DISPATCH_FLOATING_TYPES( log_probs.scalar_type(), "ctc_loss_meta", [&] { Tensor neg_log_likelihood, log_alpha; if (targets.scalar_type() == kLong) { std::tie(neg_log_likelihood, log_alpha, std::ignore, std::ignore) = ctc_loss_allocate_outputs( log_probs, targets, input_lengths, target_lengths, BLANK); } else { std::tie(neg_log_likelihood, log_alpha, std::ignore, std::ignore) = ctc_loss_allocate_outputs( log_probs, targets, input_lengths, target_lengths, BLANK); } return std::make_tuple(neg_log_likelihood, log_alpha); }); } std::tuple ctc_loss_cpu(const Tensor& log_probs, const Tensor& targets, IntArrayRef input_lengths, IntArrayRef target_lengths, int64_t BLANK, bool zero_infinity) { (void)zero_infinity; // only used for backwards return AT_DISPATCH_FLOATING_TYPES(log_probs.scalar_type(), "ctc_loss_cpu", [&] { if (targets.scalar_type() == kLong) { return ctc_loss_cpu_template(log_probs, targets, input_lengths, target_lengths, BLANK); } else { return ctc_loss_cpu_template(log_probs, targets, input_lengths, target_lengths, BLANK); } }); } std::tuple ctc_loss_tensor(const Tensor& log_probs, const Tensor& targets, const Tensor& input_lengths, const Tensor& target_lengths, int64_t BLANK, bool zero_infinity) { TORCH_CHECK(isIntegralType(input_lengths.scalar_type(), /*includeBool=*/false), "input_lengths must be integral"); TORCH_CHECK(isIntegralType(target_lengths.scalar_type(), /*includeBool=*/false), "target_lengths must be integral"); Tensor ilc = input_lengths.to(Device(at::kCPU), at::kLong).contiguous(); Tensor tlc = target_lengths.to(Device(at::kCPU), at::kLong).contiguous(); IntArrayRef il(ilc.const_data_ptr(), ilc.numel()); IntArrayRef tl(tlc.const_data_ptr(), tlc.numel()); return at::_ctc_loss(log_probs, targets, il, tl, BLANK, zero_infinity); } Tensor ctc_loss_backward_cpu(const Tensor& grad, const Tensor& log_probs, const Tensor& targets, IntArrayRef input_lengths, IntArrayRef target_lengths, const Tensor& neg_log_likelihood, const Tensor& log_alpha, int64_t BLANK, bool zero_infinity) { return AT_DISPATCH_FLOATING_TYPES(log_probs.scalar_type(), "ctc_loss_backward_cpu", [&] { if (targets.scalar_type() == kLong) { return ctc_loss_backward_cpu_template(grad, log_probs, targets, input_lengths, target_lengths, neg_log_likelihood, log_alpha, BLANK, zero_infinity); } else { return ctc_loss_backward_cpu_template(grad, log_probs, targets, input_lengths, target_lengths, neg_log_likelihood, log_alpha, BLANK, zero_infinity); } }); } Tensor ctc_loss_backward_tensor( const Tensor& grad, const Tensor& log_probs, const Tensor& targets, const Tensor& input_lengths, const Tensor& target_lengths, const Tensor& neg_log_likelihood, const Tensor& log_alpha, int64_t BLANK, bool zero_infinity) { TORCH_CHECK( isIntegralType(input_lengths.scalar_type(), /*includeBool=*/false), "input_lengths must be integral"); TORCH_CHECK(isIntegralType(target_lengths.scalar_type(), /*includeBool=*/false), "target_lengths must be integral"); Tensor ilc = input_lengths.to(Device(at::kCPU), at::kLong).contiguous(); Tensor tlc = target_lengths.to(Device(at::kCPU), at::kLong).contiguous(); IntArrayRef il(ilc.data_ptr(), ilc.numel()); IntArrayRef tl(tlc.data_ptr(), tlc.numel()); return at::_ctc_loss_backward(grad, log_probs, targets, il, tl, neg_log_likelihood, log_alpha, BLANK, zero_infinity); } namespace { Tensor get_clamped_target_length( IntArrayRef target_lengths, const TensorOptions& options) { return at::tensor(target_lengths, options).clamp_min(1); } Tensor get_clamped_target_length( const Tensor & target_lengths, const TensorOptions& options) { return target_lengths.clamp_min(1); } // this wrapper function dispatches to the native and cudnn implementations and hides the alpha/grad from the user (by just returning the loss) // the gradient is implemented for _cudnn_ctc_loss (just in derivatives.yaml) and _ctc_loss and this function has automatic gradients // it also handles the reduction if desired template Tensor ctc_loss_impl(const Tensor& log_probs_, const Tensor& targets, LengthsType input_lengths, LengthsType target_lengths, int64_t BLANK, int64_t reduction, bool zero_infinity) { auto is_batched = log_probs_.dim() == 3; Tensor log_probs = is_batched ? log_probs_ : log_probs_.unsqueeze(1); bool use_cudnn = (log_probs.device().type() == at::kCUDA) && at::_use_cudnn_ctc_loss( log_probs, targets, input_lengths, target_lengths, BLANK); Tensor res; if (use_cudnn) { // non-deterministic ctc loss on cudnn disabled due to inconsistent results // see: https://github.com/pytorch/pytorch/issues/21680 res = std::get<0>(at::_cudnn_ctc_loss(log_probs, targets, input_lengths, target_lengths, BLANK, /*deterministic=*/true, zero_infinity)); } else { // if the targets are on CPU (which you need for CuDNN, let's move them to // GPU as a service for the user) res = std::get<0>(at::_ctc_loss( log_probs, targets.to(log_probs.device(), kLong), input_lengths, target_lengths, BLANK, zero_infinity)); if (zero_infinity) { res = at::where(res == Scalar(std::numeric_limits::infinity()), at::zeros({}, res.options()), res); } } if (reduction == at::Reduction::Mean) { auto target_lengths_t = get_clamped_target_length(target_lengths, res.options()); return (res / target_lengths_t).mean(); } else if (reduction == at::Reduction::Sum) { return res.sum(); } return is_batched ? std::move(res) : res.squeeze(0); } } // namespace Tensor ctc_loss(const Tensor& log_probs_, const Tensor& targets, IntArrayRef input_lengths, IntArrayRef target_lengths, int64_t BLANK, int64_t reduction, bool zero_infinity) { return ctc_loss_impl(log_probs_, targets, input_lengths, target_lengths, BLANK, reduction, zero_infinity); } // Convenience function accepting Tensors Tensor ctc_loss(const Tensor& log_probs, const Tensor& targets, const Tensor& input_lengths, const Tensor& target_lengths, int64_t BLANK, int64_t reduction, bool zero_infinity) { // we don't want to convert to IntArrayRef if we can dispatch to cuDNN (this allows graph-capturable ctc_loss) bool use_cudnn = (log_probs.device().type() == at::kCUDA) && at::_use_cudnn_ctc_loss( log_probs, targets, input_lengths, target_lengths, BLANK); if (at::areAnyTensorSubclassLike( {log_probs, targets, input_lengths, target_lengths}) || use_cudnn) { // Composite Compliant path for TensorSubclasses return ctc_loss_impl(log_probs, targets, input_lengths, target_lengths, BLANK, reduction, zero_infinity); } // Fast path (which accesses data_ptr) and less operator dispatches for // regular tensors TORCH_CHECK(isIntegralType(input_lengths.scalar_type(), /*includeBool=*/false), "input_lengths must be integral"); TORCH_CHECK(isIntegralType(target_lengths.scalar_type(), /*includeBool=*/false), "target_lengths must be integral"); Tensor ilc = input_lengths.to(Device(at::kCPU), at::kLong).contiguous(); Tensor tlc = target_lengths.to(Device(at::kCPU), at::kLong).contiguous(); IntArrayRef il(ilc.const_data_ptr(), ilc.numel()); IntArrayRef tl(tlc.const_data_ptr(), tlc.numel()); return at::native::ctc_loss(log_probs, targets, il, tl, BLANK, reduction, zero_infinity); } } // at::native