#include #include #include #include namespace at { namespace { DeviceType sparseTensorSetToDeviceType(DispatchKeySet key_set) { auto k = c10::highestPriorityBackendTypeId(key_set); TORCH_CHECK(c10::toFunctionalityKey(k) == DispatchKey::Sparse, "cannot create sparse tensor with non sparse dispatch key ", k); return c10::dispatchKeyToDeviceType(k); } } // An empty dense tensor defaults to a 1-dimensional tensor of size [0] // (recall, it is not a 0-dimensional tensor, because such a tensor would // a scalar and have one element) // // Thus, an empty sparse tensor should be a 1-dimensional tensor of size [0]. // Furthermore, we have dim == sparse_dim + dense_dim; since this is a sparse // tensor, let us say that an empty sparse tensor has sparse_dim == 1 and // dense_dim == 0. (There is a degree of freedom here, but given that this // is a sparse dimension, it seems reasonable to demand that sparse_dim > 0). // // This means that we allocate a [1,0] size indices tensor and a [0] size // values tensor for such an empty tensor. SparseTensorImpl::SparseTensorImpl(at::DispatchKeySet key_set, const caffe2::TypeMeta data_type) : SparseTensorImpl(key_set, data_type , at::empty({1, 0}, at::initialTensorOptions().device(sparseTensorSetToDeviceType(key_set)).dtype(ScalarType::Long)) , at::empty({0}, at::initialTensorOptions().device(sparseTensorSetToDeviceType(key_set)).dtype(data_type))) {} SparseTensorImpl::SparseTensorImpl(at::DispatchKeySet key_set, const caffe2::TypeMeta data_type, at::Tensor indices, at::Tensor values) : TensorImpl(key_set, data_type, values.device()) , sparse_dim_(1) , indices_(std::move(indices)) , values_(std::move(values)) { // we proxy to this constructor so we can initialize the device correctly, but really only indices/values of this shape are allowed. AT_ASSERT(indices_.sizes() == IntArrayRef({1, 0})); AT_ASSERT(values_.sizes() == IntArrayRef({0})); AT_ASSERT(values_.device() == indices_.device()); AT_ASSERT(values_.device() == device()); is_non_overlapping_and_dense_ = false; set_storage_access_should_throw(); set_custom_sizes_strides(SizesStridesPolicy::CustomStrides); } // Destructor doesn't call release_resources because it's // unnecessary; don't forget to change that if needed! void SparseTensorImpl::release_resources() { TensorImpl::release_resources(); values_.reset(); indices_.reset(); } void SparseTensorImpl::set_size(int64_t dim, int64_t new_size) { AT_ERROR("sparse tensors do not have set_size"); } void SparseTensorImpl::set_stride(int64_t dim, int64_t new_stride) { AT_ERROR("sparse tensors do not have set_stride"); } void SparseTensorImpl::set_storage_offset(int64_t storage_offset) { AT_ERROR("sparse tensors do not have set_storage_offset"); } #ifdef DEBUG bool SparseTensorImpl::has_storage() const { TORCH_INTERNAL_ASSERT_DEBUG_ONLY(!storage_, "SparseTensorImpl assumes that storage_ is never set"); return false; } #endif const char* SparseTensorImpl::tensorimpl_type_name() const { return "SparseTensorImpl"; } void SparseTensorImpl::set_indices_and_values_unsafe(const Tensor& indices, const Tensor& values) { TORCH_CHECK(allow_tensor_metadata_change(), "set_indices_and_values_unsafe ", err_msg_tensor_metadata_change_not_allowed); TORCH_CHECK(!indices.is_sparse(), "expected indices to be a dense tensor, but got indices of layout ", indices.layout()); TORCH_CHECK(!values.is_sparse(), "expected values to be a dense tensor, but got values of layout ", values.layout()); TORCH_CHECK(values.device().type() == device().type(), "device type of values (", values.device().type(), ") must match device type of device().type()", device().type(), ")"); TORCH_CHECK(values.scalar_type() == typeMetaToScalarType(dtype()), "dtype of values (", values.scalar_type(), ") must match dtype of sparse tensor (", typeMetaToScalarType(dtype()), ")"); TORCH_CHECK(indices.scalar_type() == kLong, "indices must be an int64 tensor"); TORCH_CHECK(indices.options().backend() == values.options().backend(), "backend of indices (", indices.options().backend(), ") must match backend of values (", values.options().backend(), ")"); TORCH_CHECK(!indices.is_cuda() || indices.get_device() == values.get_device(), "device of indices (", indices.get_device(), ") must match device of values (", values.get_device(), ")"); TORCH_CHECK(indices.dim() == 2, "indices must be sparse_dim x nnz, but got: ", indices.sym_sizes()); TORCH_CHECK(indices.sym_size(1) == values.sym_size(0), "indices and values must have same nnz, but got nnz from indices: ", indices.sym_size(1), ", nnz from values: ", values.sym_size(0)); TORCH_CHECK(indices.sym_size(0) == sparse_dim_, "indices has incorrect first dimension, expected ", sparse_dim_, ", got ", indices.sym_size(0)); TORCH_CHECK(values.dim() == dense_dim_ + 1, "values has incorrect number of dimensions, expected ", dense_dim_ + 1, ", got ", values.dim()); auto dense_size_original = sym_sizes().slice(sparse_dim_); std::vector expected_values_size_vec = {values.sym_size(0)}; expected_values_size_vec.insert(expected_values_size_vec.end(), dense_size_original.begin(), dense_size_original.end()); SymIntArrayRef expected_values_size(expected_values_size_vec); auto new_values_size = values.sym_sizes(); TORCH_CHECK( std::equal(expected_values_size.begin(), expected_values_size.end(), new_values_size.begin()), "values has incorrect size, expected ", expected_values_size, ", got ", new_values_size ); indices_ = indices; values_ = values; AT_ASSERT(device() == values_.device()); AT_ASSERT(values_.device() == indices_.device()); coalesced_ = TORCH_GUARD_SIZE_OBLIVIOUS(sym_nnz().sym_lt(2)); } } // namespace at