// Copyright (C) 2023 The Android Open Source Project // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. export class BigintMath { static INT64_MAX: bigint = 2n ** 63n - 1n; static INT64_MIN: bigint = -(2n ** 63n); // Returns the smallest integral power of 2 that is not smaller than n. // If n is less than or equal to 0, returns 1. static bitCeil(n: bigint): bigint { let result = 1n; while (result < n) { result <<= 1n; } return result; } // Returns the largest integral power of 2 which is not greater than n. // If n is less than or equal to 0, returns 1. static bitFloor(n: bigint): bigint { let result = 1n; while (result << 1n <= n) { result <<= 1n; } return result; } // Returns the largest integral value x where 2^x is not greater than n. static log2(n: bigint): number { let result = 1n; let log2 = 0; while (result << 1n <= n) { result <<= 1n; ++log2; } return log2; } // Returns the integral multiple of step which is closest to n. // If step is less than or equal to 0, returns n. static quant(n: bigint, step: bigint): bigint { step = BigintMath.max(1n, step); const halfStep = step / 2n; return step * ((n + halfStep) / step); } // Returns the largest integral multiple of step which is not larger than n. // If step is less than or equal to 0, returns n. static quantFloor(n: bigint, step: bigint): bigint { step = BigintMath.max(1n, step); if (n >= 0) { return n - (n % step); } else { // If we're negative, just subtract one more "step", unless we're already // aligned to a step then do nothing. return n - (n % step) - (n % step === 0n ? 0n : step); } } // Returns the smallest integral multiple of step which is not smaller than n. // If step is less than or equal to 0, returns n. static quantCeil(n: bigint, step: bigint): bigint { step = BigintMath.max(1n, step); if (n >= 0) { return n - (n % step) + (n % step === 0n ? 0n : step); } else { return n - (n % step); } } // Returns the greater of a and b. static max(a: bigint, b: bigint): bigint { return a > b ? a : b; } // Returns the smaller of a and b. static min(a: bigint, b: bigint): bigint { return a < b ? a : b; } // Returns the number of 1 bits in n. static popcount(n: bigint): number { if (n < 0n) { throw Error(`Can\'t get popcount of negative number ${n}`); } let count = 0; while (n) { if (n & 1n) { ++count; } n >>= 1n; } return count; } // Return the ratio between two bigints as a number. static ratio(dividend: bigint, divisor: bigint): number { return Number(dividend) / Number(divisor); } // Calculates the absolute value of a n. static abs(n: bigint) { return n < 0n ? -1n * n : n; } }