#!/usr/bin/env python3 # # Copyright (c) 2022, The OpenThread Authors. # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # 1. Redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer. # 2. Redistributions in binary form must reproduce the above copyright # notice, this list of conditions and the following disclaimer in the # documentation and/or other materials provided with the distribution. # 3. Neither the name of the copyright holder nor the # names of its contributors may be used to endorse or promote products # derived from this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE # ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE # LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR # CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF # SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS # INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN # CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) # ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE # POSSIBILITY OF SUCH DAMAGE. from cli import verify from cli import verify_within import cli import time # ----------------------------------------------------------------------------------------------------------------------- # Test description: Address Cache Table # # This test verifies the behavior of `AddressResolver` and how the cache # table is managed. In particular it verifies behavior query timeout and # query retry and snoop optimization. # # Build network topology # # r3 ---- r1 ---- r2 # | | # | | # c3 c2 # test_name = __file__[:-3] if __file__.endswith('.py') else __file__ print('-' * 120) print('Starting \'{}\''.format(test_name)) # ----------------------------------------------------------------------------------------------------------------------- # Creating `cli.Node` instances speedup = 10 cli.Node.set_time_speedup_factor(speedup) r1 = cli.Node() r2 = cli.Node() r3 = cli.Node() c2 = cli.Node() c3 = cli.Node() # ----------------------------------------------------------------------------------------------------------------------- # Form topology r1.allowlist_node(r2) r1.allowlist_node(r3) r2.allowlist_node(r1) r2.allowlist_node(c2) r3.allowlist_node(r1) r3.allowlist_node(c3) c2.allowlist_node(r2) c3.allowlist_node(r3) r1.form('addrrslvr') prefix = 'fd00:abba::' r1.add_prefix(prefix + '/64', 'pos', 'med') r1.register_netdata() r2.join(r1) r3.join(r1) c2.join(r1, cli.JOIN_TYPE_END_DEVICE) c3.join(r1, cli.JOIN_TYPE_SLEEPY_END_DEVICE) c3.set_pollperiod(400) verify(r1.get_state() == 'leader') verify(r2.get_state() == 'router') verify(r3.get_state() == 'router') verify(c2.get_state() == 'child') verify(c3.get_state() == 'child') # ----------------------------------------------------------------------------------------------------------------------- # Test Implementation # Wait till first router has either established a link or # has a valid "next hop" towards all other routers. r1_rloc16 = int(r1.get_rloc16(), 16) def check_r1_router_table(): table = r1.get_router_table() verify(len(table) == 3) for entry in table: verify(int(entry['RLOC16'], 0) == r1_rloc16 or int(entry['Link']) == 1 or int(entry['Next Hop']) != 63) verify_within(check_r1_router_table, 120) # - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - r1_rloc = int(r1.get_rloc16(), 16) r2_rloc = int(r2.get_rloc16(), 16) r3_rloc = int(r3.get_rloc16(), 16) c2_rloc = int(c2.get_rloc16(), 16) c3_rloc = int(c3.get_rloc16(), 16) # AddressResolver constants: max_cache_entries = 16 max_snooped_non_evictable = 2 # Add IPv6 addresses matching the on-mesh prefix on all nodes r1.add_ip_addr(prefix + '1') num_addresses = 4 # Number of addresses to add on r2, r3, c2, and c3 for num in range(num_addresses): r2.add_ip_addr(prefix + "2:" + str(num)) r3.add_ip_addr(prefix + "3:" + str(num)) c2.add_ip_addr(prefix + "c2:" + str(num)) c3.add_ip_addr(prefix + "c3:" + str(num)) # - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - # From r1 send msg to a group of addresses that are not provided by # any nodes in network. num_queries = 5 stagger_interval = 1.2 port = 1234 initial_retry_delay = 8 r1.udp_open() for num in range(num_queries): r1.udp_send(prefix + '800:' + str(num), port, 'hi_nobody') # Wait before next tx to stagger the address queries # request ensuring different timeouts time.sleep(stagger_interval / (num_queries * speedup)) # Verify that we do see entries in cache table for all the addresses # and all are in "query" state cache_table = r1.get_eidcache() verify(len(cache_table) == num_queries) for entry in cache_table: fields = entry.strip().split(' ') verify(fields[2] == 'query') verify(fields[3] == 'canEvict=0') verify(fields[4].startswith('timeout=')) verify(int(fields[4].split('=')[1]) > 0) # - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - # Check the retry-query behavior # # Wait till all the address queries time out and verify they # enter "retry-query" state. def check_cache_entry_switch_to_retry_state(): cache_table = r1.get_eidcache() for entry in cache_table: fields = entry.strip().split(' ') verify(fields[2] == 'retry') verify(fields[3] == 'canEvict=1') verify(fields[4].startswith('timeout=')) verify(int(fields[4].split('=')[1]) >= 0) verify(fields[5].startswith('retryDelay=')) verify(int(fields[5].split('=')[1]) == initial_retry_delay) verify_within(check_cache_entry_switch_to_retry_state, 20) # Try sending again to same addresses which are all in "retry" state. for num in range(num_queries): r1.udp_send(prefix + '800:' + str(num), port, 'hi_nobody') # Make sure the entries stayed in retry-query state as before. verify_within(check_cache_entry_switch_to_retry_state, 20) # Now wait for all entries to reach zero timeout. def check_cache_entry_in_retry_state_to_enter_rampdown(): cache_table = r1.get_eidcache() for entry in cache_table: fields = entry.strip().split(' ') verify(fields[2] == 'retry') verify(fields[3] == 'canEvict=1') verify(fields[4].startswith('timeout=')) verify(fields[5].startswith('retryDelay=')) verify(fields[6] == 'rampDown=1') verify_within(check_cache_entry_in_retry_state_to_enter_rampdown, 20) # Now send again to the same addresses. for num in range(num_queries): r1.udp_send(prefix + '800:' + str(num), port, 'hi_nobody') # We expect now after the delay to see retries for same addresses. def check_cache_entry_switch_to_query_state(): cache_table = r1.get_eidcache() for entry in cache_table: fields = entry.strip().split(' ') verify(fields[2] == 'query') verify(fields[3] == 'canEvict=1') verify_within(check_cache_entry_switch_to_query_state, 20) def check_cache_entry_switch_to_retry_state_with_double_retry_delay(): cache_table = r1.get_eidcache() for entry in cache_table: fields = entry.strip().split(' ') verify(fields[2] == 'retry') verify(fields[3] == 'canEvict=1') verify(fields[4].startswith('timeout=')) verify(fields[5].startswith('retryDelay=')) verify(int(fields[5].split('=')[1]) == 2 * initial_retry_delay) verify_within(check_cache_entry_switch_to_retry_state_with_double_retry_delay, 40) verify_within(check_cache_entry_in_retry_state_to_enter_rampdown, 40) def check_cache_entry_ramp_down_to_initial_retry_delay(): cache_table = r1.get_eidcache() for entry in cache_table: fields = entry.strip().split(' ') verify(fields[2] == 'retry') verify(fields[3] == 'canEvict=1') verify(fields[4].startswith('timeout=')) verify(fields[5].startswith('retryDelay=')) verify(int(fields[5].split('=')[1]) == initial_retry_delay) verify(fields[6] == 'rampDown=1') verify_within(check_cache_entry_ramp_down_to_initial_retry_delay, 60) # - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - # Verify snoop optimization behavior. # Send to r1 from all addresses on r2. r2.udp_open() for num in range(num_addresses): r2.udp_bind(prefix + '2:' + str(num), port) r2.udp_send(prefix + '1', port, 'hi_r1_from_r2_snoop_me') # Verify that we see all addresses from r2 as snooped in cache table. # At most two of them should be marked as non-evictable. def check_cache_entry_contains_snooped_entries(): cache_table = r1.get_eidcache() verify(len(cache_table) >= num_addresses) snooped_count = 0 snooped_non_evictable = 0 for entry in cache_table: fields = entry.strip().split(' ') if fields[2] == 'snoop': verify(fields[0].startswith('fd00:abba:0:0:0:0:2:')) verify(int(fields[1], 16) == r2_rloc) snooped_count = snooped_count + 1 if fields[3] == 'canEvict=0': snooped_non_evictable = snooped_non_evictable + 1 verify(snooped_count == num_addresses) verify(snooped_non_evictable == max_snooped_non_evictable) verify_within(check_cache_entry_contains_snooped_entries, 20) # Now we use the snooped entries by sending from r1 to r2 using # all its addresses. for num in range(num_addresses): r1.udp_send(prefix + '2:' + str(num), port, 'hi_back_r2_from_r1') time.sleep(0.1) # We expect to see the entries to be in "cached" state now. cache_table = r1.get_eidcache() verify(len(cache_table) >= num_addresses) match_count = 0 for entry in cache_table: fields = entry.strip().split(' ') if fields[0].startswith('fd00:abba:0:0:0:0:2:'): verify(fields[2] == 'cache') verify(fields[3] == 'canEvict=1') match_count = match_count + 1 verify(match_count == num_addresses) # - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - # Check query requests and last transaction time # Send from r1 to all addresses on r3. Check entries # for r3 are at the top of cache table list. for num in range(num_addresses): r1.udp_send(prefix + '3:' + str(num), port, 'hi_r3_from_r1') def check_cache_entry_contains_r3_entries(): cache_table = r1.get_eidcache() for num in range(num_addresses): entry = cache_table[num] fields = entry.strip().split(' ') verify(fields[0].startswith('fd00:abba:0:0:0:0:3:')) verify(int(fields[1], 16) == r3_rloc) verify(fields[2] == 'cache') verify(fields[3] == 'canEvict=1') verify(fields[4] == 'transTime=0') verify_within(check_cache_entry_contains_r3_entries, 20) # Send from r1 to all addresses of c3 (sleepy child of r3) for num in range(num_addresses): r1.udp_send(prefix + 'c3:' + str(num), port, 'hi_c3_from_r1') def check_cache_entry_contains_c3_entries(): cache_table = r1.get_eidcache() for num in range(num_addresses): entry = cache_table[num] fields = entry.strip().split(' ') verify(fields[0].startswith('fd00:abba:0:0:0:0:c3:')) verify(int(fields[1], 16) == r3_rloc) verify(fields[2] == 'cache') verify(fields[3] == 'canEvict=1') verify(fields[4] == 'transTime=0') verify_within(check_cache_entry_contains_c3_entries, 20) # Send again to r2. This should cause the related cache entries to # be moved to top of the list. for num in range(num_addresses): r1.udp_send(prefix + '2:' + str(num), port, 'hi_again_r2_from_r1') def check_cache_entry_contains_r2_entries(): cache_table = r1.get_eidcache() for num in range(num_addresses): entry = cache_table[num] fields = entry.strip().split(' ') verify(fields[0].startswith('fd00:abba:0:0:0:0:2:')) verify(int(fields[1], 16) == r2_rloc) verify(fields[2] == 'cache') verify(fields[3] == 'canEvict=1') verify_within(check_cache_entry_contains_r2_entries, 20) # - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - # Check behavior when address cache table is full. cache_table = r1.get_eidcache() verify(len(cache_table) == max_cache_entries) # From r1 send to non-existing addresses. for num in range(num_queries): r1.udp_send(prefix + '900:' + str(num), port, 'hi_nobody!') cache_table = r1.get_eidcache() verify(len(cache_table) == max_cache_entries) # Send from c2 to r1 and verify that snoop optimization uses at most # `max_snooped_non_evictable` entries c2.udp_open() for num in range(num_addresses): c2.udp_bind(prefix + 'c2:' + str(num), port) c2.udp_send(prefix + '1', port, 'hi_r1_from_c2_snoop_me') def check_cache_entry_contains_max_allowed_snopped(): cache_table = r1.get_eidcache() snooped_non_evictable = 0 for entry in cache_table: fields = entry.strip().split(' ') if fields[2] == 'snoop': verify(fields[0].startswith('fd00:abba:0:0:0:0:c2:')) verify(fields[3] == 'canEvict=0') snooped_non_evictable = snooped_non_evictable + 1 verify(snooped_non_evictable == max_snooped_non_evictable) verify_within(check_cache_entry_contains_max_allowed_snopped, 20) # Now send from r1 to c2, the snooped entries would be used # some other addresses will go through full address query. for num in range(num_addresses): r1.udp_send(prefix + 'c2:' + str(num), port, 'hi_c2_from_r1') def check_cache_entry_contains_c2_entries(): cache_table = r1.get_eidcache() for num in range(num_addresses): entry = cache_table[num] fields = entry.strip().split(' ') verify(fields[0].startswith('fd00:abba:0:0:0:0:c2:')) verify(int(fields[1], 16) == r2_rloc) verify(fields[2] == 'cache') verify(fields[3] == 'canEvict=1') verify_within(check_cache_entry_contains_c2_entries, 20) # ----------------------------------------------------------------------------------------------------------------------- # Test finished cli.Node.finalize_all_nodes() print('\'{}\' passed.'.format(test_name))