/* * Copyright (c) 2016, The OpenThread Authors. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. Neither the name of the copyright holder nor the * names of its contributors may be used to endorse or promote products * derived from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. */ #include "openthread-posix-config.h" #include "platform-posix.h" #include #include #include #include #include #include #include #include "common/code_utils.hpp" static bool sIsMsRunning = false; static uint32_t sMsAlarm = 0; #if OPENTHREAD_CONFIG_PLATFORM_USEC_TIMER_ENABLE static bool sIsUsRunning = false; static uint32_t sUsAlarm = 0; #endif static uint32_t sSpeedUpFactor = 1; #ifdef __linux__ #include #include #if OPENTHREAD_CONFIG_PLATFORM_USEC_TIMER_ENABLE && !OPENTHREAD_POSIX_VIRTUAL_TIME static timer_t sMicroTimer; static int sRealTimeSignal = 0; static void microTimerHandler(int aSignal, siginfo_t *aSignalInfo, void *aUserContext) { assert(aSignal == sRealTimeSignal); assert(aSignalInfo->si_value.sival_ptr == &sMicroTimer); OT_UNUSED_VARIABLE(aSignal); OT_UNUSED_VARIABLE(aSignalInfo); OT_UNUSED_VARIABLE(aUserContext); } #endif // OPENTHREAD_CONFIG_PLATFORM_USEC_TIMER_ENABLE && !OPENTHREAD_POSIX_VIRTUAL_TIME #endif // __linux__ #ifdef CLOCK_MONOTONIC_RAW #define OT_POSIX_CLOCK_ID CLOCK_MONOTONIC_RAW #else #define OT_POSIX_CLOCK_ID CLOCK_MONOTONIC #endif #if !OPENTHREAD_POSIX_VIRTUAL_TIME uint64_t otPlatTimeGet(void) { struct timespec now; VerifyOrDie(clock_gettime(OT_POSIX_CLOCK_ID, &now) == 0, OT_EXIT_FAILURE); return static_cast(now.tv_sec) * OT_US_PER_S + static_cast(now.tv_nsec) / OT_NS_PER_US; } #endif // !OPENTHREAD_POSIX_VIRTUAL_TIME static uint64_t platformAlarmGetNow(void) { return otPlatTimeGet() * sSpeedUpFactor; } void platformAlarmInit(uint32_t aSpeedUpFactor, int aRealTimeSignal) { sSpeedUpFactor = aSpeedUpFactor; if (aRealTimeSignal == 0) { #if OPENTHREAD_CONFIG_PLATFORM_USEC_TIMER_ENABLE otLogWarnPlat("Real time signal not enabled, microsecond timers may be inaccurate!"); #endif } #ifdef __linux__ else if (aRealTimeSignal >= SIGRTMIN && aRealTimeSignal <= SIGRTMAX) { #if OPENTHREAD_CONFIG_PLATFORM_USEC_TIMER_ENABLE && !OPENTHREAD_POSIX_VIRTUAL_TIME struct sigaction sa; struct sigevent sev; sa.sa_flags = SA_SIGINFO; sa.sa_sigaction = microTimerHandler; sigemptyset(&sa.sa_mask); VerifyOrDie(sigaction(aRealTimeSignal, &sa, nullptr) != -1, OT_EXIT_ERROR_ERRNO); sev.sigev_notify = SIGEV_SIGNAL; sev.sigev_signo = aRealTimeSignal; sev.sigev_value.sival_ptr = &sMicroTimer; VerifyOrDie(timer_create(CLOCK_MONOTONIC, &sev, &sMicroTimer) != -1, OT_EXIT_ERROR_ERRNO); sRealTimeSignal = aRealTimeSignal; #endif // OPENTHREAD_CONFIG_PLATFORM_USEC_TIMER_ENABLE && !OPENTHREAD_POSIX_VIRTUAL_TIME } #endif // __linux__ else { DieNow(OT_EXIT_INVALID_ARGUMENTS); } } uint32_t otPlatAlarmMilliGetNow(void) { return (uint32_t)(platformAlarmGetNow() / OT_US_PER_MS); } void otPlatAlarmMilliStartAt(otInstance *aInstance, uint32_t aT0, uint32_t aDt) { OT_UNUSED_VARIABLE(aInstance); sMsAlarm = aT0 + aDt; sIsMsRunning = true; } void otPlatAlarmMilliStop(otInstance *aInstance) { OT_UNUSED_VARIABLE(aInstance); sIsMsRunning = false; } #if OPENTHREAD_CONFIG_PLATFORM_USEC_TIMER_ENABLE uint32_t otPlatAlarmMicroGetNow(void) { return static_cast(platformAlarmGetNow()); } void otPlatAlarmMicroStartAt(otInstance *aInstance, uint32_t aT0, uint32_t aDt) { OT_UNUSED_VARIABLE(aInstance); sUsAlarm = aT0 + aDt; sIsUsRunning = true; #ifdef __linux__ if (sRealTimeSignal != 0) { struct itimerspec its; uint32_t diff = sUsAlarm - otPlatAlarmMicroGetNow(); its.it_value.tv_sec = diff / OT_US_PER_S; its.it_value.tv_nsec = (diff % OT_US_PER_S) * OT_NS_PER_US; its.it_interval.tv_sec = 0; its.it_interval.tv_nsec = 0; if (-1 == timer_settime(sMicroTimer, 0, &its, nullptr)) { otLogWarnPlat("Failed to update microsecond timer: %s", strerror(errno)); } } #endif // __linux__ } void otPlatAlarmMicroStop(otInstance *aInstance) { OT_UNUSED_VARIABLE(aInstance); sIsUsRunning = false; #ifdef __linux__ if (sRealTimeSignal != 0) { struct itimerspec its = {{0, 0}, {0, 0}}; if (-1 == timer_settime(sMicroTimer, 0, &its, nullptr)) { otLogWarnPlat("Failed to stop microsecond timer: %s", strerror(errno)); } } #endif // __linux__ } #endif // OPENTHREAD_CONFIG_PLATFORM_USEC_TIMER_ENABLE void platformAlarmUpdateTimeout(struct timeval *aTimeout) { int64_t remaining = INT32_MAX; uint64_t now = platformAlarmGetNow(); assert(aTimeout != nullptr); if (sIsMsRunning) { remaining = (int32_t)(sMsAlarm - (uint32_t)(now / OT_US_PER_MS)); VerifyOrExit(remaining > 0); remaining *= OT_US_PER_MS; remaining -= (now % OT_US_PER_MS); } #if OPENTHREAD_CONFIG_PLATFORM_USEC_TIMER_ENABLE if (sIsUsRunning) { int32_t usRemaining = (int32_t)(sUsAlarm - (uint32_t)now); if (usRemaining < remaining) { remaining = usRemaining; } } #endif // OPENTHREAD_CONFIG_PLATFORM_USEC_TIMER_ENABLE exit: if (remaining <= 0) { aTimeout->tv_sec = 0; aTimeout->tv_usec = 0; } else { remaining /= sSpeedUpFactor; if (remaining == 0) { remaining = 1; } if (remaining < static_cast(aTimeout->tv_sec) * OT_US_PER_S + static_cast(aTimeout->tv_usec)) { aTimeout->tv_sec = static_cast(remaining / OT_US_PER_S); aTimeout->tv_usec = static_cast(remaining % OT_US_PER_S); } } } void platformAlarmProcess(otInstance *aInstance) { int32_t remaining; if (sIsMsRunning) { remaining = (int32_t)(sMsAlarm - otPlatAlarmMilliGetNow()); if (remaining <= 0) { sIsMsRunning = false; #if OPENTHREAD_CONFIG_DIAG_ENABLE if (otPlatDiagModeGet()) { otPlatDiagAlarmFired(aInstance); } else #endif { otPlatAlarmMilliFired(aInstance); } } } #if OPENTHREAD_CONFIG_PLATFORM_USEC_TIMER_ENABLE if (sIsUsRunning) { remaining = (int32_t)(sUsAlarm - otPlatAlarmMicroGetNow()); if (remaining <= 0) { sIsUsRunning = false; otPlatAlarmMicroFired(aInstance); } } #endif // OPENTHREAD_CONFIG_PLATFORM_USEC_TIMER_ENABLE }