/* * Copyright (c) 2016, The OpenThread Authors. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. Neither the name of the copyright holder nor the * names of its contributors may be used to endorse or promote products * derived from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. */ #include "platform-simulation.h" #if OPENTHREAD_SIMULATION_VIRTUAL_TIME == 0 #include #include #include #include "utils/code_utils.h" #ifdef __linux__ #include #include #ifndef OPENTHREAD_CONFIG_MICRO_TIMER_SIGNAL #define OPENTHREAD_CONFIG_MICRO_TIMER_SIGNAL SIGRTMIN #endif timer_t sMicroTimer; #endif // __linux__ #include #include #include #include #include #include "lib/platform/exit_code.h" #define DEFAULT_TIMEOUT_IN_SEC 10 // seconds #ifdef CLOCK_MONOTONIC_RAW #define OT_SIMULATION_CLOCK_ID CLOCK_MONOTONIC_RAW #else #define OT_SIMULATION_CLOCK_ID CLOCK_MONOTONIC #endif static bool sIsMsRunning = false; static uint32_t sMsAlarm = 0; static bool sIsUsRunning = false; static uint32_t sUsAlarm = 0; static uint32_t sSpeedUpFactor = 1; #ifdef __linux__ static void microTimerHandler(int aSignal, siginfo_t *aSignalInfo, void *aUserContext) { assert(aSignal == OPENTHREAD_CONFIG_MICRO_TIMER_SIGNAL); assert(aSignalInfo->si_value.sival_ptr == &sMicroTimer); (void)aSignal; (void)aSignalInfo; (void)aUserContext; } #endif static bool isExpired(uint32_t aTime, uint32_t aNow) { // Determine whether or not `aTime` is before or same as `aNow`. uint32_t diff = aNow - aTime; return (diff & (1U << 31)) == 0; } static uint32_t calculateDuration(uint32_t aTime, uint32_t aNow) { // Return the time duration from `aNow` to `aTime` if `aTimer` is // after `aNow`, otherwise return zero. return isExpired(aTime, aNow) ? 0 : aTime - aNow; } void platformAlarmInit(uint32_t aSpeedUpFactor) { sSpeedUpFactor = aSpeedUpFactor; #ifdef __linux__ { struct sigaction sa; sa.sa_flags = SA_SIGINFO; sa.sa_sigaction = microTimerHandler; sigemptyset(&sa.sa_mask); if (sigaction(OPENTHREAD_CONFIG_MICRO_TIMER_SIGNAL, &sa, NULL) == -1) { perror("sigaction"); exit(EXIT_FAILURE); } struct sigevent sev; sev.sigev_notify = SIGEV_SIGNAL; sev.sigev_signo = OPENTHREAD_CONFIG_MICRO_TIMER_SIGNAL; sev.sigev_value.sival_ptr = &sMicroTimer; if (-1 == timer_create(CLOCK_MONOTONIC, &sev, &sMicroTimer)) { perror("timer_create"); exit(EXIT_FAILURE); } } #endif } #if defined(CLOCK_MONOTONIC_RAW) || defined(CLOCK_MONOTONIC) uint64_t platformGetNow(void) { struct timespec now; int err; err = clock_gettime(OT_SIMULATION_CLOCK_ID, &now); VerifyOrDie(err == 0, OT_EXIT_ERROR_ERRNO); return (uint64_t)now.tv_sec * sSpeedUpFactor * OT_US_PER_S + (uint64_t)now.tv_nsec * sSpeedUpFactor / OT_NS_PER_US; } #else uint64_t platformGetNow(void) { struct timeval tv; int err; err = gettimeofday(&tv, NULL); assert(err == 0); return (uint64_t)tv.tv_sec * sSpeedUpFactor * OT_US_PER_S + (uint64_t)tv.tv_usec * sSpeedUpFactor; } #endif // defined(CLOCK_MONOTONIC_RAW) || defined(CLOCK_MONOTONIC) uint32_t otPlatAlarmMilliGetNow(void) { return (uint32_t)(platformGetNow() / OT_US_PER_MS); } void otPlatAlarmMilliStartAt(otInstance *aInstance, uint32_t aT0, uint32_t aDt) { OT_UNUSED_VARIABLE(aInstance); sMsAlarm = aT0 + aDt; sIsMsRunning = true; } void otPlatAlarmMilliStop(otInstance *aInstance) { OT_UNUSED_VARIABLE(aInstance); sIsMsRunning = false; } uint32_t otPlatAlarmMicroGetNow(void) { return (uint32_t)platformGetNow(); } void otPlatAlarmMicroStartAt(otInstance *aInstance, uint32_t aT0, uint32_t aDt) { OT_UNUSED_VARIABLE(aInstance); sUsAlarm = aT0 + aDt; sIsUsRunning = true; #ifdef __linux__ { struct itimerspec its; uint32_t diff = sUsAlarm - otPlatAlarmMicroGetNow(); its.it_value.tv_sec = diff / OT_US_PER_S; its.it_value.tv_nsec = (diff % OT_US_PER_S) * OT_NS_PER_US; its.it_interval.tv_sec = 0; its.it_interval.tv_nsec = 0; if (-1 == timer_settime(sMicroTimer, 0, &its, NULL)) { perror("otPlatAlarmMicroStartAt timer_settime()"); exit(EXIT_FAILURE); } } #endif // __linux__ } void otPlatAlarmMicroStop(otInstance *aInstance) { OT_UNUSED_VARIABLE(aInstance); sIsUsRunning = false; #ifdef __linux__ { struct itimerspec its = {{0, 0}, {0, 0}}; if (-1 == timer_settime(sMicroTimer, 0, &its, NULL)) { perror("otPlatAlarmMicroStop timer_settime()"); exit(EXIT_FAILURE); } } #endif // __linux__ } void platformAlarmUpdateTimeout(struct timeval *aTimeout) { uint64_t remaining = DEFAULT_TIMEOUT_IN_SEC * OT_US_PER_S; // in usec. assert(aTimeout != NULL); if (sIsMsRunning) { uint32_t msRemaining = calculateDuration(sMsAlarm, otPlatAlarmMilliGetNow()); remaining = ((uint64_t)msRemaining) * OT_US_PER_MS; } if (sIsUsRunning) { uint32_t usRemaining = calculateDuration(sUsAlarm, otPlatAlarmMicroGetNow()); if (usRemaining < remaining) { remaining = usRemaining; } } if (remaining == 0) { aTimeout->tv_sec = 0; aTimeout->tv_usec = 0; } else { remaining /= sSpeedUpFactor; if (remaining == 0) { remaining = 1; } aTimeout->tv_sec = (time_t)(remaining / OT_US_PER_S); aTimeout->tv_usec = remaining % OT_US_PER_S; } } void platformAlarmProcess(otInstance *aInstance) { if (sIsMsRunning && isExpired(sMsAlarm, otPlatAlarmMilliGetNow())) { sIsMsRunning = false; #if OPENTHREAD_CONFIG_DIAG_ENABLE if (otPlatDiagModeGet()) { otPlatDiagAlarmFired(aInstance); } else #endif { otPlatAlarmMilliFired(aInstance); } } #if OPENTHREAD_CONFIG_PLATFORM_USEC_TIMER_ENABLE if (sIsUsRunning && isExpired(sUsAlarm, otPlatAlarmMicroGetNow())) { sIsUsRunning = false; otPlatAlarmMicroFired(aInstance); } #endif } uint64_t otPlatTimeGet(void) { return platformGetNow(); } uint16_t otPlatTimeGetXtalAccuracy(void) { return 0; } #endif // OPENTHREAD_SIMULATION_VIRTUAL_TIME == 0