/* Microsoft Reference Implementation for TPM 2.0 * * The copyright in this software is being made available under the BSD License, * included below. This software may be subject to other third party and * contributor rights, including patent rights, and no such rights are granted * under this license. * * Copyright (c) Microsoft Corporation * * All rights reserved. * * BSD License * * Redistribution and use in source and binary forms, with or without modification, * are permitted provided that the following conditions are met: * * Redistributions of source code must retain the above copyright notice, this list * of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above copyright notice, this * list of conditions and the following disclaimer in the documentation and/or * other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS ""AS IS"" * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON * ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ //** Introduction // The simulator code uses the canonical form whenever possible in order to make // the code in Part 3 more accessible. The canonical data formats are simple and // not well suited for complex big number computations. When operating on big // numbers, the data format is changed for easier manipulation. The format is native // words in little-endian format. As the magnitude of the number decreases, the // length of the array containing the number decreases but the starting address // doesn't change. // // The functions in this file perform simple operations on these big numbers. Only // the more complex operations are passed to the underlying support library. // Although the support library would have most of these functions, the interface // code to convert the format for the values is greater than the size of the // code to implement the functions here. So, rather than incur the overhead of // conversion, they are done here. // // If an implementer would prefer, the underlying library can be used simply by // making code substitutions here. // // NOTE: There is an intention to continue to augment these functions so that there // would be no need to use an external big number library. // // Many of these functions have no error returns and will always return TRUE. This // is to allow them to be used in "guarded" sequences. That is: // OK = OK || BnSomething(s); // where the BnSomething() function should not be called if OK isn't true. //** Includes #include "Tpm.h" // A constant value of zero as a stand in for NULL bigNum values const bignum_t BnConstZero = {1, 0, {0}}; //** Functions //*** AddSame() // Adds two values that are the same size. This function allows 'result' to be // the same as either of the addends. This is a nice function to put into assembly // because handling the carry for multi-precision stuff is not as easy in C // (unless there is a REALLY smart compiler). It would be nice if there were idioms // in a language that a compiler could recognize what is going on and optimize // loops like this. // Return Type: int // 0 no carry out // 1 carry out static BOOL AddSame( crypt_uword_t *result, const crypt_uword_t *op1, const crypt_uword_t *op2, int count ) { int carry = 0; int i; for(i = 0; i < count; i++) { crypt_uword_t a = op1[i]; crypt_uword_t sum = a + op2[i]; result[i] = sum + carry; // generate a carry if the sum is less than either of the inputs // propagate a carry if there was a carry and the sum + carry is zero // do this using bit operations rather than logical operations so that // the time is about the same. // propagate term | generate term carry = ((result[i] == 0) & carry) | (sum < a); } return carry; } //*** CarryProp() // Propagate a carry static int CarryProp( crypt_uword_t *result, const crypt_uword_t *op, int count, int carry ) { for(; count; count--) carry = ((*result++ = *op++ + carry) == 0) & carry; return carry; } static void CarryResolve( bigNum result, int stop, int carry ) { if(carry) { pAssert((unsigned)stop < result->allocated); result->d[stop++] = 1; } BnSetTop(result, stop); } //*** BnAdd() // This function adds two bigNum values. This function always returns TRUE. LIB_EXPORT BOOL BnAdd( bigNum result, bigConst op1, bigConst op2 ) { crypt_uword_t stop; int carry; const bignum_t *n1 = op1; const bignum_t *n2 = op2; // if(n2->size > n1->size) { n1 = op2; n2 = op1; } pAssert(result->allocated >= n1->size); stop = MIN(n1->size, n2->allocated); carry = (int)AddSame(result->d, n1->d, n2->d, (int)stop); if(n1->size > stop) carry = CarryProp(&result->d[stop], &n1->d[stop], (int)(n1->size - stop), carry); CarryResolve(result, (int)n1->size, carry); return TRUE; } //*** BnAddWord() // This function adds a word value to a bigNum. This function always returns TRUE. LIB_EXPORT BOOL BnAddWord( bigNum result, bigConst op, crypt_uword_t word ) { int carry; // carry = (result->d[0] = op->d[0] + word) < word; carry = CarryProp(&result->d[1], &op->d[1], (int)(op->size - 1), carry); CarryResolve(result, (int)op->size, carry); return TRUE; } //*** SubSame() // This function subtracts two values that have the same size. static int SubSame( crypt_uword_t *result, const crypt_uword_t *op1, const crypt_uword_t *op2, int count ) { int borrow = 0; int i; for(i = 0; i < count; i++) { crypt_uword_t a = op1[i]; crypt_uword_t diff = a - op2[i]; result[i] = diff - borrow; // generate | propagate borrow = (diff > a) | ((diff == 0) & borrow); } return borrow; } //*** BorrowProp() // This propagates a borrow. If borrow is true when the end // of the array is reached, then it means that op2 was larger than // op1 and we don't handle that case so an assert is generated. // This design choice was made because our only bigNum computations // are on large positive numbers (primes) or on fields. // Propagate a borrow. static int BorrowProp( crypt_uword_t *result, const crypt_uword_t *op, int size, int borrow ) { for(; size > 0; size--) borrow = ((*result++ = *op++ - borrow) == MAX_CRYPT_UWORD) && borrow; return borrow; } //*** BnSub() // This function does subtraction of two bigNum values and returns result = op1 - op2 // when op1 is greater than op2. If op2 is greater than op1, then a fault is // generated. This function always returns TRUE. LIB_EXPORT BOOL BnSub( bigNum result, bigConst op1, bigConst op2 ) { int borrow; int stop = (int)MIN(op1->size, op2->allocated); // // Make sure that op2 is not obviously larger than op1 pAssert(op1->size >= op2->size); borrow = SubSame(result->d, op1->d, op2->d, stop); if(op1->size > (crypt_uword_t)stop) borrow = BorrowProp(&result->d[stop], &op1->d[stop], (int)(op1->size - stop), borrow); pAssert(!borrow); BnSetTop(result, op1->size); return TRUE; } //*** BnSubWord() // This function subtracts a word value from a bigNum. This function always // returns TRUE. LIB_EXPORT BOOL BnSubWord( bigNum result, bigConst op, crypt_uword_t word ) { int borrow; // pAssert(op->size > 1 || word <= op->d[0]); borrow = word > op->d[0]; result->d[0] = op->d[0] - word; borrow = BorrowProp(&result->d[1], &op->d[1], (int)(op->size - 1), borrow); pAssert(!borrow); BnSetTop(result, op->size); return TRUE; } //*** BnUnsignedCmp() // This function performs a comparison of op1 to op2. The compare is approximately // constant time if the size of the values used in the compare is consistent // across calls (from the same line in the calling code). // Return Type: int // < 0 op1 is less than op2 // 0 op1 is equal to op2 // > 0 op1 is greater than op2 LIB_EXPORT int BnUnsignedCmp( bigConst op1, bigConst op2 ) { int retVal; int diff; int i; // pAssert((op1 != NULL) && (op2 != NULL)); retVal = (int)(op1->size - op2->size); if(retVal == 0) { for(i = (int)(op1->size - 1); i >= 0; i--) { diff = (op1->d[i] < op2->d[i]) ? -1 : (op1->d[i] != op2->d[i]); retVal = retVal == 0 ? diff : retVal; } } else retVal = (retVal < 0) ? -1 : 1; return retVal; } //*** BnUnsignedCmpWord() // Compare a bigNum to a crypt_uword_t. // Return Type: int // -1 op1 is less that word // 0 op1 is equal to word // 1 op1 is greater than word LIB_EXPORT int BnUnsignedCmpWord( bigConst op1, crypt_uword_t word ) { if(op1->size > 1) return 1; else if(op1->size == 1) return (op1->d[0] < word) ? -1 : (op1->d[0] > word); else // op1 is zero // equal if word is zero return (word == 0) ? 0 : -1; } //*** BnModWord() // This function does modular division of a big number when the modulus is a // word value. LIB_EXPORT crypt_word_t BnModWord( bigConst numerator, crypt_word_t modulus ) { BN_MAX(remainder); BN_VAR(mod, RADIX_BITS); // mod->d[0] = modulus; mod->size = (modulus != 0); BnDiv(NULL, remainder, numerator, mod); return remainder->d[0]; } //*** Msb() // This function returns the bit number of the most significant bit of a // crypt_uword_t. The number for the least significant bit of any bigNum value is 0. // The maximum return value is RADIX_BITS - 1, // Return Type: int // -1 the word was zero // n the bit number of the most significant bit in the word LIB_EXPORT int Msb( crypt_uword_t word ) { int retVal = -1; // #if RADIX_BITS == 64 if(word & 0xffffffff00000000) { retVal += 32; word >>= 32; } #endif if(word & 0xffff0000) { retVal += 16; word >>= 16; } if(word & 0x0000ff00) { retVal += 8; word >>= 8; } if(word & 0x000000f0) { retVal += 4; word >>= 4; } if(word & 0x0000000c) { retVal += 2; word >>= 2; } if(word & 0x00000002) { retVal += 1; word >>= 1; } return retVal + (int)word; } //*** BnMsb() // This function returns the number of the MSb of a bigNum value. // Return Type: int // -1 the word was zero or 'bn' was NULL // n the bit number of the most significant bit in the word LIB_EXPORT int BnMsb( bigConst bn ) { // If the value is NULL, or the size is zero then treat as zero and return -1 if(bn != NULL && bn->size > 0) { int retVal = Msb(bn->d[bn->size - 1]); retVal += (int)(bn->size - 1) * RADIX_BITS; return retVal; } else return -1; } //*** BnSizeInBits() // This function returns the number of bits required to hold a number. It is one // greater than the Msb. // LIB_EXPORT unsigned BnSizeInBits( bigConst n ) { int bits = BnMsb(n) + 1; // return bits < 0? 0 : (unsigned)bits; } //*** BnSetWord() // Change the value of a bignum_t to a word value. LIB_EXPORT bigNum BnSetWord( bigNum n, crypt_uword_t w ) { if(n != NULL) { pAssert(n->allocated > 1); n->d[0] = w; BnSetTop(n, (w != 0) ? 1 : 0); } return n; } //*** BnSetBit() // This function will SET a bit in a bigNum. Bit 0 is the least-significant bit in // the 0th digit_t. The function always return TRUE LIB_EXPORT BOOL BnSetBit( bigNum bn, // IN/OUT: big number to modify unsigned int bitNum // IN: Bit number to SET ) { crypt_uword_t offset = bitNum / RADIX_BITS; pAssert(bn->allocated * RADIX_BITS >= bitNum); // Grow the number if necessary to set the bit. while(bn->size <= offset) bn->d[bn->size++] = 0; bn->d[offset] |= ((crypt_uword_t)1 << RADIX_MOD(bitNum)); return TRUE; } //*** BnTestBit() // This function is used to check to see if a bit is SET in a bignum_t. The 0th bit // is the LSb of d[0]. // Return Type: BOOL // TRUE(1) the bit is set // FALSE(0) the bit is not set or the number is out of range LIB_EXPORT BOOL BnTestBit( bigNum bn, // IN: number to check unsigned int bitNum // IN: bit to test ) { crypt_uword_t offset = RADIX_DIV(bitNum); // if(bn->size > offset) return ((bn->d[offset] & (((crypt_uword_t)1) << RADIX_MOD(bitNum))) != 0); else return FALSE; } //***BnMaskBits() // This function is used to mask off high order bits of a big number. // The returned value will have no more than 'maskBit' bits // set. // Note: There is a requirement that unused words of a bignum_t are set to zero. // Return Type: BOOL // TRUE(1) result masked // FALSE(0) the input was not as large as the mask LIB_EXPORT BOOL BnMaskBits( bigNum bn, // IN/OUT: number to mask crypt_uword_t maskBit // IN: the bit number for the mask. ) { crypt_uword_t finalSize; BOOL retVal; finalSize = BITS_TO_CRYPT_WORDS(maskBit); retVal = (finalSize <= bn->allocated); if(retVal && (finalSize > 0)) { crypt_uword_t mask; mask = ~((crypt_uword_t)0) >> RADIX_MOD(maskBit); bn->d[finalSize - 1] &= mask; } BnSetTop(bn, finalSize); return retVal; } //*** BnShiftRight() // This function will shift a bigNum to the right by the shiftAmount. // This function always returns TRUE. LIB_EXPORT BOOL BnShiftRight( bigNum result, bigConst toShift, uint32_t shiftAmount ) { uint32_t offset = (shiftAmount >> RADIX_LOG2); uint32_t i; uint32_t shiftIn; crypt_uword_t finalSize; // shiftAmount = shiftAmount & RADIX_MASK; shiftIn = RADIX_BITS - shiftAmount; // The end size is toShift->size - offset less one additional // word if the shiftAmount would make the upper word == 0 if(toShift->size > offset) { finalSize = toShift->size - offset; finalSize -= (toShift->d[toShift->size - 1] >> shiftAmount) == 0 ? 1 : 0; } else finalSize = 0; pAssert(finalSize <= result->allocated); if(finalSize != 0) { for(i = 0; i < finalSize; i++) { result->d[i] = (toShift->d[i + offset] >> shiftAmount) | (toShift->d[i + offset + 1] << shiftIn); } if(offset == 0) result->d[i] = toShift->d[i] >> shiftAmount; } BnSetTop(result, finalSize); return TRUE; } //*** BnGetRandomBits() // This function gets random bits for use in various places. To make sure that the // number is generated in a portable format, it is created as a TPM2B and then // converted to the internal format. // // One consequence of the generation scheme is that, if the number of bits requested // is not a multiple of 8, then the high-order bits are set to zero. This would come // into play when generating a 521-bit ECC key. A 66-byte (528-bit) value is // generated an the high order 7 bits are masked off (CLEAR). // Return Type: BOOL // TRUE(1) success // FALSE(0) failure LIB_EXPORT BOOL BnGetRandomBits( bigNum n, size_t bits, RAND_STATE *rand ) { // Since this could be used for ECC key generation using the extra bits method, // make sure that the value is large enough TPM2B_TYPE(LARGEST, LARGEST_NUMBER + 8); TPM2B_LARGEST large; // large.b.size = (UINT16)BITS_TO_BYTES(bits); if(DRBG_Generate(rand, large.t.buffer, large.t.size) == large.t.size) { if(BnFrom2B(n, &large.b) != NULL) { if(BnMaskBits(n, (crypt_uword_t)bits)) return TRUE; } } return FALSE; } //*** BnGenerateRandomInRange() // This function is used to generate a random number r in the range 1 <= r < limit. // The function gets a random number of bits that is the size of limit. There is some // some probability that the returned number is going to be greater than or equal // to the limit. If it is, try again. There is no more than 50% chance that the // next number is also greater, so try again. We keep trying until we get a // value that meets the criteria. Since limit is very often a number with a LOT of // high order ones, this rarely would need a second try. // Return Type: BOOL // TRUE(1) success // FALSE(0) failure ('limit' is too small) LIB_EXPORT BOOL BnGenerateRandomInRange( bigNum dest, bigConst limit, RAND_STATE *rand ) { size_t bits = BnSizeInBits(limit); // if(bits < 2) { BnSetWord(dest, 0); return FALSE; } else { while(BnGetRandomBits(dest, bits, rand) && (BnEqualZero(dest) || (BnUnsignedCmp(dest, limit) >= 0))); } return !g_inFailureMode; }