/* Microsoft Reference Implementation for TPM 2.0 * * The copyright in this software is being made available under the BSD License, * included below. This software may be subject to other third party and * contributor rights, including patent rights, and no such rights are granted * under this license. * * Copyright (c) Microsoft Corporation * * All rights reserved. * * BSD License * * Redistribution and use in source and binary forms, with or without modification, * are permitted provided that the following conditions are met: * * Redistributions of source code must retain the above copyright notice, this list * of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above copyright notice, this * list of conditions and the following disclaimer in the documentation and/or * other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS ""AS IS"" * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON * ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ //** Introduction // This file contains the basic conversion functions that will convert TPM2B // to/from the internal format. The internal format is a bigNum, // //** Includes #include "Tpm.h" //** Functions //*** BnFromBytes() // This function will convert a big-endian byte array to the internal number // format. If bn is NULL, then the output is NULL. If bytes is null or the // required size is 0, then the output is set to zero LIB_EXPORT bigNum BnFromBytes( bigNum bn, const BYTE *bytes, NUMBYTES nBytes ) { const BYTE *pFrom; // 'p' points to the least significant bytes of source BYTE *pTo; // points to least significant bytes of destination crypt_uword_t size; // size = (bytes != NULL) ? BYTES_TO_CRYPT_WORDS(nBytes) : 0; // If nothing in, nothing out if(bn == NULL) return NULL; // make sure things fit pAssert(BnGetAllocated(bn) >= size); if(size > 0) { // Clear the topmost word in case it is not filled with data bn->d[size - 1] = 0; // Moving the input bytes from the end of the list (LSB) end pFrom = bytes + nBytes - 1; // To the LS0 of the LSW of the bigNum. pTo = (BYTE *)bn->d; for(; nBytes != 0; nBytes--) *pTo++ = *pFrom--; // For a little-endian machine, the conversion is a straight byte // reversal. For a big-endian machine, we have to put the words in // big-endian byte order #if BIG_ENDIAN_TPM { crypt_word_t t; for(t = (crypt_word_t)size - 1; t >= 0; t--) bn->d[t] = SWAP_CRYPT_WORD(bn->d[t]); } #endif } BnSetTop(bn, size); return bn; } //*** BnFrom2B() // Convert an TPM2B to a BIG_NUM. // If the input value does not exist, or the output does not exist, or the input // will not fit into the output the function returns NULL LIB_EXPORT bigNum BnFrom2B( bigNum bn, // OUT: const TPM2B *a2B // IN: number to convert ) { if(a2B != NULL) return BnFromBytes(bn, a2B->buffer, a2B->size); // Make sure that the number has an initialized value rather than whatever // was there before BnSetTop(bn, 0); // Function accepts NULL return NULL; } //*** BnFromHex() // Convert a hex string into a bigNum. This is primarily used in debugging. LIB_EXPORT bigNum BnFromHex( bigNum bn, // OUT: const char *hex // IN: ) { #define FromHex(a) ((a) - (((a) > 'a') ? ('a' + 10) \ : ((a) > 'A') ? ('A' - 10) : '0')) unsigned i; unsigned wordCount; const char *p; BYTE *d = (BYTE *)&(bn->d[0]); // pAssert(bn && hex); i = (unsigned)strlen(hex); wordCount = BYTES_TO_CRYPT_WORDS((i + 1) / 2); if((i == 0) || (wordCount >= BnGetAllocated(bn))) BnSetWord(bn, 0); else { bn->d[wordCount - 1] = 0; p = hex + i - 1; for(;i > 1; i -= 2) { BYTE a; a = FromHex(*p); p--; *d++ = a + (FromHex(*p) << 4); p--; } if(i == 1) *d = FromHex(*p); } #if !BIG_ENDIAN_TPM for(i = 0; i < wordCount; i++) bn->d[i] = SWAP_CRYPT_WORD(bn->d[i]); #endif // BIG_ENDIAN_TPM BnSetTop(bn, wordCount); return bn; } //*** BnToBytes() // This function converts a BIG_NUM to a byte array. It converts the bigNum to a // big-endian byte string and sets 'size' to the normalized value. If 'size' is an // input 0, then the receiving buffer is guaranteed to be large enough for the result // and the size will be set to the size required for bigNum (leading zeros // suppressed). // // The conversion for a little-endian machine simply requires that all significant // bytes of the bigNum be reversed. For a big-endian machine, rather than // unpack each word individually, the bigNum is converted to little-endian words, // copied, and then converted back to big-endian. LIB_EXPORT BOOL BnToBytes( bigConst bn, BYTE *buffer, NUMBYTES *size // This the number of bytes that are // available in the buffer. The result // should be this big. ) { crypt_uword_t requiredSize; BYTE *pFrom; BYTE *pTo; crypt_uword_t count; // // validate inputs pAssert(bn && buffer && size); requiredSize = (BnSizeInBits(bn) + 7) / 8; if(requiredSize == 0) { // If the input value is 0, return a byte of zero *size = 1; *buffer = 0; } else { #if BIG_ENDIAN_TPM // Copy the constant input value into a modifiable value BN_VAR(bnL, LARGEST_NUMBER_BITS * 2); BnCopy(bnL, bn); // byte swap the words in the local value to make them little-endian for(count = 0; count < bnL->size; count++) bnL->d[count] = SWAP_CRYPT_WORD(bnL->d[count]); bn = (bigConst)bnL; #endif if(*size == 0) *size = (NUMBYTES)requiredSize; pAssert(requiredSize <= *size); // Byte swap the number (not words but the whole value) count = *size; // Start from the least significant word and offset to the most significant // byte which is in some high word pFrom = (BYTE *)(&bn->d[0]) + requiredSize - 1; pTo = buffer; // If the number of output bytes is larger than the number bytes required // for the input number, pad with zeros for(count = *size; count > requiredSize; count--) *pTo++ = 0; // Move the most significant byte at the end of the BigNum to the next most // significant byte position of the 2B and repeat for all significant bytes. for(; requiredSize > 0; requiredSize--) *pTo++ = *pFrom--; } return TRUE; } //*** BnTo2B() // Function to convert a BIG_NUM to TPM2B. // The TPM2B size is set to the requested 'size' which may require padding. // If 'size' is non-zero and less than required by the value in 'bn' then an error // is returned. If 'size' is zero, then the TPM2B is assumed to be large enough // for the data and a2b->size will be adjusted accordingly. LIB_EXPORT BOOL BnTo2B( bigConst bn, // IN: TPM2B *a2B, // OUT: NUMBYTES size // IN: the desired size ) { // Set the output size if(bn && a2B) { a2B->size = size; return BnToBytes(bn, a2B->buffer, &a2B->size); } return FALSE; } #if ALG_ECC //*** BnPointFrom2B() // Function to create a BIG_POINT structure from a 2B point. // A point is going to be two ECC values in the same buffer. The values are going // to be the size of the modulus. They are in modular form. LIB_EXPORT bn_point_t * BnPointFrom2B( bigPoint ecP, // OUT: the preallocated point structure TPMS_ECC_POINT *p // IN: the number to convert ) { if(p == NULL) return NULL; if(NULL != ecP) { BnFrom2B(ecP->x, &p->x.b); BnFrom2B(ecP->y, &p->y.b); BnSetWord(ecP->z, 1); } return ecP; } //*** BnPointTo2B() // This function converts a BIG_POINT into a TPMS_ECC_POINT. A TPMS_ECC_POINT // contains two TPM2B_ECC_PARAMETER values. The maximum size of the parameters // is dependent on the maximum EC key size used in an implementation. // The presumption is that the TPMS_ECC_POINT is large enough to hold 2 TPM2B // values, each as large as a MAX_ECC_PARAMETER_BYTES LIB_EXPORT BOOL BnPointTo2B( TPMS_ECC_POINT *p, // OUT: the converted 2B structure bigPoint ecP, // IN: the values to be converted bigCurve E // IN: curve descriptor for the point ) { UINT16 size; // pAssert(p && ecP && E); pAssert(BnEqualWord(ecP->z, 1)); // BnMsb is the bit number of the MSB. This is one less than the number of bits size = (UINT16)BITS_TO_BYTES(BnSizeInBits(CurveGetOrder(AccessCurveData(E)))); BnTo2B(ecP->x, &p->x.b, size); BnTo2B(ecP->y, &p->y.b, size); return TRUE; } #endif // ALG_ECC