/* * Copyright (C) 2020 Collabora, Ltd. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS * IN THE SOFTWARE. * * Authors (Collabora): * Alyssa Rosenzweig */ /** * Implements framebuffer format conversions in software for Midgard/Bifrost * blend shaders. This pass is designed for a single render target; Midgard * duplicates blend shaders for MRT to simplify everything. A particular * framebuffer format may be categorized as 1) typed load available, 2) typed * unpack available, or 3) software unpack only, and likewise for stores. The * first two types are handled in the compiler backend directly, so this module * is responsible for identifying type 3 formats (hardware dependent) and * inserting appropriate ALU code to perform the conversion from the packed * type to a designated unpacked type, and vice versa. * * The unpacked type depends on the format: * * - For 32-bit float formats or >8-bit UNORM, 32-bit floats. * - For other floats, 16-bit floats. * - For 32-bit ints, 32-bit ints. * - For 8-bit ints, 8-bit ints. * - For other ints, 16-bit ints. * * The rationale is to optimize blending and logic op instructions by using the * smallest precision necessary to store the pixel losslessly. */ #include "pan_lower_framebuffer.h" #include "compiler/nir/nir.h" #include "compiler/nir/nir_builder.h" #include "compiler/nir/nir_format_convert.h" #include "util/format/u_format.h" /* Determines the unpacked type best suiting a given format, so the rest of the * pipeline may be adjusted accordingly */ nir_alu_type pan_unpacked_type_for_format(const struct util_format_description *desc) { int c = util_format_get_first_non_void_channel(desc->format); if (c == -1) unreachable("Void format not renderable"); bool large = (desc->channel[c].size > 16); bool large_norm = (desc->channel[c].size > 8); bool bit8 = (desc->channel[c].size == 8); assert(desc->channel[c].size <= 32); if (desc->channel[c].normalized) return large_norm ? nir_type_float32 : nir_type_float16; switch (desc->channel[c].type) { case UTIL_FORMAT_TYPE_UNSIGNED: return bit8 ? nir_type_uint8 : large ? nir_type_uint32 : nir_type_uint16; case UTIL_FORMAT_TYPE_SIGNED: return bit8 ? nir_type_int8 : large ? nir_type_int32 : nir_type_int16; case UTIL_FORMAT_TYPE_FLOAT: return large ? nir_type_float32 : nir_type_float16; default: unreachable("Format not renderable"); } } static bool pan_is_format_native(const struct util_format_description *desc, bool broken_ld_special, bool is_store) { if (is_store || broken_ld_special) return false; if (util_format_is_pure_integer(desc->format) || util_format_is_float(desc->format)) return false; /* Some formats are missing as typed but have unpacks */ if (desc->format == PIPE_FORMAT_R11G11B10_FLOAT) return false; if (desc->is_array) { int c = util_format_get_first_non_void_channel(desc->format); assert(c >= 0); if (desc->channel[c].size > 8) return false; } return true; } /* Software packs/unpacks, by format class. Packs take in the pixel value typed * as `pan_unpacked_type_for_format` of the format and return an i32vec4 * suitable for storing (with components replicated to fill). Unpacks do the * reverse but cannot rely on replication. */ static nir_def * pan_replicate(nir_builder *b, nir_def *v, unsigned num_components) { nir_def *replicated[4]; for (unsigned i = 0; i < 4; ++i) replicated[i] = nir_channel(b, v, i % num_components); return nir_vec(b, replicated, 4); } /* Pure x16 formats are x16 unpacked, so it's similar, but we need to pack * upper/lower halves of course */ static nir_def * pan_pack_pure_16(nir_builder *b, nir_def *v, unsigned num_components) { nir_def *v4 = pan_replicate(b, v, num_components); nir_def *lo = nir_pack_32_2x16(b, nir_channels(b, v4, 0x3 << 0)); nir_def *hi = nir_pack_32_2x16(b, nir_channels(b, v4, 0x3 << 2)); return nir_vec4(b, lo, hi, lo, hi); } static nir_def * pan_unpack_pure_16(nir_builder *b, nir_def *pack, unsigned num_components) { nir_def *unpacked[4]; assert(num_components <= 4); for (unsigned i = 0; i < num_components; i += 2) { nir_def *halves = nir_unpack_32_2x16(b, nir_channel(b, pack, i >> 1)); unpacked[i + 0] = nir_channel(b, halves, 0); unpacked[i + 1] = nir_channel(b, halves, 1); } return nir_pad_vec4(b, nir_vec(b, unpacked, num_components)); } static nir_def * pan_pack_reorder(nir_builder *b, const struct util_format_description *desc, nir_def *v) { unsigned swizzle[4] = {0, 1, 2, 3}; for (unsigned i = 0; i < v->num_components; i++) { if (desc->swizzle[i] <= PIPE_SWIZZLE_W) swizzle[i] = desc->swizzle[i]; } return nir_swizzle(b, v, swizzle, v->num_components); } static nir_def * pan_unpack_reorder(nir_builder *b, const struct util_format_description *desc, nir_def *v) { unsigned swizzle[4] = {0, 1, 2, 3}; for (unsigned i = 0; i < v->num_components; i++) { if (desc->swizzle[i] <= PIPE_SWIZZLE_W) swizzle[desc->swizzle[i]] = i; } return nir_swizzle(b, v, swizzle, v->num_components); } static nir_def * pan_pack_pure_8(nir_builder *b, nir_def *v, unsigned num_components) { return nir_replicate( b, nir_pack_32_4x8(b, pan_replicate(b, v, num_components)), 4); } static nir_def * pan_unpack_pure_8(nir_builder *b, nir_def *pack, unsigned num_components) { nir_def *unpacked = nir_unpack_32_4x8(b, nir_channel(b, pack, 0)); return nir_trim_vector(b, unpacked, num_components); } static nir_def * pan_fsat(nir_builder *b, nir_def *v, bool is_signed) { if (is_signed) return nir_fsat_signed_mali(b, v); else return nir_fsat(b, v); } static float norm_scale(bool snorm, unsigned bits) { if (snorm) return (1 << (bits - 1)) - 1; else return (1 << bits) - 1; } /* For <= 8-bits per channel, [U,S]NORM formats are packed like [U,S]NORM 8, * with zeroes spacing out each component as needed */ static nir_def * pan_pack_norm(nir_builder *b, nir_def *v, unsigned x, unsigned y, unsigned z, unsigned w, bool is_signed) { /* If a channel has N bits, 1.0 is encoded as 2^N - 1 for UNORMs and * 2^(N-1) - 1 for SNORMs */ nir_def *scales = is_signed ? nir_imm_vec4_16(b, (1 << (x - 1)) - 1, (1 << (y - 1)) - 1, (1 << (z - 1)) - 1, (1 << (w - 1)) - 1) : nir_imm_vec4_16(b, (1 << x) - 1, (1 << y) - 1, (1 << z) - 1, (1 << w) - 1); /* If a channel has N bits, we pad out to the byte by (8 - N) bits */ nir_def *shifts = nir_imm_ivec4(b, 8 - x, 8 - y, 8 - z, 8 - w); nir_def *clamped = pan_fsat(b, nir_pad_vec4(b, v), is_signed); nir_def *f = nir_fmul(b, clamped, scales); nir_def *u8 = nir_f2u8(b, nir_fround_even(b, f)); nir_def *s = nir_ishl(b, u8, shifts); nir_def *repl = nir_pack_32_4x8(b, s); return nir_replicate(b, repl, 4); } static nir_def * pan_pack_unorm(nir_builder *b, nir_def *v, unsigned x, unsigned y, unsigned z, unsigned w) { return pan_pack_norm(b, v, x, y, z, w, false); } /* RGB10_A2 is packed in the tilebuffer as the bottom 3 bytes being the top * 8-bits of RGB and the top byte being RGBA as 2-bits packed. As imirkin * pointed out, this means free conversion to RGBX8 */ static nir_def * pan_pack_unorm_1010102(nir_builder *b, nir_def *v) { nir_def *scale = nir_imm_vec4(b, 1023.0, 1023.0, 1023.0, 3.0); nir_def *s = nir_f2u32(b, nir_fround_even(b, nir_fmul(b, nir_fsat(b, v), scale))); nir_def *top8 = nir_ushr(b, s, nir_imm_ivec4(b, 0x2, 0x2, 0x2, 0x2)); nir_def *top8_rgb = nir_pack_32_4x8(b, nir_u2u8(b, top8)); nir_def *bottom2 = nir_iand(b, s, nir_imm_ivec4(b, 0x3, 0x3, 0x3, 0x3)); nir_def *top = nir_ior(b, nir_ior(b, nir_ishl_imm(b, nir_channel(b, bottom2, 0), 24 + 0), nir_ishl_imm(b, nir_channel(b, bottom2, 1), 24 + 2)), nir_ior(b, nir_ishl_imm(b, nir_channel(b, bottom2, 2), 24 + 4), nir_ishl_imm(b, nir_channel(b, bottom2, 3), 24 + 6))); nir_def *p = nir_ior(b, top, top8_rgb); return nir_replicate(b, p, 4); } /* On the other hand, the pure int RGB10_A2 is identical to the spec */ static nir_def * pan_pack_int_1010102(nir_builder *b, nir_def *v, bool is_signed) { v = nir_u2u32(b, v); /* Clamp the values */ if (is_signed) { v = nir_imin(b, v, nir_imm_ivec4(b, 511, 511, 511, 1)); v = nir_imax(b, v, nir_imm_ivec4(b, -512, -512, -512, -2)); } else { v = nir_umin(b, v, nir_imm_ivec4(b, 1023, 1023, 1023, 3)); } v = nir_ishl(b, v, nir_imm_ivec4(b, 0, 10, 20, 30)); v = nir_ior(b, nir_ior(b, nir_channel(b, v, 0), nir_channel(b, v, 1)), nir_ior(b, nir_channel(b, v, 2), nir_channel(b, v, 3))); return nir_replicate(b, v, 4); } static nir_def * pan_unpack_int_1010102(nir_builder *b, nir_def *packed, bool is_signed) { nir_def *v = nir_replicate(b, nir_channel(b, packed, 0), 4); /* Left shift all components so the sign bit is on the MSB, and * can be extended by ishr(). The ishl()+[u,i]shr() combination * sets all unused bits to 0 without requiring a mask. */ v = nir_ishl(b, v, nir_imm_ivec4(b, 22, 12, 2, 0)); if (is_signed) v = nir_ishr(b, v, nir_imm_ivec4(b, 22, 22, 22, 30)); else v = nir_ushr(b, v, nir_imm_ivec4(b, 22, 22, 22, 30)); return nir_i2i16(b, v); } /* NIR means we can *finally* catch a break */ static nir_def * pan_pack_r11g11b10(nir_builder *b, nir_def *v) { return nir_replicate(b, nir_format_pack_11f11f10f(b, nir_f2f32(b, v)), 4); } static nir_def * pan_unpack_r11g11b10(nir_builder *b, nir_def *v) { nir_def *f32 = nir_format_unpack_11f11f10f(b, nir_channel(b, v, 0)); nir_def *f16 = nir_f2fmp(b, f32); /* Extend to vec4 with alpha */ nir_def *components[4] = {nir_channel(b, f16, 0), nir_channel(b, f16, 1), nir_channel(b, f16, 2), nir_imm_float16(b, 1.0)}; return nir_vec(b, components, 4); } /* Wrapper around sRGB conversion */ static nir_def * pan_linear_to_srgb(nir_builder *b, nir_def *linear) { nir_def *rgb = nir_trim_vector(b, linear, 3); /* TODO: fp16 native conversion */ nir_def *srgb = nir_f2fmp(b, nir_format_linear_to_srgb(b, nir_f2f32(b, rgb))); nir_def *comp[4] = { nir_channel(b, srgb, 0), nir_channel(b, srgb, 1), nir_channel(b, srgb, 2), nir_channel(b, linear, 3), }; return nir_vec(b, comp, 4); } static nir_def * pan_unpack_pure(nir_builder *b, nir_def *packed, unsigned size, unsigned nr) { switch (size) { case 32: return nir_trim_vector(b, packed, nr); case 16: return pan_unpack_pure_16(b, packed, nr); case 8: return pan_unpack_pure_8(b, packed, nr); default: unreachable("Unrenderable size"); } } /* Generic dispatches for un/pack regardless of format */ static nir_def * pan_unpack(nir_builder *b, const struct util_format_description *desc, nir_def *packed) { if (desc->is_array) { int c = util_format_get_first_non_void_channel(desc->format); assert(c >= 0); struct util_format_channel_description d = desc->channel[c]; nir_def *unpacked = pan_unpack_pure(b, packed, d.size, desc->nr_channels); /* Normalized formats are unpacked as integers. We need to * convert to float for the final result. */ if (d.normalized) { bool snorm = desc->is_snorm; unsigned float_sz = (d.size <= 8 ? 16 : 32); float multiplier = norm_scale(snorm, d.size); nir_def *as_float = snorm ? nir_i2fN(b, unpacked, float_sz) : nir_u2fN(b, unpacked, float_sz); return nir_fmul_imm(b, as_float, 1.0 / multiplier); } else { return unpacked; } } switch (desc->format) { case PIPE_FORMAT_R10G10B10A2_UINT: case PIPE_FORMAT_B10G10R10A2_UINT: return pan_unpack_int_1010102(b, packed, false); case PIPE_FORMAT_R10G10B10A2_SINT: case PIPE_FORMAT_B10G10R10A2_SINT: return pan_unpack_int_1010102(b, packed, true); case PIPE_FORMAT_R11G11B10_FLOAT: return pan_unpack_r11g11b10(b, packed); default: break; } fprintf(stderr, "%s\n", desc->name); unreachable("Unknown format"); } static nir_def *pan_pack(nir_builder *b, const struct util_format_description *desc, nir_def * unpacked) { if (desc->colorspace == UTIL_FORMAT_COLORSPACE_SRGB) unpacked = pan_linear_to_srgb(b, unpacked); if (desc->is_array) { int c = util_format_get_first_non_void_channel(desc->format); assert(c >= 0); struct util_format_channel_description d = desc->channel[c]; /* Pure formats are packed as-is */ nir_def *raw = unpacked; /* Normalized formats get normalized first */ if (d.normalized) { bool snorm = desc->is_snorm; float multiplier = norm_scale(snorm, d.size); nir_def *clamped = pan_fsat(b, unpacked, snorm); nir_def *normed = nir_fmul_imm(b, clamped, multiplier); raw = nir_f2uN(b, normed, d.size); } /* Pack the raw format */ switch (d.size) { case 32: return pan_replicate(b, raw, desc->nr_channels); case 16: return pan_pack_pure_16(b, raw, desc->nr_channels); case 8: return pan_pack_pure_8(b, raw, desc->nr_channels); default: unreachable("Unrenderable size"); } } switch (desc->format) { case PIPE_FORMAT_B4G4R4A4_UNORM: case PIPE_FORMAT_B4G4R4X4_UNORM: case PIPE_FORMAT_A4R4_UNORM: case PIPE_FORMAT_R4A4_UNORM: case PIPE_FORMAT_A4B4G4R4_UNORM: case PIPE_FORMAT_R4G4B4A4_UNORM: return pan_pack_unorm(b, unpacked, 4, 4, 4, 4); case PIPE_FORMAT_B5G5R5A1_UNORM: case PIPE_FORMAT_R5G5B5A1_UNORM: return pan_pack_unorm(b, unpacked, 5, 6, 5, 1); case PIPE_FORMAT_R5G6B5_UNORM: case PIPE_FORMAT_B5G6R5_UNORM: return pan_pack_unorm(b, unpacked, 5, 6, 5, 0); case PIPE_FORMAT_R10G10B10A2_UNORM: case PIPE_FORMAT_B10G10R10A2_UNORM: return pan_pack_unorm_1010102(b, unpacked); case PIPE_FORMAT_R10G10B10A2_UINT: case PIPE_FORMAT_B10G10R10A2_UINT: return pan_pack_int_1010102(b, unpacked, false); case PIPE_FORMAT_R10G10B10A2_SINT: case PIPE_FORMAT_B10G10R10A2_SINT: return pan_pack_int_1010102(b, unpacked, true); case PIPE_FORMAT_R11G11B10_FLOAT: return pan_pack_r11g11b10(b, unpacked); default: break; } fprintf(stderr, "%s\n", desc->name); unreachable("Unknown format"); } static void pan_lower_fb_store(nir_builder *b, nir_intrinsic_instr *intr, const struct util_format_description *desc, bool reorder_comps, unsigned nr_samples) { /* For stores, add conversion before */ nir_def *unpacked = intr->src[0].ssa; unpacked = nir_pad_vec4(b, unpacked); /* Re-order the components */ if (reorder_comps) unpacked = pan_pack_reorder(b, desc, unpacked); nir_def *packed = pan_pack(b, desc, unpacked); /* We have to split writeout in 128 bit chunks */ unsigned iterations = DIV_ROUND_UP(desc->block.bits * nr_samples, 128); for (unsigned s = 0; s < iterations; ++s) { nir_store_raw_output_pan(b, packed, .io_semantics = nir_intrinsic_io_semantics(intr), .base = s); } } static nir_def * pan_sample_id(nir_builder *b, int sample) { return (sample >= 0) ? nir_imm_int(b, sample) : nir_load_sample_id(b); } static void pan_lower_fb_load(nir_builder *b, nir_intrinsic_instr *intr, const struct util_format_description *desc, bool reorder_comps, int sample) { nir_def *packed = nir_load_raw_output_pan(b, 4, 32, pan_sample_id(b, sample), .io_semantics = nir_intrinsic_io_semantics(intr)); /* Convert the raw value */ nir_def *unpacked = pan_unpack(b, desc, packed); /* Convert to the size of the load intrinsic. * * We can assume that the type will match with the framebuffer format: * * Page 170 of the PDF of the OpenGL ES 3.0.6 spec says: * * If [UNORM or SNORM, convert to fixed-point]; otherwise no type * conversion is applied. If the values written by the fragment shader * do not match the format(s) of the corresponding color buffer(s), * the result is undefined. */ unsigned bits = intr->def.bit_size; nir_alu_type src_type = nir_alu_type_get_base_type(pan_unpacked_type_for_format(desc)); unpacked = nir_convert_to_bit_size(b, unpacked, src_type, bits); unpacked = nir_resize_vector(b, unpacked, intr->def.num_components); /* Reorder the components */ if (reorder_comps) unpacked = pan_unpack_reorder(b, desc, unpacked); nir_def_rewrite_uses_after(&intr->def, unpacked, &intr->instr); } struct inputs { const enum pipe_format *rt_fmts; uint8_t raw_fmt_mask; bool is_blend; bool broken_ld_special; unsigned nr_samples; }; static bool lower(nir_builder *b, nir_instr *instr, void *data) { struct inputs *inputs = data; if (instr->type != nir_instr_type_intrinsic) return false; nir_intrinsic_instr *intr = nir_instr_as_intrinsic(instr); bool is_load = intr->intrinsic == nir_intrinsic_load_output; bool is_store = intr->intrinsic == nir_intrinsic_store_output; if (!(is_load || (is_store && inputs->is_blend))) return false; nir_io_semantics sem = nir_intrinsic_io_semantics(intr); if (sem.location < FRAG_RESULT_DATA0) return false; unsigned rt = sem.location - FRAG_RESULT_DATA0; if (inputs->rt_fmts[rt] == PIPE_FORMAT_NONE) return false; const struct util_format_description *desc = util_format_description(inputs->rt_fmts[rt]); /* Don't lower */ if (pan_is_format_native(desc, inputs->broken_ld_special, is_store)) return false; /* EXT_shader_framebuffer_fetch requires per-sample loads. MSAA blend * shaders are not yet handled, so for now always load sample 0. */ int sample = inputs->is_blend ? 0 : -1; bool reorder_comps = inputs->raw_fmt_mask & BITFIELD_BIT(rt); if (is_store) { b->cursor = nir_before_instr(instr); pan_lower_fb_store(b, intr, desc, reorder_comps, inputs->nr_samples); } else { b->cursor = nir_after_instr(instr); pan_lower_fb_load(b, intr, desc, reorder_comps, sample); } nir_instr_remove(instr); return true; } bool pan_lower_framebuffer(nir_shader *shader, const enum pipe_format *rt_fmts, uint8_t raw_fmt_mask, unsigned blend_shader_nr_samples, bool broken_ld_special) { assert(shader->info.stage == MESA_SHADER_FRAGMENT); return nir_shader_instructions_pass( shader, lower, nir_metadata_control_flow, &(struct inputs){ .rt_fmts = rt_fmts, .raw_fmt_mask = raw_fmt_mask, .nr_samples = blend_shader_nr_samples, .is_blend = blend_shader_nr_samples > 0, .broken_ld_special = broken_ld_special, }); }