/* * Copyright © 2015 Intel Corporation * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS * IN THE SOFTWARE. */ #include #include #include #include #include #include #include "drm-uapi/drm_fourcc.h" #include "anv_private.h" #include "common/intel_aux_map.h" #include "util/u_debug.h" #include "vk_util.h" #include "util/u_math.h" #include "vk_format.h" #define ANV_OFFSET_IMPLICIT UINT64_MAX static const enum isl_surf_dim vk_to_isl_surf_dim[] = { [VK_IMAGE_TYPE_1D] = ISL_SURF_DIM_1D, [VK_IMAGE_TYPE_2D] = ISL_SURF_DIM_2D, [VK_IMAGE_TYPE_3D] = ISL_SURF_DIM_3D, }; static uint64_t MUST_CHECK UNUSED memory_range_end(struct anv_image_memory_range memory_range) { assert(anv_is_aligned(memory_range.offset, memory_range.alignment)); return memory_range.offset + memory_range.size; } /** * Get binding for VkImagePlaneMemoryRequirementsInfo, * VkBindImagePlaneMemoryInfo and VkDeviceImageMemoryRequirements. */ struct anv_image_binding * anv_image_aspect_to_binding(struct anv_image *image, VkImageAspectFlags aspect) { uint32_t plane = 0; assert(image->disjoint); if (image->vk.tiling == VK_IMAGE_TILING_DRM_FORMAT_MODIFIER_EXT) { /* Spec requires special aspects for modifier images. */ assert(aspect == VK_IMAGE_ASPECT_MEMORY_PLANE_0_BIT_EXT || aspect == VK_IMAGE_ASPECT_MEMORY_PLANE_1_BIT_EXT || aspect == VK_IMAGE_ASPECT_MEMORY_PLANE_2_BIT_EXT || aspect == VK_IMAGE_ASPECT_MEMORY_PLANE_3_BIT_EXT); /* We don't advertise DISJOINT for modifiers with aux, and therefore we * don't handle queries of the modifier's "aux plane" here. */ assert(!isl_drm_modifier_has_aux(image->vk.drm_format_mod)); switch(aspect) { case VK_IMAGE_ASPECT_MEMORY_PLANE_0_BIT_EXT: plane = 0; break; case VK_IMAGE_ASPECT_MEMORY_PLANE_1_BIT_EXT: plane = 1; break; case VK_IMAGE_ASPECT_MEMORY_PLANE_2_BIT_EXT: plane = 2; break; case VK_IMAGE_ASPECT_MEMORY_PLANE_3_BIT_EXT: plane = 3; break; } } else { plane = anv_image_aspect_to_plane(image, aspect); } return &image->bindings[ANV_IMAGE_MEMORY_BINDING_PLANE_0 + plane]; } /** * Extend the memory binding's range by appending a new memory range with `size` * and `alignment` at `offset`. Return the appended range. * * Offset is ignored if ANV_OFFSET_IMPLICIT. * * The given binding must not be ANV_IMAGE_MEMORY_BINDING_MAIN. The function * converts to MAIN as needed. */ static VkResult MUST_CHECK image_binding_grow(const struct anv_device *device, struct anv_image *image, enum anv_image_memory_binding binding, uint64_t offset, uint64_t size, uint32_t alignment, struct anv_image_memory_range *out_range) { /* We overwrite 'offset' but need to remember if it was implicit. */ const bool has_implicit_offset = (offset == ANV_OFFSET_IMPLICIT); assert(size > 0); assert(util_is_power_of_two_or_zero(alignment)); switch (binding) { case ANV_IMAGE_MEMORY_BINDING_MAIN: /* The caller must not pre-translate BINDING_PLANE_i to BINDING_MAIN. */ unreachable("ANV_IMAGE_MEMORY_BINDING_MAIN"); case ANV_IMAGE_MEMORY_BINDING_PLANE_0: case ANV_IMAGE_MEMORY_BINDING_PLANE_1: case ANV_IMAGE_MEMORY_BINDING_PLANE_2: if (!image->disjoint) binding = ANV_IMAGE_MEMORY_BINDING_MAIN; break; case ANV_IMAGE_MEMORY_BINDING_PRIVATE: assert(offset == ANV_OFFSET_IMPLICIT); break; case ANV_IMAGE_MEMORY_BINDING_END: unreachable("ANV_IMAGE_MEMORY_BINDING_END"); } struct anv_image_memory_range *container = &image->bindings[binding].memory_range; if (has_implicit_offset) { offset = align64(container->offset + container->size, alignment); } else { /* Offset must be validated because it comes from * VkImageDrmFormatModifierExplicitCreateInfoEXT. */ if (unlikely(!anv_is_aligned(offset, alignment))) { return vk_errorf(device, VK_ERROR_INVALID_DRM_FORMAT_MODIFIER_PLANE_LAYOUT_EXT, "VkImageDrmFormatModifierExplicitCreateInfoEXT::" "pPlaneLayouts[]::offset is misaligned"); } } /* Surfaces can be added out of memory-order. Track the end of each memory * plane to update the binding size properly. */ uint64_t memory_range_end; if (__builtin_add_overflow(offset, size, &memory_range_end)) { if (has_implicit_offset) { assert(!"overflow"); return vk_errorf(device, VK_ERROR_UNKNOWN, "internal error: overflow in %s", __func__); } else { return vk_errorf(device, VK_ERROR_INVALID_DRM_FORMAT_MODIFIER_PLANE_LAYOUT_EXT, "VkImageDrmFormatModifierExplicitCreateInfoEXT::" "pPlaneLayouts[]::offset is too large"); } } container->size = MAX2(container->size, memory_range_end); container->alignment = MAX2(container->alignment, alignment); *out_range = (struct anv_image_memory_range) { .binding = binding, .alignment = alignment, .size = size, .offset = offset, }; return VK_SUCCESS; } /** * Adjust range 'a' to contain range 'b'. * * For simplicity's sake, the offset of 'a' must be 0 and remains 0. * If 'a' and 'b' target different bindings, then no merge occurs. */ static void memory_range_merge(struct anv_image_memory_range *a, const struct anv_image_memory_range b) { if (b.size == 0) return; if (a->binding != b.binding) return; assert(a->offset == 0); assert(anv_is_aligned(a->offset, a->alignment)); assert(anv_is_aligned(b.offset, b.alignment)); a->alignment = MAX2(a->alignment, b.alignment); a->size = MAX2(a->size, b.offset + b.size); } isl_surf_usage_flags_t anv_image_choose_isl_surf_usage(struct anv_physical_device *device, VkImageCreateFlags vk_create_flags, VkImageUsageFlags vk_usage, isl_surf_usage_flags_t isl_extra_usage, VkImageAspectFlagBits aspect, VkImageCompressionFlagsEXT comp_flags) { isl_surf_usage_flags_t isl_usage = isl_extra_usage; /* On platform like MTL, we choose to allocate additional CCS memory at the * back of the VkDeviceMemory objects since different images can share the * AUX-TT PTE because the HW doesn't care about the image format in the * PTE. That means we can always ignore the AUX-TT alignment requirement * from an ISL point of view. */ if (device->alloc_aux_tt_mem) isl_usage |= ISL_SURF_USAGE_NO_AUX_TT_ALIGNMENT_BIT; if (vk_usage & VK_IMAGE_USAGE_SAMPLED_BIT) isl_usage |= ISL_SURF_USAGE_TEXTURE_BIT; if (vk_usage & VK_IMAGE_USAGE_INPUT_ATTACHMENT_BIT) isl_usage |= ISL_SURF_USAGE_TEXTURE_BIT; if (vk_usage & VK_IMAGE_USAGE_STORAGE_BIT) isl_usage |= ISL_SURF_USAGE_STORAGE_BIT; if (vk_usage & VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT) isl_usage |= ISL_SURF_USAGE_RENDER_TARGET_BIT; if (vk_usage & VK_IMAGE_USAGE_FRAGMENT_SHADING_RATE_ATTACHMENT_BIT_KHR) isl_usage |= ISL_SURF_USAGE_CPB_BIT; /* TODO: consider whether compression with sparse is workable. */ if (vk_create_flags & VK_IMAGE_CREATE_SPARSE_BINDING_BIT) isl_usage |= ISL_SURF_USAGE_SPARSE_BIT | ISL_SURF_USAGE_DISABLE_AUX_BIT; if (vk_usage & VK_IMAGE_USAGE_VIDEO_DECODE_DST_BIT_KHR || vk_usage & VK_IMAGE_USAGE_VIDEO_DECODE_DPB_BIT_KHR || vk_usage & VK_IMAGE_USAGE_VIDEO_ENCODE_DPB_BIT_KHR || vk_usage & VK_IMAGE_USAGE_VIDEO_ENCODE_SRC_BIT_KHR) isl_usage |= ISL_SURF_USAGE_VIDEO_DECODE_BIT; if (vk_create_flags & VK_IMAGE_CREATE_CUBE_COMPATIBLE_BIT) isl_usage |= ISL_SURF_USAGE_CUBE_BIT; if (vk_create_flags & (VK_IMAGE_CREATE_2D_VIEW_COMPATIBLE_BIT_EXT | VK_IMAGE_CREATE_2D_ARRAY_COMPATIBLE_BIT)) isl_usage |= ISL_SURF_USAGE_2D_3D_COMPATIBLE_BIT; if (vk_create_flags & VK_IMAGE_CREATE_PROTECTED_BIT) isl_usage |= ISL_SURF_USAGE_PROTECTED_BIT; /* Even if we're only using it for transfer operations, clears to depth and * stencil images happen as depth and stencil so they need the right ISL * usage bits or else things will fall apart. */ switch (aspect) { case VK_IMAGE_ASPECT_DEPTH_BIT: isl_usage |= ISL_SURF_USAGE_DEPTH_BIT; break; case VK_IMAGE_ASPECT_STENCIL_BIT: isl_usage |= ISL_SURF_USAGE_STENCIL_BIT; break; case VK_IMAGE_ASPECT_COLOR_BIT: case VK_IMAGE_ASPECT_PLANE_0_BIT: case VK_IMAGE_ASPECT_PLANE_1_BIT: case VK_IMAGE_ASPECT_PLANE_2_BIT: break; default: unreachable("bad VkImageAspect"); } if (vk_usage & VK_IMAGE_USAGE_TRANSFER_SRC_BIT) { /* blorp implements transfers by sampling from the source image. */ isl_usage |= ISL_SURF_USAGE_TEXTURE_BIT; } if (vk_usage & VK_IMAGE_USAGE_TRANSFER_DST_BIT && aspect == VK_IMAGE_ASPECT_COLOR_BIT) { /* blorp implements transfers by rendering into the destination image. * Only request this with color images, as we deal with depth/stencil * formats differently. */ isl_usage |= ISL_SURF_USAGE_RENDER_TARGET_BIT; } if (comp_flags & VK_IMAGE_COMPRESSION_DISABLED_EXT) isl_usage |= ISL_SURF_USAGE_DISABLE_AUX_BIT; return isl_usage; } static isl_tiling_flags_t choose_isl_tiling_flags(const struct intel_device_info *devinfo, const struct anv_image_create_info *anv_info, const struct isl_drm_modifier_info *isl_mod_info, bool legacy_scanout) { const VkImageCreateInfo *base_info = anv_info->vk_info; isl_tiling_flags_t flags = 0; assert((isl_mod_info != NULL) == (base_info->tiling == VK_IMAGE_TILING_DRM_FORMAT_MODIFIER_EXT)); switch (base_info->tiling) { default: unreachable("bad VkImageTiling"); case VK_IMAGE_TILING_OPTIMAL: flags = ISL_TILING_ANY_MASK; break; case VK_IMAGE_TILING_LINEAR: flags = ISL_TILING_LINEAR_BIT; break; case VK_IMAGE_TILING_DRM_FORMAT_MODIFIER_EXT: flags = 1 << isl_mod_info->tiling; } if (anv_info->isl_tiling_flags) { assert(isl_mod_info == NULL); flags &= anv_info->isl_tiling_flags; } if (legacy_scanout) { isl_tiling_flags_t legacy_mask = ISL_TILING_LINEAR_BIT; if (devinfo->has_tiling_uapi) legacy_mask |= ISL_TILING_X_BIT; flags &= legacy_mask; } assert(flags); return flags; } /** * Add the surface to the binding at the given offset. * * \see image_binding_grow() */ static VkResult MUST_CHECK add_surface(struct anv_device *device, struct anv_image *image, struct anv_surface *surf, enum anv_image_memory_binding binding, uint64_t offset) { /* isl surface must be initialized */ assert(surf->isl.size_B > 0); return image_binding_grow(device, image, binding, offset, surf->isl.size_B, surf->isl.alignment_B, &surf->memory_range); } static bool can_fast_clear_with_non_zero_color(const struct intel_device_info *devinfo, const struct anv_image *image, uint32_t plane, const VkImageFormatListCreateInfo *fmt_list) { /* If we don't have an AUX surface where fast clears apply, we can return * early. */ if (!isl_aux_usage_has_fast_clears(image->planes[plane].aux_usage)) return false; /* On TGL (< C0), if a block of fragment shader outputs match the surface's * clear color, the HW may convert them to fast-clears (see HSD 1607794140). * This can lead to rendering corruptions if not handled properly. We * restrict the clear color to zero to avoid issues that can occur with: * - Texture view rendering (including blorp_copy calls) * - Images with multiple levels or array layers */ if (image->planes[plane].aux_usage == ISL_AUX_USAGE_FCV_CCS_E) return false; /* Turning on non zero fast clears for CCS_E introduces a performance * regression for games such as F1 22 and RDR2 by introducing additional * partial resolves. Let's turn non zero fast clears back off till we can * fix performance. */ if (image->planes[plane].aux_usage == ISL_AUX_USAGE_CCS_E && devinfo->ver >= 12) return false; /* Non mutable image, we can fast clear with any color supported by HW. */ if (!(image->vk.create_flags & VK_IMAGE_CREATE_MUTABLE_FORMAT_BIT)) return true; /* Mutable image with no format list, we have to assume all formats */ if (!fmt_list || fmt_list->viewFormatCount == 0) return false; enum isl_format img_format = image->planes[plane].primary_surface.isl.format; /* Check bit compatibility for clear color components */ for (uint32_t i = 0; i < fmt_list->viewFormatCount; i++) { if (fmt_list->pViewFormats[i] == VK_FORMAT_UNDEFINED) continue; struct anv_format_plane view_format_plane = anv_get_format_plane(devinfo, fmt_list->pViewFormats[i], plane, image->vk.tiling); enum isl_format view_format = view_format_plane.isl_format; if (!isl_formats_have_same_bits_per_channel(img_format, view_format)) return false; } return true; } /** * Return true if the storage image could be used with atomics. * * If the image was created with an explicit format, we check it for typed * atomic support. If MUTABLE_FORMAT_BIT is set, then we check the optional * format list, seeing if /any/ of the formats support typed atomics. If no * list is supplied, we fall back to using the bpb, as the application could * make an image view with a format that does use atomics. */ static bool storage_image_format_supports_atomic(const struct intel_device_info *devinfo, VkImageCreateFlags create_flags, enum isl_format format, VkImageTiling vk_tiling, const VkImageFormatListCreateInfo *fmt_list) { if (isl_format_supports_typed_atomics(devinfo, format)) return true; if (!(create_flags & VK_IMAGE_CREATE_MUTABLE_FORMAT_BIT)) return false; if (fmt_list) { for (uint32_t i = 0; i < fmt_list->viewFormatCount; i++) { if (fmt_list->pViewFormats[i] == VK_FORMAT_UNDEFINED) continue; enum isl_format view_format = anv_get_isl_format(devinfo, fmt_list->pViewFormats[i], VK_IMAGE_ASPECT_COLOR_BIT, vk_tiling); if (isl_format_supports_typed_atomics(devinfo, view_format)) return true; } return false; } /* No explicit format list. Any 16/32/64bpp format could be used with atomics. */ unsigned bpb = isl_format_get_layout(format)->bpb; return bpb == 16 || bpb == 32 || bpb == 64; } static bool formats_ccs_e_compatible(const struct intel_device_info *devinfo, VkImageCreateFlags create_flags, enum isl_format format, VkImageTiling vk_tiling, const VkImageFormatListCreateInfo *fmt_list) { if (!anv_format_supports_ccs_e(devinfo, format)) return false; /* For images created without MUTABLE_FORMAT_BIT set, we know that they will * always be used with the original format. In particular, they will always * be used with a format that supports color compression. */ if (!(create_flags & VK_IMAGE_CREATE_MUTABLE_FORMAT_BIT)) return true; if (!fmt_list || fmt_list->viewFormatCount == 0) return false; for (uint32_t i = 0; i < fmt_list->viewFormatCount; i++) { if (fmt_list->pViewFormats[i] == VK_FORMAT_UNDEFINED) continue; enum isl_format view_format = anv_get_isl_format(devinfo, fmt_list->pViewFormats[i], VK_IMAGE_ASPECT_COLOR_BIT, vk_tiling); if (!isl_formats_are_ccs_e_compatible(devinfo, format, view_format)) return false; } return true; } bool anv_format_supports_ccs_e(const struct intel_device_info *devinfo, const enum isl_format format) { /* CCS_E for YCRCB_NORMAL and YCRCB_SWAP_UV is not currently supported by * ANV so leave it disabled for now. */ if (isl_format_is_yuv(format)) return false; return isl_format_supports_ccs_e(devinfo, format); } bool anv_formats_ccs_e_compatible(const struct intel_device_info *devinfo, VkImageCreateFlags create_flags, VkFormat vk_format, VkImageTiling vk_tiling, VkImageUsageFlags vk_usage, const VkImageFormatListCreateInfo *fmt_list) { u_foreach_bit(b, vk_format_aspects(vk_format)) { VkImageAspectFlagBits aspect = 1 << b; enum isl_format format = anv_get_isl_format(devinfo, vk_format, aspect, vk_tiling); if (!formats_ccs_e_compatible(devinfo, create_flags, format, vk_tiling, fmt_list)) return false; if (vk_usage & VK_IMAGE_USAGE_STORAGE_BIT) { if (devinfo->verx10 < 125) return false; /* Disable compression when surface can be potentially used for * atomic operation. */ if (storage_image_format_supports_atomic(devinfo, create_flags, format, vk_tiling, fmt_list)) return false; } } return true; } /** * For color images that have an auxiliary surface, request allocation for an * additional buffer that mainly stores fast-clear values. Use of this buffer * allows us to access the image's subresources while being aware of their * fast-clear values in non-trivial cases (e.g., outside of a render pass in * which a fast clear has occurred). * * In order to avoid having multiple clear colors for a single plane of an * image (hence a single RENDER_SURFACE_STATE), we only allow fast-clears on * the first slice (level 0, layer 0). At the time of our testing (Jan 17, * 2018), there were no known applications which would benefit from fast- * clearing more than just the first slice. * * The fast clear portion of the image is laid out in the following order: * * * 1 or 4 dwords (depending on hardware generation) for the clear color * * 1 dword for the anv_fast_clear_type of the clear color * * On gfx9+, 1 dword per level and layer of the image (3D levels count * multiple layers) in level-major order for compression state. * * For the purpose of discoverability, the algorithm used to manage * compression and fast-clears is described here: * * * On a transition from UNDEFINED or PREINITIALIZED to a defined layout, * all of the values in the fast clear portion of the image are initialized * to default values. * * * On fast-clear, the clear value is written into surface state and also * into the buffer and the fast clear type is set appropriately. Both * setting the fast-clear value in the buffer and setting the fast-clear * type happen from the GPU using MI commands. * * * Whenever a render or blorp operation is performed with CCS_E, we call * genX(cmd_buffer_mark_image_written) to set the compression state to * true (which is represented by UINT32_MAX). * * * On pipeline barrier transitions, the worst-case transition is computed * from the image layouts. The command streamer inspects the fast clear * type and compression state dwords and constructs a predicate. The * worst-case resolve is performed with the given predicate and the fast * clear and compression state is set accordingly. * * See anv_layout_to_aux_usage and anv_layout_to_fast_clear_type functions for * details on exactly what is allowed in what layouts. * * On gfx7-9, we do not have a concept of indirect clear colors in hardware. * In order to deal with this, we have to do some clear color management. * * * For LOAD_OP_LOAD at the top of a renderpass, we have to copy the clear * value from the buffer into the surface state with MI commands. * * * For any blorp operations, we pass the address to the clear value into * blorp and it knows to copy the clear color. */ static VkResult MUST_CHECK add_aux_state_tracking_buffer(struct anv_device *device, struct anv_image *image, uint64_t state_offset, uint32_t plane) { assert(image && device); /* Xe2+ platforms don't use aux tracking buffers. We shouldn't get here. */ assert(device->info->ver < 20); assert(image->planes[plane].aux_usage != ISL_AUX_USAGE_NONE && image->vk.aspects & (VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV | VK_IMAGE_ASPECT_DEPTH_BIT)); unsigned clear_color_state_size; if (device->info->ver >= 11) { /* When importing an image from another source with a drm modifier that * supports clear color, the clear color values are in a 32-byte struct * defined in drm_fourcc.h. The fast clear type and compression state * are not defined in these drm_fourcc.h, so there won't be memory * allocated for these extra meta data by the source. * * We use the last 2 dwords of the clear color struct's memory to store * the fast clear type and the first compression state, so the driver * doesn't assume the extra size or need another allocation later. * * So far, the 2 stolen dwords are either not used in the clear color * struct or for features not enabled. There should be no side effect to * the hardware and destinations of images exported by this driver. * * Images with multiple levels or layers are not supported by drm * modifiers, so we don't have to apply the above approach or face a * bigger shortage from multiple compression states. We just apply the * approach to all cases to keep the design unified. * * As a result, the state starts 8 bytes lower than where it should be. */ assert(device->isl_dev.ss.clear_color_state_size >= 32); clear_color_state_size = device->isl_dev.ss.clear_color_state_size - 8; } else { clear_color_state_size = device->isl_dev.ss.clear_value_size; } /* Clear color and fast clear type */ unsigned state_size = clear_color_state_size + 4; /* We only need to track compression on CCS_E surfaces. */ if (isl_aux_usage_has_ccs_e(image->planes[plane].aux_usage)) { if (image->vk.image_type == VK_IMAGE_TYPE_3D) { for (uint32_t l = 0; l < image->vk.mip_levels; l++) state_size += u_minify(image->vk.extent.depth, l) * 4; } else { state_size += image->vk.mip_levels * image->vk.array_layers * 4; } } enum anv_image_memory_binding binding = ANV_IMAGE_MEMORY_BINDING_PLANE_0 + plane; /* If an auxiliary surface is used for an externally-shareable image, * we have to hide this from the memory of the image since other * processes with access to the memory may not be aware of it or of * its current state. So put that auxiliary data into a separate * buffer (ANV_IMAGE_MEMORY_BINDING_PRIVATE). * * But when the image is created with a drm modifier that supports * clear color, it will be exported along with main surface. */ if (anv_image_is_externally_shared(image) && !isl_drm_modifier_get_info(image->vk.drm_format_mod)->supports_clear_color) { binding = ANV_IMAGE_MEMORY_BINDING_PRIVATE; } /* The indirect clear color BO requires 64B-alignment on gfx11+. */ return image_binding_grow(device, image, binding, state_offset, state_size, 64, &image->planes[plane].fast_clear_memory_range); } static VkResult MUST_CHECK add_compression_control_buffer(struct anv_device *device, struct anv_image *image, uint32_t plane, uint32_t binding, uint64_t offset) { assert(device->info->has_aux_map); return image_binding_grow(device, image, binding, offset, image->planes[plane].primary_surface.isl.size_B / INTEL_AUX_MAP_MAIN_SIZE_SCALEDOWN, INTEL_AUX_MAP_META_ALIGNMENT_B, &image->planes[plane].compr_ctrl_memory_range); } static bool want_hiz_wt_for_image(const struct intel_device_info *devinfo, const struct anv_image *image) { /* Gen12 only supports single-sampled while Gen20+ supports * multi-sampled images. */ if (devinfo->ver < 20 && image->vk.samples > 1) return false; if ((image->vk.usage & (VK_IMAGE_USAGE_SAMPLED_BIT | VK_IMAGE_USAGE_INPUT_ATTACHMENT_BIT)) == 0) return false; /* If this image has the maximum number of samples supported by * running platform and will be used as a texture, put the HiZ surface * in write-through mode so that we can sample from it. * * TODO: This is a heuristic trade-off; we haven't tuned it at all. */ return true; } /** * The return code indicates whether creation of the VkImage should continue * or fail, not whether the creation of the aux surface succeeded. If the aux * surface is not required (for example, by neither hardware nor DRM format * modifier), then this may return VK_SUCCESS when creation of the aux surface * fails. * * @param offset See add_surface() */ static VkResult add_aux_surface_if_supported(struct anv_device *device, struct anv_image *image, uint32_t plane, struct anv_format_plane plane_format, const VkImageFormatListCreateInfo *fmt_list, uint64_t offset, uint32_t stride, uint64_t aux_state_offset) { VkImageAspectFlags aspect = plane_format.aspect; VkResult result; bool ok; /* The aux surface must not be already added. */ assert(!anv_surface_is_valid(&image->planes[plane].aux_surface)); if (image->planes[plane].primary_surface.isl.usage & ISL_SURF_USAGE_DISABLE_AUX_BIT) return VK_SUCCESS; uint32_t binding; if (image->vk.drm_format_mod == DRM_FORMAT_MOD_INVALID || isl_drm_modifier_has_aux(image->vk.drm_format_mod)) { binding = ANV_IMAGE_MEMORY_BINDING_PLANE_0 + plane; } else { binding = ANV_IMAGE_MEMORY_BINDING_PRIVATE; } if (aspect == VK_IMAGE_ASPECT_DEPTH_BIT) { /* We don't advertise that depth buffers could be used as storage * images. */ assert(!(image->vk.usage & VK_IMAGE_USAGE_STORAGE_BIT)); ok = isl_surf_get_hiz_surf(&device->isl_dev, &image->planes[plane].primary_surface.isl, &image->planes[plane].aux_surface.isl); if (!ok) return VK_SUCCESS; if (!isl_surf_supports_ccs(&device->isl_dev, &image->planes[plane].primary_surface.isl, &image->planes[plane].aux_surface.isl)) { image->planes[plane].aux_usage = ISL_AUX_USAGE_HIZ; } else if (want_hiz_wt_for_image(device->info, image)) { assert(device->info->ver >= 12); image->planes[plane].aux_usage = ISL_AUX_USAGE_HIZ_CCS_WT; } else { assert(device->info->ver >= 12); image->planes[plane].aux_usage = ISL_AUX_USAGE_HIZ_CCS; } result = add_surface(device, image, &image->planes[plane].aux_surface, binding, ANV_OFFSET_IMPLICIT); if (result != VK_SUCCESS) return result; if (anv_image_plane_uses_aux_map(device, image, plane)) { result = add_compression_control_buffer(device, image, plane, binding, ANV_OFFSET_IMPLICIT); if (result != VK_SUCCESS) return result; } if (device->info->ver == 12 && image->planes[plane].aux_usage == ISL_AUX_USAGE_HIZ_CCS_WT) { return add_aux_state_tracking_buffer(device, image, aux_state_offset, plane); } } else if (aspect == VK_IMAGE_ASPECT_STENCIL_BIT) { if (!isl_surf_supports_ccs(&device->isl_dev, &image->planes[plane].primary_surface.isl, NULL)) return VK_SUCCESS; image->planes[plane].aux_usage = ISL_AUX_USAGE_STC_CCS; if (device->info->has_aux_map) { result = add_compression_control_buffer(device, image, plane, binding, ANV_OFFSET_IMPLICIT); if (result != VK_SUCCESS) return result; } } else if ((aspect & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV) && image->vk.samples == 1) { if (device->info->has_flat_ccs || device->info->has_aux_map) { ok = isl_surf_supports_ccs(&device->isl_dev, &image->planes[plane].primary_surface.isl, NULL); } else { ok = isl_surf_get_ccs_surf(&device->isl_dev, &image->planes[plane].primary_surface.isl, &image->planes[plane].aux_surface.isl, stride); } if (!ok) return VK_SUCCESS; /* Choose aux usage. */ if (device->info->verx10 == 125 && !device->physical->disable_fcv) { /* FCV is enabled via 3DSTATE_3D_MODE. We'd expect plain CCS_E to * perform better because it allows for non-zero fast clear colors, * but we've run into regressions in several benchmarks (F1 22 and * RDR2) when trying to enable it. When non-zero clear colors are * enabled, we've observed many partial resolves. We haven't yet * root-caused what layout transitions are causing these resolves, * so in the meantime, we choose to reduce our clear color support. * With only zero clear colors being supported, we might as well * turn on FCV. */ image->planes[plane].aux_usage = ISL_AUX_USAGE_FCV_CCS_E; } else if (intel_needs_workaround(device->info, 1607794140)) { /* FCV is permanently enabled on this hardware. */ assert(device->info->verx10 == 120); image->planes[plane].aux_usage = ISL_AUX_USAGE_FCV_CCS_E; } else if (device->info->ver >= 12) { /* Support for CCS_E was already checked for in anv_image_init(). */ image->planes[plane].aux_usage = ISL_AUX_USAGE_CCS_E; } else if (anv_formats_ccs_e_compatible(device->info, image->vk.create_flags, image->vk.format, image->vk.tiling, image->vk.usage, fmt_list)) { image->planes[plane].aux_usage = ISL_AUX_USAGE_CCS_E; } else { image->planes[plane].aux_usage = ISL_AUX_USAGE_CCS_D; } if (device->info->has_flat_ccs) { result = VK_SUCCESS; } else if (device->info->has_aux_map) { result = add_compression_control_buffer(device, image, plane, binding, offset); } else { result = add_surface(device, image, &image->planes[plane].aux_surface, binding, offset); } if (result != VK_SUCCESS) return result; if (device->info->ver <= 12) return add_aux_state_tracking_buffer(device, image, aux_state_offset, plane); } else if ((aspect & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV) && image->vk.samples > 1) { assert(!(image->vk.usage & VK_IMAGE_USAGE_STORAGE_BIT)); ok = isl_surf_get_mcs_surf(&device->isl_dev, &image->planes[plane].primary_surface.isl, &image->planes[plane].aux_surface.isl); if (!ok) return VK_SUCCESS; image->planes[plane].aux_usage = ISL_AUX_USAGE_MCS; result = add_surface(device, image, &image->planes[plane].aux_surface, binding, ANV_OFFSET_IMPLICIT); if (result != VK_SUCCESS) return result; if (device->info->ver <= 12) return add_aux_state_tracking_buffer(device, image, aux_state_offset, plane); } return VK_SUCCESS; } static VkResult add_video_buffers(struct anv_device *device, struct anv_image *image, const struct VkVideoProfileListInfoKHR *profile_list) { ASSERTED bool ok; unsigned size = 0; for (unsigned i = 0; i < profile_list->profileCount; i++) { if (profile_list->pProfiles[i].videoCodecOperation == VK_VIDEO_CODEC_OPERATION_DECODE_H264_BIT_KHR) { unsigned w_mb = DIV_ROUND_UP(image->vk.extent.width, ANV_MB_WIDTH); unsigned h_mb = DIV_ROUND_UP(image->vk.extent.height, ANV_MB_HEIGHT); size = w_mb * h_mb * 128; } else if (profile_list->pProfiles[i].videoCodecOperation == VK_VIDEO_CODEC_OPERATION_DECODE_H265_BIT_KHR || profile_list->pProfiles[i].videoCodecOperation == VK_VIDEO_CODEC_OPERATION_ENCODE_H265_BIT_KHR) { unsigned w_mb = DIV_ROUND_UP(image->vk.extent.width, 32); unsigned h_mb = DIV_ROUND_UP(image->vk.extent.height, 32); size = ALIGN(w_mb * h_mb, 2) << 6; } } if (size == 0) return VK_SUCCESS; ok = image_binding_grow(device, image, ANV_IMAGE_MEMORY_BINDING_PRIVATE, ANV_OFFSET_IMPLICIT, size, 65536, &image->vid_dmv_top_surface); return ok; } /** * Initialize the anv_image::*_surface selected by \a aspect. Then update the * image's memory requirements (that is, the image's size and alignment). * * @param offset See add_surface() */ static VkResult add_primary_surface(struct anv_device *device, struct anv_image *image, uint32_t plane, struct anv_format_plane plane_format, uint64_t offset, uint32_t stride, isl_tiling_flags_t isl_tiling_flags, isl_surf_usage_flags_t isl_usage) { struct anv_surface *anv_surf = &image->planes[plane].primary_surface; bool ok; uint32_t width = image->vk.extent.width; uint32_t height = image->vk.extent.height; const struct vk_format_ycbcr_info *ycbcr_info = vk_format_get_ycbcr_info(image->vk.format); if (ycbcr_info) { assert(plane < ycbcr_info->n_planes); width /= ycbcr_info->planes[plane].denominator_scales[0]; height /= ycbcr_info->planes[plane].denominator_scales[1]; } ok = isl_surf_init(&device->isl_dev, &anv_surf->isl, .dim = vk_to_isl_surf_dim[image->vk.image_type], .format = plane_format.isl_format, .width = width, .height = height, .depth = image->vk.extent.depth, .levels = image->vk.mip_levels, .array_len = image->vk.array_layers, .samples = image->vk.samples, .min_alignment_B = 0, .row_pitch_B = stride, .usage = isl_usage, .tiling_flags = isl_tiling_flags); if (!ok) { /* TODO: Should return * VK_ERROR_INVALID_DRM_FORMAT_MODIFIER_PLANE_LAYOUT_EXT in come cases. */ return VK_ERROR_OUT_OF_DEVICE_MEMORY; } image->planes[plane].aux_usage = ISL_AUX_USAGE_NONE; return add_surface(device, image, anv_surf, ANV_IMAGE_MEMORY_BINDING_PLANE_0 + plane, offset); } #ifndef NDEBUG static bool MUST_CHECK memory_range_is_aligned(struct anv_image_memory_range memory_range) { return anv_is_aligned(memory_range.offset, memory_range.alignment); } static bool MUST_CHECK memory_ranges_equal(struct anv_image_memory_range a, struct anv_image_memory_range b) { return a.binding == b.binding && a.alignment == b.alignment && a.size == b.size && a.offset == b.offset; } #endif struct check_memory_range_params { struct anv_image_memory_range *accum_ranges; const struct anv_surface *test_surface; const struct anv_image_memory_range *test_range; enum anv_image_memory_binding expect_binding; }; #define check_memory_range(...) \ check_memory_range_s(&(struct check_memory_range_params) { __VA_ARGS__ }) static void UNUSED check_memory_range_s(const struct check_memory_range_params *p) { assert((p->test_surface == NULL) != (p->test_range == NULL)); const struct anv_image_memory_range *test_range = p->test_range ?: &p->test_surface->memory_range; struct anv_image_memory_range *accum_range = &p->accum_ranges[p->expect_binding]; assert(test_range->binding == p->expect_binding); assert(test_range->offset >= memory_range_end(*accum_range)); assert(memory_range_is_aligned(*test_range)); if (p->test_surface) { assert(anv_surface_is_valid(p->test_surface)); assert(p->test_surface->memory_range.alignment == p->test_surface->isl.alignment_B); } memory_range_merge(accum_range, *test_range); } /** * Validate the image's memory bindings *after* all its surfaces and memory * ranges are final. * * For simplicity's sake, we do not validate free-form layout of the image's * memory bindings. We validate the layout described in the comments of struct * anv_image. */ static void check_memory_bindings(const struct anv_device *device, const struct anv_image *image) { #if MESA_DEBUG /* As we inspect each part of the image, we merge the part's memory range * into these accumulation ranges. */ struct anv_image_memory_range accum_ranges[ANV_IMAGE_MEMORY_BINDING_END]; for (int i = 0; i < ANV_IMAGE_MEMORY_BINDING_END; ++i) { accum_ranges[i] = (struct anv_image_memory_range) { .binding = i, }; } for (uint32_t p = 0; p < image->n_planes; ++p) { const struct anv_image_plane *plane = &image->planes[p]; /* The binding that must contain the plane's primary surface. */ const enum anv_image_memory_binding primary_binding = image->disjoint ? ANV_IMAGE_MEMORY_BINDING_PLANE_0 + p : ANV_IMAGE_MEMORY_BINDING_MAIN; /* Aliasing is incompatible with the private binding because it does not * live in a VkDeviceMemory. The exception is either swapchain images or * that the private binding is for a video motion vector buffer. */ assert(!(image->vk.create_flags & VK_IMAGE_CREATE_ALIAS_BIT) || image->from_wsi || (plane->primary_surface.isl.usage & ISL_SURF_USAGE_VIDEO_DECODE_BIT) || image->bindings[ANV_IMAGE_MEMORY_BINDING_PRIVATE].memory_range.size == 0); /* Check primary surface */ check_memory_range(accum_ranges, .test_surface = &plane->primary_surface, .expect_binding = primary_binding); /* Check aux_surface */ const struct anv_image_memory_range *aux_mem_range = anv_image_get_aux_memory_range(image, p); if (aux_mem_range->size > 0) { enum anv_image_memory_binding binding = primary_binding; /* If an auxiliary surface is used for an externally-shareable image, * we have to hide this from the memory of the image since other * processes with access to the memory may not be aware of it or of * its current state. So put that auxiliary data into a separate * buffer (ANV_IMAGE_MEMORY_BINDING_PRIVATE). */ if (anv_image_is_externally_shared(image) && !isl_drm_modifier_has_aux(image->vk.drm_format_mod)) { binding = ANV_IMAGE_MEMORY_BINDING_PRIVATE; } /* Display hardware requires that the aux surface start at * a higher address than the primary surface. The 3D hardware * doesn't care, but we enforce the display requirement in case * the image is sent to display. */ check_memory_range(accum_ranges, .test_range = aux_mem_range, .expect_binding = binding); } /* Check fast clear state */ if (plane->fast_clear_memory_range.size > 0) { enum anv_image_memory_binding binding = primary_binding; /* If an auxiliary surface is used for an externally-shareable image, * we have to hide this from the memory of the image since other * processes with access to the memory may not be aware of it or of * its current state. So put that auxiliary data into a separate * buffer (ANV_IMAGE_MEMORY_BINDING_PRIVATE). * * But when the image is created with a drm modifier that supports * clear color, it will be exported along with main surface. */ if (anv_image_is_externally_shared(image) && !isl_drm_modifier_get_info(image->vk.drm_format_mod)->supports_clear_color) { binding = ANV_IMAGE_MEMORY_BINDING_PRIVATE; } /* The indirect clear color BO requires 64B-alignment on gfx11+. */ assert(plane->fast_clear_memory_range.alignment == 64); check_memory_range(accum_ranges, .test_range = &plane->fast_clear_memory_range, .expect_binding = binding); } } #endif } /** * Check that the fully-initialized anv_image is compatible with its DRM format * modifier. * * Checking compatibility at the end of image creation is prudent, not * superfluous, because usage of modifiers triggers numerous special cases * throughout queries and image creation, and because * vkGetPhysicalDeviceImageFormatProperties2 has difficulty detecting all * incompatibilities. * * Return VK_ERROR_UNKNOWN if the incompatibility is difficult to detect in * vkGetPhysicalDeviceImageFormatProperties2. Otherwise, assert fail. * * Ideally, if vkGetPhysicalDeviceImageFormatProperties2() succeeds with a given * modifier, then vkCreateImage() produces an image that is compatible with the * modifier. However, it is difficult to reconcile the two functions to agree * due to their complexity. For example, isl_surf_get_ccs_surf() may * unexpectedly fail in vkCreateImage(), eliminating the image's aux surface * even when the modifier requires one. (Maybe we should reconcile the two * functions despite the difficulty). */ static VkResult MUST_CHECK check_drm_format_mod(const struct anv_device *device, const struct anv_image *image) { /* Image must have a modifier if and only if it has modifier tiling. */ assert((image->vk.drm_format_mod != DRM_FORMAT_MOD_INVALID) == (image->vk.tiling == VK_IMAGE_TILING_DRM_FORMAT_MODIFIER_EXT)); if (image->vk.drm_format_mod == DRM_FORMAT_MOD_INVALID) return VK_SUCCESS; const struct isl_drm_modifier_info *isl_mod_info = isl_drm_modifier_get_info(image->vk.drm_format_mod); /* Driver must support the modifier. */ assert(isl_drm_modifier_get_score(device->info, isl_mod_info->modifier)); /* Enforced by us, not the Vulkan spec. */ assert(image->vk.image_type == VK_IMAGE_TYPE_2D); assert(!(image->vk.aspects & VK_IMAGE_ASPECT_DEPTH_BIT)); assert(!(image->vk.aspects & VK_IMAGE_ASPECT_STENCIL_BIT)); assert(image->vk.mip_levels == 1); assert(image->vk.array_layers == 1); assert(image->vk.samples == 1); for (int i = 0; i < image->n_planes; ++i) { const struct anv_image_plane *plane = &image->planes[i]; ASSERTED const struct isl_format_layout *isl_layout = isl_format_get_layout(plane->primary_surface.isl.format); /* Enforced by us, not the Vulkan spec. */ assert(isl_layout->txc == ISL_TXC_NONE); assert(isl_layout->colorspace == ISL_COLORSPACE_LINEAR || isl_layout->colorspace == ISL_COLORSPACE_SRGB); if (isl_drm_modifier_has_aux(isl_mod_info->modifier)) { /* Reject DISJOINT for consistency with the GL driver. */ assert(!image->disjoint); /* The modifier's required aux usage mandates the image's aux usage. * The inverse, however, does not hold; if the modifier has no aux * usage, then we may enable a private aux surface. */ if ((isl_mod_info->supports_media_compression && plane->aux_usage != ISL_AUX_USAGE_MC) || (isl_mod_info->supports_render_compression && !isl_aux_usage_has_ccs_e(plane->aux_usage))) { return vk_errorf(device, VK_ERROR_UNKNOWN, "image with modifier unexpectedly has wrong aux " "usage"); } } } return VK_SUCCESS; } /** * Use when the app does not provide * VkImageDrmFormatModifierExplicitCreateInfoEXT. */ static VkResult MUST_CHECK add_all_surfaces_implicit_layout( struct anv_device *device, struct anv_image *image, const VkImageFormatListCreateInfo *format_list_info, uint32_t stride, isl_tiling_flags_t isl_tiling_flags, isl_surf_usage_flags_t isl_extra_usage_flags) { const struct intel_device_info *devinfo = device->info; VkResult result; const struct vk_format_ycbcr_info *ycbcr_info = vk_format_get_ycbcr_info(image->vk.format); if (ycbcr_info) assert(ycbcr_info->n_planes == image->n_planes); unsigned num_aspects = 0; VkImageAspectFlagBits aspects[3]; u_foreach_bit(b, image->vk.aspects) { assert(num_aspects < 3); aspects[num_aspects++] = 1 << b; } assert(num_aspects == image->n_planes); /* The Android hardware buffer YV12 format has the planes ordered as Y-Cr-Cb, * while Vulkan expects VK_FORMAT_G8_B8_R8_3PLANE_420_UNORM to be in Y-Cb-Cr. * Adjust the order we add the ISL surfaces accordingly so the implicit * offset gets calculated correctly. */ if (image->from_ahb && image->vk.format == VK_FORMAT_G8_B8_R8_3PLANE_420_UNORM) { assert(num_aspects == 3); assert(aspects[1] == VK_IMAGE_ASPECT_PLANE_1_BIT); assert(aspects[2] == VK_IMAGE_ASPECT_PLANE_2_BIT); aspects[1] = VK_IMAGE_ASPECT_PLANE_2_BIT; aspects[2] = VK_IMAGE_ASPECT_PLANE_1_BIT; } for (unsigned i = 0; i < num_aspects; i++) { VkImageAspectFlagBits aspect = aspects[i]; const uint32_t plane = anv_image_aspect_to_plane(image, aspect); const struct anv_format_plane plane_format = anv_get_format_plane(devinfo, image->vk.format, plane, image->vk.tiling); enum isl_format isl_fmt = plane_format.isl_format; assert(isl_fmt != ISL_FORMAT_UNSUPPORTED); uint32_t plane_stride = stride * isl_format_get_layout(isl_fmt)->bpb / 8; if (ycbcr_info) plane_stride /= ycbcr_info->planes[plane].denominator_scales[0]; VkImageUsageFlags vk_usage = vk_image_usage(&image->vk, aspect); isl_surf_usage_flags_t isl_usage = anv_image_choose_isl_surf_usage(device->physical, image->vk.create_flags, vk_usage, isl_extra_usage_flags, aspect, image->vk.compr_flags); result = add_primary_surface(device, image, plane, plane_format, ANV_OFFSET_IMPLICIT, plane_stride, isl_tiling_flags, isl_usage); if (result != VK_SUCCESS) return result; result = add_aux_surface_if_supported(device, image, plane, plane_format, format_list_info, ANV_OFFSET_IMPLICIT, plane_stride, ANV_OFFSET_IMPLICIT); if (result != VK_SUCCESS) return result; } return VK_SUCCESS; } /** * Use when the app provides VkImageDrmFormatModifierExplicitCreateInfoEXT. */ static VkResult add_all_surfaces_explicit_layout( struct anv_device *device, struct anv_image *image, const VkImageFormatListCreateInfo *format_list_info, const VkImageDrmFormatModifierExplicitCreateInfoEXT *drm_info, isl_tiling_flags_t isl_tiling_flags, isl_surf_usage_flags_t isl_extra_usage_flags) { const struct intel_device_info *devinfo = device->info; const uint32_t mod_plane_count = drm_info->drmFormatModifierPlaneCount; const bool mod_has_aux = isl_drm_modifier_has_aux(drm_info->drmFormatModifier); VkResult result; /* Currently there is no way to properly map memory planes to format planes * and aux planes due to the lack of defined ABI for external multi-planar * images. */ if (image->n_planes == 1) assert(image->vk.aspects == VK_IMAGE_ASPECT_COLOR_BIT); else assert(!(image->vk.aspects & ~VK_IMAGE_ASPECT_PLANES_BITS_ANV)); if (mod_has_aux) { assert(image->n_planes == 1); /* About valid usage in the Vulkan spec: * * Unlike vanilla vkCreateImage, which produces undefined behavior on user * error, here the spec requires the implementation to return * VK_ERROR_INVALID_DRM_FORMAT_MODIFIER_PLANE_LAYOUT_EXT if the app provides * a bad plane layout. However, the spec does require * drmFormatModifierPlaneCount to be valid. * * Most validation of plane layout occurs in add_surface(). */ uint32_t n_mod_planes = isl_drm_modifier_get_plane_count(devinfo, drm_info->drmFormatModifier, image->n_planes); assert(n_mod_planes == mod_plane_count); } else { assert(image->n_planes == mod_plane_count); } /* Reject special values in the app-provided plane layouts. */ for (uint32_t i = 0; i < mod_plane_count; ++i) { if (drm_info->pPlaneLayouts[i].rowPitch == 0) { return vk_errorf(device, VK_ERROR_INVALID_DRM_FORMAT_MODIFIER_PLANE_LAYOUT_EXT, "VkImageDrmFormatModifierExplicitCreateInfoEXT::" "pPlaneLayouts[%u]::rowPitch is 0", i); } if (drm_info->pPlaneLayouts[i].offset == ANV_OFFSET_IMPLICIT) { return vk_errorf(device, VK_ERROR_INVALID_DRM_FORMAT_MODIFIER_PLANE_LAYOUT_EXT, "VkImageDrmFormatModifierExplicitCreateInfoEXT::" "pPlaneLayouts[%u]::offset is %" PRIu64, i, ANV_OFFSET_IMPLICIT); } } u_foreach_bit(b, image->vk.aspects) { const VkImageAspectFlagBits aspect = 1 << b; const uint32_t plane = anv_image_aspect_to_plane(image, aspect); const struct anv_format_plane format_plane = anv_get_format_plane(devinfo, image->vk.format, plane, image->vk.tiling); const VkSubresourceLayout *primary_layout = &drm_info->pPlaneLayouts[plane]; result = add_primary_surface(device, image, plane, format_plane, primary_layout->offset, primary_layout->rowPitch, isl_tiling_flags, isl_extra_usage_flags); if (result != VK_SUCCESS) return result; if (mod_has_aux) { const VkSubresourceLayout flat_ccs_layout = { .offset = ANV_OFFSET_IMPLICIT, }; const VkSubresourceLayout *aux_layout; uint64_t aux_state_offset = ANV_OFFSET_IMPLICIT; /* We already asserted on image->n_planes == 1 when mod_has_aux is * true above, so the indexes of aux and clear color are just hard- * coded without ambiguity. */ if (devinfo->has_flat_ccs) { aux_layout = &flat_ccs_layout; if (isl_drm_modifier_get_info( drm_info->drmFormatModifier)->supports_clear_color) { aux_state_offset = drm_info->pPlaneLayouts[1].offset; } } else { aux_layout = &drm_info->pPlaneLayouts[1]; if (isl_drm_modifier_get_info( drm_info->drmFormatModifier)->supports_clear_color) { aux_state_offset = drm_info->pPlaneLayouts[2].offset; } } result = add_aux_surface_if_supported(device, image, plane, format_plane, format_list_info, aux_layout->offset, aux_layout->rowPitch, aux_state_offset); if (result != VK_SUCCESS) return result; assert(isl_aux_usage_has_ccs(image->planes[plane].aux_usage)); } } return VK_SUCCESS; } static const struct isl_drm_modifier_info * choose_drm_format_mod(const struct anv_physical_device *device, uint32_t modifier_count, const uint64_t *modifiers) { uint64_t best_mod = UINT64_MAX; uint32_t best_score = 0; for (uint32_t i = 0; i < modifier_count; ++i) { uint32_t score = isl_drm_modifier_get_score(&device->info, modifiers[i]); if (score > best_score) { best_mod = modifiers[i]; best_score = score; } } if (best_score > 0) return isl_drm_modifier_get_info(best_mod); else return NULL; } static VkImageUsageFlags anv_image_create_usage(const VkImageCreateInfo *pCreateInfo, VkImageUsageFlags usage) { /* Add TRANSFER_SRC usage for multisample attachment images. This is * because we might internally use the TRANSFER_SRC layout on them for * blorp operations associated with resolving those into other attachments * at the end of a subpass. * * Without this additional usage, we compute an incorrect AUX state in * anv_layout_to_aux_state(). */ if (pCreateInfo->samples > VK_SAMPLE_COUNT_1_BIT && (usage & (VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT | VK_IMAGE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT))) usage |= VK_IMAGE_USAGE_TRANSFER_SRC_BIT; return usage; } static VkResult MUST_CHECK alloc_private_binding(struct anv_device *device, struct anv_image *image, const VkImageCreateInfo *create_info) { struct anv_image_binding *binding = &image->bindings[ANV_IMAGE_MEMORY_BINDING_PRIVATE]; if (binding->memory_range.size == 0) return VK_SUCCESS; const VkImageSwapchainCreateInfoKHR *swapchain_info = vk_find_struct_const(create_info->pNext, IMAGE_SWAPCHAIN_CREATE_INFO_KHR); if (swapchain_info && swapchain_info->swapchain != VK_NULL_HANDLE) { /* The image will be bound to swapchain memory. */ return VK_SUCCESS; } VkResult result = anv_device_alloc_bo(device, "image-binding-private", binding->memory_range.size, 0, 0, &binding->address.bo); if (result == VK_SUCCESS) { pthread_mutex_lock(&device->mutex); list_addtail(&image->link, &device->image_private_objects); pthread_mutex_unlock(&device->mutex); } return result; } static void anv_image_finish_sparse_bindings(struct anv_image *image) { struct anv_device *device = container_of(image->vk.base.device, struct anv_device, vk); assert(anv_image_is_sparse(image)); for (int i = 0; i < ANV_IMAGE_MEMORY_BINDING_END; i++) { struct anv_image_binding *b = &image->bindings[i]; if (b->sparse_data.size != 0) { assert(b->memory_range.size == b->sparse_data.size); assert(b->address.offset == b->sparse_data.address); anv_free_sparse_bindings(device, &b->sparse_data); } } } static VkResult MUST_CHECK anv_image_init_sparse_bindings(struct anv_image *image, const struct anv_image_create_info *create_info) { struct anv_device *device = container_of(image->vk.base.device, struct anv_device, vk); VkResult result; assert(anv_image_is_sparse(image)); enum anv_bo_alloc_flags alloc_flags = 0; uint64_t explicit_address = 0; if (image->vk.create_flags & VK_IMAGE_CREATE_DESCRIPTOR_BUFFER_CAPTURE_REPLAY_BIT_EXT) { alloc_flags |= ANV_BO_ALLOC_FIXED_ADDRESS; const VkOpaqueCaptureDescriptorDataCreateInfoEXT *opaque_info = vk_find_struct_const(create_info->vk_info->pNext, OPAQUE_CAPTURE_DESCRIPTOR_DATA_CREATE_INFO_EXT); if (opaque_info) explicit_address = *((const uint64_t *)opaque_info->opaqueCaptureDescriptorData); } for (int i = 0; i < ANV_IMAGE_MEMORY_BINDING_END; i++) { struct anv_image_binding *b = &image->bindings[i]; if (b->memory_range.size != 0) { assert(b->sparse_data.size == 0); /* From the spec, Custom Sparse Image Block Shapes section: * "... the size in bytes of the custom sparse image block shape * will be reported in VkMemoryRequirements::alignment." * * ISL should have set this for us, so just assert it here. */ assert(b->memory_range.alignment == ANV_SPARSE_BLOCK_SIZE); assert(b->memory_range.size % ANV_SPARSE_BLOCK_SIZE == 0); result = anv_init_sparse_bindings(device, b->memory_range.size, &b->sparse_data, alloc_flags, explicit_address, &b->address); if (result != VK_SUCCESS) { anv_image_finish_sparse_bindings(image); return result; } } } return VK_SUCCESS; } VkResult anv_image_init(struct anv_device *device, struct anv_image *image, const struct anv_image_create_info *create_info) { const VkImageCreateInfo *pCreateInfo = create_info->vk_info; const struct VkImageDrmFormatModifierExplicitCreateInfoEXT *mod_explicit_info = NULL; const struct isl_drm_modifier_info *isl_mod_info = NULL; VkResult r; vk_image_init(&device->vk, &image->vk, pCreateInfo); image->vk.usage = anv_image_create_usage(pCreateInfo, image->vk.usage); image->vk.stencil_usage = anv_image_create_usage(pCreateInfo, image->vk.stencil_usage); isl_surf_usage_flags_t isl_extra_usage_flags = create_info->isl_extra_usage_flags; if (pCreateInfo->tiling == VK_IMAGE_TILING_DRM_FORMAT_MODIFIER_EXT) { assert(!image->vk.wsi_legacy_scanout); mod_explicit_info = vk_find_struct_const(pCreateInfo->pNext, IMAGE_DRM_FORMAT_MODIFIER_EXPLICIT_CREATE_INFO_EXT); if (mod_explicit_info) { isl_mod_info = isl_drm_modifier_get_info(mod_explicit_info->drmFormatModifier); } else { const struct VkImageDrmFormatModifierListCreateInfoEXT *mod_list_info = vk_find_struct_const(pCreateInfo->pNext, IMAGE_DRM_FORMAT_MODIFIER_LIST_CREATE_INFO_EXT); isl_mod_info = choose_drm_format_mod(device->physical, mod_list_info->drmFormatModifierCount, mod_list_info->pDrmFormatModifiers); } assert(isl_mod_info); assert(image->vk.drm_format_mod == DRM_FORMAT_MOD_INVALID); image->vk.drm_format_mod = isl_mod_info->modifier; if (isl_drm_modifier_needs_display_layout(image->vk.drm_format_mod)) isl_extra_usage_flags |= ISL_SURF_USAGE_DISPLAY_BIT; /* Disable compression on gen12+ if the selected/requested modifier * doesn't support it. Prior to that we can use a private binding for * the aux surface and it should be transparent to users. */ if (device->info->ver >= 12 && !isl_drm_modifier_has_aux(image->vk.drm_format_mod)) { isl_extra_usage_flags |= ISL_SURF_USAGE_DISABLE_AUX_BIT; } } for (int i = 0; i < ANV_IMAGE_MEMORY_BINDING_END; ++i) { image->bindings[i] = (struct anv_image_binding) { .memory_range = { .binding = i }, }; } /* In case of AHardwareBuffer import, we don't know the layout yet */ if (image->vk.external_handle_types & VK_EXTERNAL_MEMORY_HANDLE_TYPE_ANDROID_HARDWARE_BUFFER_BIT_ANDROID) { image->from_ahb = true; #if DETECT_OS_ANDROID image->vk.ahb_format = anv_ahb_format_for_vk_format(image->vk.format); #endif return VK_SUCCESS; } image->n_planes = anv_get_format_planes(image->vk.format); #ifdef VK_USE_PLATFORM_ANDROID_KHR /* In the case of gralloc-backed swap chain image, we don't know the * layout yet. */ if (vk_find_struct_const(pCreateInfo->pNext, IMAGE_SWAPCHAIN_CREATE_INFO_KHR) != NULL) return VK_SUCCESS; #endif image->from_wsi = vk_find_struct_const(pCreateInfo->pNext, WSI_IMAGE_CREATE_INFO_MESA) != NULL; /* The Vulkan 1.2.165 glossary says: * * A disjoint image consists of multiple disjoint planes, and is created * with the VK_IMAGE_CREATE_DISJOINT_BIT bit set. */ image->disjoint = image->n_planes > 1 && (pCreateInfo->flags & VK_IMAGE_CREATE_DISJOINT_BIT); if (anv_is_format_emulated(device->physical, pCreateInfo->format)) { assert(image->n_planes == 1 && vk_format_is_compressed(image->vk.format)); assert(!(image->vk.create_flags & VK_IMAGE_CREATE_SPARSE_RESIDENCY_BIT)); image->emu_plane_format = anv_get_emulation_format(device->physical, image->vk.format); /* for fetching the raw copmressed data and storing the decompressed * data */ image->vk.create_flags |= VK_IMAGE_CREATE_MUTABLE_FORMAT_BIT | VK_IMAGE_CREATE_BLOCK_TEXEL_VIEW_COMPATIBLE_BIT; if (image->vk.image_type == VK_IMAGE_TYPE_3D) image->vk.create_flags |= VK_IMAGE_CREATE_2D_VIEW_COMPATIBLE_BIT_EXT; image->vk.usage |= VK_IMAGE_USAGE_SAMPLED_BIT | VK_IMAGE_USAGE_STORAGE_BIT; /* TODO: enable compression on emulation plane */ isl_extra_usage_flags |= ISL_SURF_USAGE_DISABLE_AUX_BIT; } /* Disable aux if image supports export without modifiers. */ if (image->vk.external_handle_types != 0 && image->vk.tiling != VK_IMAGE_TILING_DRM_FORMAT_MODIFIER_EXT) isl_extra_usage_flags |= ISL_SURF_USAGE_DISABLE_AUX_BIT; if (device->queue_count > 1) { /* Notify ISL that the app may access this image from different engines. * Note that parallel access to the surface will occur regardless of the * sharing mode. */ isl_extra_usage_flags |= ISL_SURF_USAGE_MULTI_ENGINE_PAR_BIT; /* If the resource is created with the CONCURRENT sharing mode, we can't * support compression because we aren't allowed barriers in order to * construct the main surface data with FULL_RESOLVE/PARTIAL_RESOLVE. */ if (image->vk.sharing_mode == VK_SHARING_MODE_CONCURRENT) isl_extra_usage_flags |= ISL_SURF_USAGE_DISABLE_AUX_BIT; } /* Aux is pointless if it will never be used as an attachment. */ if (vk_format_is_depth_or_stencil(image->vk.format) && !(image->vk.usage & VK_IMAGE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT)) isl_extra_usage_flags |= ISL_SURF_USAGE_DISABLE_AUX_BIT; /* TODO: Adjust blorp for multi-LOD HiZ surface on Gen9. */ if (vk_format_has_depth(image->vk.format) && image->vk.mip_levels > 1 && device->info->ver == 9) { anv_perf_warn(VK_LOG_OBJS(&image->vk.base), "Enable multi-LOD HiZ"); isl_extra_usage_flags |= ISL_SURF_USAGE_DISABLE_AUX_BIT; } /* Mark WSI images with the right surf usage. */ if (image->from_wsi) isl_extra_usage_flags |= ISL_SURF_USAGE_DISPLAY_BIT; const isl_tiling_flags_t isl_tiling_flags = choose_isl_tiling_flags(device->info, create_info, isl_mod_info, image->vk.wsi_legacy_scanout); const VkImageFormatListCreateInfo *fmt_list = vk_find_struct_const(pCreateInfo->pNext, IMAGE_FORMAT_LIST_CREATE_INFO); if ((image->vk.aspects & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV) && image->vk.samples == 1) { if (image->n_planes != 1) { /* Multiplanar images seem to hit a sampler bug with CCS and R16G16 * format. (Putting the clear state a page/4096bytes further fixes * the issue). */ isl_extra_usage_flags |= ISL_SURF_USAGE_DISABLE_AUX_BIT; } if ((image->vk.create_flags & VK_IMAGE_CREATE_ALIAS_BIT) && !image->from_wsi) { /* The image may alias a plane of a multiplanar image. Above we ban * CCS on multiplanar images. * * We must also reject aliasing of any image that uses * ANV_IMAGE_MEMORY_BINDING_PRIVATE. Since we're already rejecting * all aliasing here, there's no need to further analyze if the image * needs a private binding. */ isl_extra_usage_flags |= ISL_SURF_USAGE_DISABLE_AUX_BIT; } if (device->info->ver >= 12 && !anv_formats_ccs_e_compatible(device->info, image->vk.create_flags, image->vk.format, image->vk.tiling, image->vk.usage, fmt_list)) { /* CCS_E is the only aux-mode supported for single sampled color * surfaces on gfx12+. If we can't support it, we should configure * the main surface without aux support. */ isl_extra_usage_flags |= ISL_SURF_USAGE_DISABLE_AUX_BIT; } } if (mod_explicit_info) { r = add_all_surfaces_explicit_layout(device, image, fmt_list, mod_explicit_info, isl_tiling_flags, isl_extra_usage_flags); } else { r = add_all_surfaces_implicit_layout(device, image, fmt_list, create_info->stride, isl_tiling_flags, isl_extra_usage_flags); } if (r != VK_SUCCESS) goto fail; if (image->emu_plane_format != VK_FORMAT_UNDEFINED) { const struct intel_device_info *devinfo = device->info; const uint32_t plane = image->n_planes; const struct anv_format_plane plane_format = anv_get_format_plane( devinfo, image->emu_plane_format, 0, image->vk.tiling); isl_surf_usage_flags_t isl_usage = anv_image_choose_isl_surf_usage( device->physical, image->vk.create_flags, image->vk.usage, isl_extra_usage_flags, VK_IMAGE_ASPECT_COLOR_BIT, image->vk.compr_flags); r = add_primary_surface(device, image, plane, plane_format, ANV_OFFSET_IMPLICIT, 0, isl_tiling_flags, isl_usage); if (r != VK_SUCCESS) goto fail; } const VkVideoProfileListInfoKHR *video_profile = vk_find_struct_const(pCreateInfo->pNext, VIDEO_PROFILE_LIST_INFO_KHR); if (video_profile) { r = add_video_buffers(device, image, video_profile); if (r != VK_SUCCESS) goto fail; } if (!create_info->no_private_binding_alloc) { r = alloc_private_binding(device, image, pCreateInfo); if (r != VK_SUCCESS) goto fail; } check_memory_bindings(device, image); r = check_drm_format_mod(device, image); if (r != VK_SUCCESS) goto fail; /* Once we have all the bindings, determine whether we can do non 0 fast * clears for each plane. */ for (uint32_t p = 0; p < image->n_planes; p++) { image->planes[p].can_non_zero_fast_clear = can_fast_clear_with_non_zero_color(device->info, image, p, fmt_list); } if (anv_image_is_sparse(image)) { r = anv_image_init_sparse_bindings(image, create_info); if (r != VK_SUCCESS) goto fail; } return VK_SUCCESS; fail: vk_image_finish(&image->vk); return r; } void anv_image_finish(struct anv_image *image) { struct anv_device *device = container_of(image->vk.base.device, struct anv_device, vk); if (anv_image_is_sparse(image)) anv_image_finish_sparse_bindings(image); /* Unmap a CCS so that if the bound region of the image is rebound to * another image, the AUX tables will be cleared to allow for a new * mapping. */ for (int p = 0; p < image->n_planes; ++p) { if (image->planes[p].aux_tt.mapped) { intel_aux_map_del_mapping(device->aux_map_ctx, image->planes[p].aux_tt.addr, image->planes[p].aux_tt.size); } } if (image->from_gralloc) { assert(!image->disjoint); assert(image->n_planes == 1); assert(image->planes[0].primary_surface.memory_range.binding == ANV_IMAGE_MEMORY_BINDING_MAIN); assert(image->bindings[ANV_IMAGE_MEMORY_BINDING_MAIN].address.bo != NULL); anv_device_release_bo(device, image->bindings[ANV_IMAGE_MEMORY_BINDING_MAIN].address.bo); } struct anv_bo *private_bo = image->bindings[ANV_IMAGE_MEMORY_BINDING_PRIVATE].address.bo; if (private_bo) { pthread_mutex_lock(&device->mutex); list_del(&image->link); pthread_mutex_unlock(&device->mutex); anv_device_release_bo(device, private_bo); } vk_image_finish(&image->vk); } static struct anv_image * anv_swapchain_get_image(VkSwapchainKHR swapchain, uint32_t index) { VkImage image = wsi_common_get_image(swapchain, index); return anv_image_from_handle(image); } static VkResult anv_image_init_from_create_info(struct anv_device *device, struct anv_image *image, const VkImageCreateInfo *pCreateInfo, bool no_private_binding_alloc) { if (pCreateInfo->flags & VK_IMAGE_CREATE_SPARSE_RESIDENCY_BIT) { VkResult result = anv_sparse_image_check_support(device->physical, pCreateInfo->flags, pCreateInfo->tiling, pCreateInfo->samples, pCreateInfo->imageType, pCreateInfo->format); if (result != VK_SUCCESS) return result; } const VkNativeBufferANDROID *gralloc_info = vk_find_struct_const(pCreateInfo->pNext, NATIVE_BUFFER_ANDROID); if (gralloc_info) return anv_image_init_from_gralloc(device, image, pCreateInfo, gralloc_info); struct anv_image_create_info create_info = { .vk_info = pCreateInfo, .no_private_binding_alloc = no_private_binding_alloc, }; return anv_image_init(device, image, &create_info); } VkResult anv_CreateImage( VkDevice _device, const VkImageCreateInfo* pCreateInfo, const VkAllocationCallbacks* pAllocator, VkImage* pImage) { ANV_FROM_HANDLE(anv_device, device, _device); if ((device->physical->sparse_type == ANV_SPARSE_TYPE_NOT_SUPPORTED) && INTEL_DEBUG(DEBUG_SPARSE) && pCreateInfo->flags & (VK_IMAGE_CREATE_SPARSE_BINDING_BIT | VK_IMAGE_CREATE_SPARSE_RESIDENCY_BIT | VK_IMAGE_CREATE_SPARSE_ALIASED_BIT)) fprintf(stderr, "=== %s %s:%d flags:0x%08x\n", __func__, __FILE__, __LINE__, pCreateInfo->flags); #ifndef VK_USE_PLATFORM_ANDROID_KHR /* Skip the WSI common swapchain creation here on Android. Similar to ahw, * this case is handled by a partial image init and then resolved when the * image is bound and gralloc info is passed. */ const VkImageSwapchainCreateInfoKHR *swapchain_info = vk_find_struct_const(pCreateInfo->pNext, IMAGE_SWAPCHAIN_CREATE_INFO_KHR); if (swapchain_info && swapchain_info->swapchain != VK_NULL_HANDLE) { return wsi_common_create_swapchain_image(&device->physical->wsi_device, pCreateInfo, swapchain_info->swapchain, pImage); } #endif struct anv_image *image = vk_object_zalloc(&device->vk, pAllocator, sizeof(*image), VK_OBJECT_TYPE_IMAGE); if (!image) return vk_error(device, VK_ERROR_OUT_OF_HOST_MEMORY); VkResult result = anv_image_init_from_create_info(device, image, pCreateInfo, false); if (result != VK_SUCCESS) { vk_object_free(&device->vk, pAllocator, image); return result; } ANV_RMV(image_create, device, false, image); *pImage = anv_image_to_handle(image); return result; } void anv_DestroyImage(VkDevice _device, VkImage _image, const VkAllocationCallbacks *pAllocator) { ANV_FROM_HANDLE(anv_device, device, _device); ANV_FROM_HANDLE(anv_image, image, _image); if (!image) return; ANV_RMV(image_destroy, device, image); assert(&device->vk == image->vk.base.device); anv_image_finish(image); vk_free2(&device->vk.alloc, pAllocator, image); } /* We are binding AHardwareBuffer. Get a description, resolve the * format and prepare anv_image properly. */ static void resolve_ahw_image(struct anv_device *device, struct anv_image *image, struct anv_device_memory *mem) { #if DETECT_OS_ANDROID && ANDROID_API_LEVEL >= 26 assert(mem->vk.ahardware_buffer); AHardwareBuffer_Desc desc; AHardwareBuffer_describe(mem->vk.ahardware_buffer, &desc); VkResult result; /* Check tiling. */ enum isl_tiling tiling; const native_handle_t *handle = AHardwareBuffer_getNativeHandle(mem->vk.ahardware_buffer); struct u_gralloc_buffer_handle gr_handle = { .handle = handle, .hal_format = desc.format, .pixel_stride = desc.stride, }; result = anv_android_get_tiling(device, &gr_handle, &tiling); assert(result == VK_SUCCESS); isl_tiling_flags_t isl_tiling_flags = (1u << tiling); /* Check format. */ VkFormat vk_format = vk_format_from_android(desc.format, desc.usage); assert(vk_format != VK_FORMAT_UNDEFINED); /* Now we are able to fill anv_image fields properly and create * isl_surface for it. */ vk_image_set_format(&image->vk, vk_format); image->n_planes = anv_get_format_planes(image->vk.format); result = add_all_surfaces_implicit_layout(device, image, NULL, desc.stride, isl_tiling_flags, ISL_SURF_USAGE_DISABLE_AUX_BIT); assert(result == VK_SUCCESS); #endif } static void resolve_anb_image(struct anv_device *device, struct anv_image *image, const VkNativeBufferANDROID *gralloc_info) { #if DETECT_OS_ANDROID && ANDROID_API_LEVEL >= 29 VkResult result; /* Check tiling. */ enum isl_tiling tiling; struct u_gralloc_buffer_handle gr_handle = { .handle = gralloc_info->handle, .hal_format = gralloc_info->format, .pixel_stride = gralloc_info->stride, }; result = anv_android_get_tiling(device, &gr_handle, &tiling); assert(result == VK_SUCCESS); isl_tiling_flags_t isl_tiling_flags = (1u << tiling); /* Now we are able to fill anv_image fields properly and create * isl_surface for it. */ result = add_all_surfaces_implicit_layout(device, image, NULL, gralloc_info->stride, isl_tiling_flags, ISL_SURF_USAGE_DISABLE_AUX_BIT); assert(result == VK_SUCCESS); #endif } static bool anv_image_is_pat_compressible(struct anv_device *device, struct anv_image *image) { if (INTEL_DEBUG(DEBUG_NO_CCS)) return false; if (device->info->ver < 20) return false; /* * Be aware that Vulkan spec requires that Images with some properties * always returns the same memory types, so this function also needs to * have the same return for the same set of properties. * * For images created with a color format, the memoryTypeBits member is * identical for all VkImage objects created with the same combination * of values for the tiling member, the * VK_IMAGE_CREATE_SPARSE_BINDING_BIT bit of the flags member, the * VK_IMAGE_CREATE_SPLIT_INSTANCE_BIND_REGIONS_BIT bit of the flags * member, handleTypes member of VkExternalMemoryImageCreateInfo, and * the VK_IMAGE_USAGE_TRANSIENT_ATTACHMENT_BIT of the usage member in * the VkImageCreateInfo structure passed to vkCreateImage. * * For images created with a depth/stencil format, the memoryTypeBits * member is identical for all VkImage objects created with the same * combination of values for the format member, the tiling member, the * VK_IMAGE_CREATE_SPARSE_BINDING_BIT bit of the flags member, the * VK_IMAGE_CREATE_SPLIT_INSTANCE_BIND_REGIONS_BIT bit of the flags * member, handleTypes member of VkExternalMemoryImageCreateInfo, and * the VK_IMAGE_USAGE_TRANSIENT_ATTACHMENT_BIT of the usage member in * the VkImageCreateInfo structure passed to vkCreateImage. */ /* There are no compression-enabled modifiers on Xe2, and all legacy * modifiers are not defined with compression. We simply disable * compression on all modifiers. * * We disable this in anv_AllocateMemory() as well. */ if (image->vk.tiling == VK_IMAGE_TILING_DRM_FORMAT_MODIFIER_EXT) return false; return true; } void anv_image_get_memory_requirements(struct anv_device *device, struct anv_image *image, VkImageAspectFlags aspects, VkMemoryRequirements2 *pMemoryRequirements) { /* The Vulkan spec (git aaed022) says: * * memoryTypeBits is a bitfield and contains one bit set for every * supported memory type for the resource. The bit `1<vk.create_flags & VK_IMAGE_CREATE_PROTECTED_BIT) { memory_types = device->physical->memory.protected_mem_types; } else { memory_types = device->physical->memory.default_buffer_mem_types; if (anv_image_is_pat_compressible(device, image)) memory_types |= device->physical->memory.compressed_mem_types; } vk_foreach_struct(ext, pMemoryRequirements->pNext) { switch (ext->sType) { case VK_STRUCTURE_TYPE_MEMORY_DEDICATED_REQUIREMENTS: { VkMemoryDedicatedRequirements *requirements = (void *)ext; if (image->vk.wsi_legacy_scanout || image->from_ahb || (isl_drm_modifier_has_aux(image->vk.drm_format_mod) && anv_image_uses_aux_map(device, image))) { /* If we need to set the tiling for external consumers or the * modifier involves AUX tables, we need a dedicated allocation. * * See also anv_AllocateMemory. */ requirements->prefersDedicatedAllocation = true; requirements->requiresDedicatedAllocation = true; } else { requirements->prefersDedicatedAllocation = false; requirements->requiresDedicatedAllocation = false; } break; } default: vk_debug_ignored_stype(ext->sType); break; } } /* If the image is disjoint, then we must return the memory requirements for * the single plane specified in VkImagePlaneMemoryRequirementsInfo. If * non-disjoint, then exactly one set of memory requirements exists for the * whole image. * * This is enforced by the Valid Usage for VkImageMemoryRequirementsInfo2, * which requires that the app provide VkImagePlaneMemoryRequirementsInfo if * and only if the image is disjoint (that is, multi-planar format and * VK_IMAGE_CREATE_DISJOINT_BIT). */ const struct anv_image_binding *binding; if (image->disjoint) { assert(util_bitcount(aspects) == 1); assert(aspects & image->vk.aspects); binding = anv_image_aspect_to_binding(image, aspects); } else { assert(aspects == image->vk.aspects); binding = &image->bindings[ANV_IMAGE_MEMORY_BINDING_MAIN]; } pMemoryRequirements->memoryRequirements = (VkMemoryRequirements) { .size = binding->memory_range.size, .alignment = binding->memory_range.alignment, .memoryTypeBits = memory_types, }; } void anv_GetImageMemoryRequirements2( VkDevice _device, const VkImageMemoryRequirementsInfo2* pInfo, VkMemoryRequirements2* pMemoryRequirements) { ANV_FROM_HANDLE(anv_device, device, _device); ANV_FROM_HANDLE(anv_image, image, pInfo->image); VkImageAspectFlags aspects = image->vk.aspects; vk_foreach_struct_const(ext, pInfo->pNext) { switch (ext->sType) { case VK_STRUCTURE_TYPE_IMAGE_PLANE_MEMORY_REQUIREMENTS_INFO: { assert(image->disjoint); const VkImagePlaneMemoryRequirementsInfo *plane_reqs = (const VkImagePlaneMemoryRequirementsInfo *) ext; aspects = plane_reqs->planeAspect; break; } default: vk_debug_ignored_stype(ext->sType); break; } } anv_image_get_memory_requirements(device, image, aspects, pMemoryRequirements); } void anv_GetDeviceImageMemoryRequirements( VkDevice _device, const VkDeviceImageMemoryRequirements* pInfo, VkMemoryRequirements2* pMemoryRequirements) { ANV_FROM_HANDLE(anv_device, device, _device); struct anv_image image = { 0 }; if ((device->physical->sparse_type == ANV_SPARSE_TYPE_NOT_SUPPORTED) && INTEL_DEBUG(DEBUG_SPARSE) && pInfo->pCreateInfo->flags & (VK_IMAGE_CREATE_SPARSE_BINDING_BIT | VK_IMAGE_CREATE_SPARSE_RESIDENCY_BIT | VK_IMAGE_CREATE_SPARSE_ALIASED_BIT)) fprintf(stderr, "=== %s %s:%d flags:0x%08x\n", __func__, __FILE__, __LINE__, pInfo->pCreateInfo->flags); ASSERTED VkResult result = anv_image_init_from_create_info(device, &image, pInfo->pCreateInfo, true); assert(result == VK_SUCCESS); VkImageAspectFlags aspects = image.disjoint ? pInfo->planeAspect : image.vk.aspects; anv_image_get_memory_requirements(device, &image, aspects, pMemoryRequirements); anv_image_finish(&image); } static void anv_image_get_sparse_memory_requirements( struct anv_device *device, struct anv_image *image, VkImageAspectFlags aspects, uint32_t *pSparseMemoryRequirementCount, VkSparseImageMemoryRequirements2 *pSparseMemoryRequirements) { VK_OUTARRAY_MAKE_TYPED(VkSparseImageMemoryRequirements2, reqs, pSparseMemoryRequirements, pSparseMemoryRequirementCount); /* From the spec: * "The sparse image must have been created using the * VK_IMAGE_CREATE_SPARSE_RESIDENCY_BIT flag to retrieve valid sparse * image memory requirements." */ if (!(image->vk.create_flags & VK_IMAGE_CREATE_SPARSE_RESIDENCY_BIT)) return; VkSparseImageMemoryRequirements ds_mem_reqs = {}; VkSparseImageMemoryRequirements2 *ds_reqs_ptr = NULL; u_foreach_bit(b, aspects) { VkImageAspectFlagBits aspect = 1 << b; const uint32_t plane = anv_image_aspect_to_plane(image, aspect); struct isl_surf *surf = &image->planes[plane].primary_surface.isl; VkSparseImageFormatProperties format_props = anv_sparse_calc_image_format_properties(device->physical, aspect, image->vk.image_type, image->vk.samples, surf); uint32_t miptail_first_lod; VkDeviceSize miptail_size, miptail_offset, miptail_stride; anv_sparse_calc_miptail_properties(device, image, aspect, &miptail_first_lod, &miptail_size, &miptail_offset, &miptail_stride); VkSparseImageMemoryRequirements mem_reqs = { .formatProperties = format_props, .imageMipTailFirstLod = miptail_first_lod, .imageMipTailSize = miptail_size, .imageMipTailOffset = miptail_offset, .imageMipTailStride = miptail_stride, }; /* If both depth and stencil are the same, unify them if possible. */ if (aspect & (VK_IMAGE_ASPECT_DEPTH_BIT | VK_IMAGE_ASPECT_STENCIL_BIT)) { if (!ds_reqs_ptr) { ds_mem_reqs = mem_reqs; } else if (ds_mem_reqs.formatProperties.imageGranularity.width == mem_reqs.formatProperties.imageGranularity.width && ds_mem_reqs.formatProperties.imageGranularity.height == mem_reqs.formatProperties.imageGranularity.height && ds_mem_reqs.formatProperties.imageGranularity.depth == mem_reqs.formatProperties.imageGranularity.depth && ds_mem_reqs.imageMipTailFirstLod == mem_reqs.imageMipTailFirstLod && ds_mem_reqs.imageMipTailSize == mem_reqs.imageMipTailSize && ds_mem_reqs.imageMipTailOffset == mem_reqs.imageMipTailOffset && ds_mem_reqs.imageMipTailStride == mem_reqs.imageMipTailStride) { ds_reqs_ptr->memoryRequirements.formatProperties.aspectMask |= aspect; continue; } } vk_outarray_append_typed(VkSparseImageMemoryRequirements2, &reqs, r) { r->memoryRequirements = mem_reqs; if (aspect & (VK_IMAGE_ASPECT_DEPTH_BIT | VK_IMAGE_ASPECT_STENCIL_BIT)) ds_reqs_ptr = r; } } } void anv_GetImageSparseMemoryRequirements2( VkDevice _device, const VkImageSparseMemoryRequirementsInfo2* pInfo, uint32_t* pSparseMemoryRequirementCount, VkSparseImageMemoryRequirements2* pSparseMemoryRequirements) { ANV_FROM_HANDLE(anv_device, device, _device); ANV_FROM_HANDLE(anv_image, image, pInfo->image); if (!anv_sparse_residency_is_enabled(device)) { if ((device->physical->sparse_type == ANV_SPARSE_TYPE_NOT_SUPPORTED) && INTEL_DEBUG(DEBUG_SPARSE)) fprintf(stderr, "=== [%s:%d] [%s]\n", __FILE__, __LINE__, __func__); *pSparseMemoryRequirementCount = 0; return; } anv_image_get_sparse_memory_requirements(device, image, image->vk.aspects, pSparseMemoryRequirementCount, pSparseMemoryRequirements); } void anv_GetDeviceImageSparseMemoryRequirements( VkDevice _device, const VkDeviceImageMemoryRequirements* pInfo, uint32_t* pSparseMemoryRequirementCount, VkSparseImageMemoryRequirements2* pSparseMemoryRequirements) { ANV_FROM_HANDLE(anv_device, device, _device); struct anv_image image = { 0 }; if (!anv_sparse_residency_is_enabled(device)) { if ((device->physical->sparse_type == ANV_SPARSE_TYPE_NOT_SUPPORTED) && INTEL_DEBUG(DEBUG_SPARSE)) fprintf(stderr, "=== [%s:%d] [%s]\n", __FILE__, __LINE__, __func__); *pSparseMemoryRequirementCount = 0; return; } /* This function is similar to anv_GetDeviceImageMemoryRequirements, in * which it actually creates an image, gets the properties and then * destroys the image. * * We could one day refactor things to allow us to gather the properties * without having to actually create the image, maybe by reworking ISL to * separate creation from parameter computing. */ VkResult result = anv_image_init_from_create_info(device, &image, pInfo->pCreateInfo, true /* no_private_binding_alloc */); if (result != VK_SUCCESS) { *pSparseMemoryRequirementCount = 0; return; } /* The spec says: * "planeAspect is a VkImageAspectFlagBits value specifying the aspect * corresponding to the image plane to query. This parameter is ignored * unless pCreateInfo::tiling is VK_IMAGE_TILING_DRM_FORMAT_MODIFIER_EXT, * or pCreateInfo::flags has VK_IMAGE_CREATE_DISJOINT_BIT set." */ VkImageAspectFlags aspects = (pInfo->pCreateInfo->flags & VK_IMAGE_CREATE_DISJOINT_BIT) || (pInfo->pCreateInfo->tiling == VK_IMAGE_TILING_DRM_FORMAT_MODIFIER_EXT) ? pInfo->planeAspect : image.vk.aspects; anv_image_get_sparse_memory_requirements(device, &image, aspects, pSparseMemoryRequirementCount, pSparseMemoryRequirements); anv_image_finish(&image); } static bool anv_image_map_aux_tt(struct anv_device *device, struct anv_image *image, uint32_t plane) { const struct anv_address main_addr = anv_image_address( image, &image->planes[plane].primary_surface.memory_range); struct anv_bo *bo = main_addr.bo; assert(bo != NULL); /* If the additional memory padding was added at the end of the BO for CCS * data, map this region at the granularity of the main/CCS pages. * * Otherwise the image should have additional CCS data at the computed * offset. */ if (device->physical->alloc_aux_tt_mem && (bo->alloc_flags & ANV_BO_ALLOC_AUX_CCS)) { uint64_t main_aux_alignment = intel_aux_map_get_alignment(device->aux_map_ctx); assert(bo->offset % main_aux_alignment == 0); const struct anv_address start_addr = (struct anv_address) { .bo = bo, .offset = ROUND_DOWN_TO(main_addr.offset, main_aux_alignment), }; const struct anv_address aux_addr = (struct anv_address) { .bo = bo, .offset = bo->ccs_offset + intel_aux_main_to_aux_offset(device->aux_map_ctx, start_addr.offset), }; const struct isl_surf *surf = &image->planes[plane].primary_surface.isl; const uint64_t format_bits = intel_aux_map_format_bits_for_isl_surf(surf); /* Make sure to have the mapping cover the entire image from the aux * aligned start. */ const uint64_t main_size = align( (main_addr.offset - start_addr.offset) + surf->size_B, main_aux_alignment); if (intel_aux_map_add_mapping(device->aux_map_ctx, anv_address_physical(start_addr), anv_address_physical(aux_addr), main_size, format_bits)) { image->planes[plane].aux_tt.mapped = true; image->planes[plane].aux_tt.addr = anv_address_physical(start_addr); image->planes[plane].aux_tt.size = main_size; return true; } } else { if (anv_address_allows_aux_map(device, main_addr)) { const struct anv_address aux_addr = anv_image_address(image, &image->planes[plane].compr_ctrl_memory_range); const struct isl_surf *surf = &image->planes[plane].primary_surface.isl; const uint64_t format_bits = intel_aux_map_format_bits_for_isl_surf(surf); if (intel_aux_map_add_mapping(device->aux_map_ctx, anv_address_physical(main_addr), anv_address_physical(aux_addr), surf->size_B, format_bits)) { image->planes[plane].aux_tt.mapped = true; image->planes[plane].aux_tt.addr = anv_address_physical(main_addr); image->planes[plane].aux_tt.size = surf->size_B; return true; } } } return false; } static VkResult anv_bind_image_memory(struct anv_device *device, const VkBindImageMemoryInfo *bind_info) { ANV_FROM_HANDLE(anv_device_memory, mem, bind_info->memory); ANV_FROM_HANDLE(anv_image, image, bind_info->image); bool did_bind = false; const VkBindMemoryStatusKHR *bind_status = vk_find_struct_const(bind_info->pNext, BIND_MEMORY_STATUS_KHR); assert(!anv_image_is_sparse(image)); /* Resolve will alter the image's aspects, do this first. */ if (mem && mem->vk.ahardware_buffer) resolve_ahw_image(device, image, mem); vk_foreach_struct_const(s, bind_info->pNext) { switch (s->sType) { case VK_STRUCTURE_TYPE_BIND_IMAGE_PLANE_MEMORY_INFO: { const VkBindImagePlaneMemoryInfo *plane_info = (const VkBindImagePlaneMemoryInfo *) s; /* Workaround for possible spec bug. * * Unlike VkImagePlaneMemoryRequirementsInfo, which requires that * the image be disjoint (that is, multi-planar format and * VK_IMAGE_CREATE_DISJOINT_BIT), VkBindImagePlaneMemoryInfo allows * the image to be non-disjoint and requires only that the image * have the DISJOINT flag. In this case, regardless of the value of * VkImagePlaneMemoryRequirementsInfo::planeAspect, the behavior is * the same as if VkImagePlaneMemoryRequirementsInfo were omitted. */ if (!image->disjoint) break; struct anv_image_binding *binding = anv_image_aspect_to_binding(image, plane_info->planeAspect); binding->address = (struct anv_address) { .bo = mem->bo, .offset = bind_info->memoryOffset, }; ANV_RMV(image_bind, device, image, binding - image->bindings); did_bind = true; break; } case VK_STRUCTURE_TYPE_BIND_IMAGE_MEMORY_SWAPCHAIN_INFO_KHR: { /* Ignore this struct on Android, we cannot access swapchain * structures there. */ #ifndef VK_USE_PLATFORM_ANDROID_KHR const VkBindImageMemorySwapchainInfoKHR *swapchain_info = (const VkBindImageMemorySwapchainInfoKHR *) s; struct anv_image *swapchain_image = anv_swapchain_get_image(swapchain_info->swapchain, swapchain_info->imageIndex); assert(swapchain_image); assert(image->vk.aspects == swapchain_image->vk.aspects); assert(mem == NULL); for (int j = 0; j < ARRAY_SIZE(image->bindings); ++j) { assert(memory_ranges_equal(image->bindings[j].memory_range, swapchain_image->bindings[j].memory_range)); image->bindings[j].address = swapchain_image->bindings[j].address; } /* We must bump the private binding's bo's refcount because, unlike the other * bindings, its lifetime is not application-managed. */ struct anv_bo *private_bo = image->bindings[ANV_IMAGE_MEMORY_BINDING_PRIVATE].address.bo; if (private_bo) anv_bo_ref(private_bo); did_bind = true; #endif break; } #pragma GCC diagnostic push #pragma GCC diagnostic ignored "-Wswitch" case VK_STRUCTURE_TYPE_NATIVE_BUFFER_ANDROID: { const VkNativeBufferANDROID *gralloc_info = (const VkNativeBufferANDROID *)s; VkResult result = anv_image_bind_from_gralloc(device, image, gralloc_info); if (result != VK_SUCCESS) return result; resolve_anb_image(device, image, gralloc_info); did_bind = true; break; } #pragma GCC diagnostic pop default: vk_debug_ignored_stype(s->sType); break; } } if (!did_bind) { assert(!image->disjoint); image->bindings[ANV_IMAGE_MEMORY_BINDING_MAIN].address = (struct anv_address) { .bo = mem->bo, .offset = bind_info->memoryOffset, }; ANV_RMV(image_bind, device, image, ANV_IMAGE_MEMORY_BINDING_MAIN); did_bind = true; } /* Now that we have the BO, finalize CCS setup. */ for (int p = 0; p < image->n_planes; ++p) { enum anv_image_memory_binding binding = image->planes[p].primary_surface.memory_range.binding; const struct anv_bo *bo = image->bindings[binding].address.bo; if (!bo || !isl_aux_usage_has_ccs(image->planes[p].aux_usage)) continue; /* Do nothing if flat CCS requirements are satisfied. * * Also, assume that imported BOs with a modifier including * CCS live only in local memory. Otherwise the exporter should * have failed the creation of the BO. */ if (device->info->has_flat_ccs && (anv_bo_is_vram_only(bo) || (bo->alloc_flags & ANV_BO_ALLOC_IMPORTED))) continue; /* If the AUX-TT mapping succeeds, there is nothing else to do. */ if (device->info->has_aux_map && anv_image_map_aux_tt(device, image, p)) continue; /* Do nothing except for gfx12. There are no special requirements. */ if (device->info->ver != 12) continue; /* The plane's BO cannot support CCS, disable compression on it. */ assert(!isl_drm_modifier_has_aux(image->vk.drm_format_mod)); anv_perf_warn(VK_LOG_OBJS(&image->vk.base), "BO lacks CCS support. Disabling the CCS aux usage."); if (image->planes[p].aux_surface.memory_range.size > 0) { assert(image->planes[p].aux_usage == ISL_AUX_USAGE_HIZ_CCS || image->planes[p].aux_usage == ISL_AUX_USAGE_HIZ_CCS_WT); image->planes[p].aux_usage = ISL_AUX_USAGE_HIZ; } else { assert(image->planes[p].aux_usage == ISL_AUX_USAGE_CCS_E || image->planes[p].aux_usage == ISL_AUX_USAGE_FCV_CCS_E || image->planes[p].aux_usage == ISL_AUX_USAGE_STC_CCS); image->planes[p].aux_usage = ISL_AUX_USAGE_NONE; } } if (bind_status) *bind_status->pResult = VK_SUCCESS; return VK_SUCCESS; } VkResult anv_BindImageMemory2( VkDevice _device, uint32_t bindInfoCount, const VkBindImageMemoryInfo* pBindInfos) { ANV_FROM_HANDLE(anv_device, device, _device); VkResult result = VK_SUCCESS; for (uint32_t i = 0; i < bindInfoCount; i++) { VkResult res = anv_bind_image_memory(device, &pBindInfos[i]); if (result == VK_SUCCESS && res != VK_SUCCESS) result = res; } return result; } static void anv_get_image_subresource_layout(const struct anv_image *image, const VkImageSubresource2KHR *subresource, VkSubresourceLayout2KHR *layout) { const struct anv_image_memory_range *mem_range; assert(__builtin_popcount(subresource->imageSubresource.aspectMask) == 1); /* The Vulkan spec requires that aspectMask be * VK_IMAGE_ASPECT_MEMORY_PLANE_i_BIT_EXT if tiling is * VK_IMAGE_TILING_DRM_FORMAT_MODIFIER_EXT. * * For swapchain images, the Vulkan spec says that every swapchain image has * tiling VK_IMAGE_TILING_OPTIMAL, but we may choose * VK_IMAGE_TILING_DRM_FORMAT_MODIFIER_EXT internally. Vulkan doesn't allow * vkGetImageSubresourceLayout for images with VK_IMAGE_TILING_OPTIMAL, * therefore it's invalid for the application to call this on a swapchain * image. The WSI code, however, knows when it has internally created * a swapchain image with VK_IMAGE_TILING_DRM_FORMAT_MODIFIER_EXT, * so it _should_ correctly use VK_IMAGE_ASPECT_MEMORY_PLANE_* in that case. * But it incorrectly uses VK_IMAGE_ASPECT_PLANE_*, so we have a temporary * workaround. * * https://gitlab.freedesktop.org/mesa/mesa/-/issues/10176 */ if (image->vk.tiling == VK_IMAGE_TILING_DRM_FORMAT_MODIFIER_EXT) { /* TODO(chadv): Drop this workaround when WSI gets fixed. */ uint32_t mem_plane; switch (subresource->imageSubresource.aspectMask) { case VK_IMAGE_ASPECT_MEMORY_PLANE_0_BIT_EXT: case VK_IMAGE_ASPECT_PLANE_0_BIT: mem_plane = 0; break; case VK_IMAGE_ASPECT_MEMORY_PLANE_1_BIT_EXT: case VK_IMAGE_ASPECT_PLANE_1_BIT: mem_plane = 1; break; case VK_IMAGE_ASPECT_MEMORY_PLANE_2_BIT_EXT: case VK_IMAGE_ASPECT_PLANE_2_BIT: mem_plane = 2; break; default: unreachable("bad VkImageAspectFlags"); } uint32_t row_pitch_B; if (isl_drm_modifier_plane_is_clear_color(image->vk.drm_format_mod, mem_plane)) { assert(image->n_planes == 1); mem_range = &image->planes[0].fast_clear_memory_range; row_pitch_B = ISL_DRM_CC_PLANE_PITCH_B; } else if (mem_plane == 1 && image->planes[0].compr_ctrl_memory_range.size > 0) { assert(image->n_planes == 1); assert(isl_drm_modifier_has_aux(image->vk.drm_format_mod)); mem_range = &image->planes[0].compr_ctrl_memory_range; row_pitch_B = image->planes[0].primary_surface.isl.row_pitch_B / INTEL_AUX_MAP_MAIN_PITCH_SCALEDOWN; } else if (mem_plane == 1 && image->planes[0].aux_surface.memory_range.size > 0) { assert(image->n_planes == 1); assert(image->vk.drm_format_mod == I915_FORMAT_MOD_Y_TILED_CCS); mem_range = &image->planes[0].aux_surface.memory_range; row_pitch_B = image->planes[0].aux_surface.isl.row_pitch_B; } else { assert(mem_plane < image->n_planes); mem_range = &image->planes[mem_plane].primary_surface.memory_range; row_pitch_B = image->planes[mem_plane].primary_surface.isl.row_pitch_B; } /* If the memory binding differs between the primary plane and the * specified memory plane, the returned offset will be incorrect. */ assert(mem_range->binding == image->planes[0].primary_surface.memory_range.binding); layout->subresourceLayout.offset = mem_range->offset; layout->subresourceLayout.size = mem_range->size; layout->subresourceLayout.rowPitch = row_pitch_B; /* The spec for VkSubresourceLayout says, * * The value of arrayPitch is undefined for images that were not * created as arrays. depthPitch is defined only for 3D images. * * We are working with a non-arrayed 2D image. So, we leave the * remaining pitches undefined. */ assert(image->vk.image_type == VK_IMAGE_TYPE_2D); assert(image->vk.array_layers == 1); } else { const uint32_t plane = anv_image_aspect_to_plane(image, subresource->imageSubresource.aspectMask); const struct isl_surf *isl_surf = &image->planes[plane].primary_surface.isl; mem_range = &image->planes[plane].primary_surface.memory_range; layout->subresourceLayout.offset = mem_range->offset; layout->subresourceLayout.rowPitch = isl_surf->row_pitch_B; layout->subresourceLayout.depthPitch = isl_surf_get_array_pitch(isl_surf); layout->subresourceLayout.arrayPitch = isl_surf_get_array_pitch(isl_surf); const uint32_t level = subresource->imageSubresource.mipLevel; const uint32_t layer = subresource->imageSubresource.arrayLayer; if (level > 0 || layer > 0) { assert(isl_surf->tiling == ISL_TILING_LINEAR); uint64_t offset_B; isl_surf_get_image_offset_B_tile_sa(isl_surf, level, layer, 0 /* logical_z_offset_px */, &offset_B, NULL, NULL); layout->subresourceLayout.offset += offset_B; layout->subresourceLayout.size = layout->subresourceLayout.rowPitch * u_minify(image->vk.extent.height, level) * image->vk.extent.depth; } else { layout->subresourceLayout.size = mem_range->size; } } VkImageCompressionPropertiesEXT *comp_props = vk_find_struct(layout->pNext, IMAGE_COMPRESSION_PROPERTIES_EXT); if (comp_props) { comp_props->imageCompressionFixedRateFlags = VK_IMAGE_COMPRESSION_FIXED_RATE_NONE_EXT; comp_props->imageCompressionFlags = VK_IMAGE_COMPRESSION_DISABLED_EXT; for (uint32_t p = 0; p < image->n_planes; p++) { if (image->planes[p].aux_usage != ISL_AUX_USAGE_NONE) { comp_props->imageCompressionFlags = VK_IMAGE_COMPRESSION_DEFAULT_EXT; break; } } } } void anv_GetDeviceImageSubresourceLayoutKHR( VkDevice _device, const VkDeviceImageSubresourceInfoKHR* pInfo, VkSubresourceLayout2KHR* pLayout) { ANV_FROM_HANDLE(anv_device, device, _device); struct anv_image image = { 0 }; if (anv_image_init_from_create_info(device, &image, pInfo->pCreateInfo, true) != VK_SUCCESS) { pLayout->subresourceLayout = (VkSubresourceLayout) { 0, }; return; } anv_get_image_subresource_layout(&image, pInfo->pSubresource, pLayout); } void anv_GetImageSubresourceLayout2KHR( VkDevice device, VkImage _image, const VkImageSubresource2KHR* pSubresource, VkSubresourceLayout2KHR* pLayout) { ANV_FROM_HANDLE(anv_image, image, _image); anv_get_image_subresource_layout(image, pSubresource, pLayout); } static VkImageUsageFlags anv_image_flags_filter_for_queue(VkImageUsageFlags usages, VkQueueFlagBits queue_flags) { /* Eliminate graphics usages if the queue is not graphics capable */ if (!(queue_flags & VK_QUEUE_GRAPHICS_BIT)) { usages &= ~(VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT | VK_IMAGE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT | VK_IMAGE_USAGE_TRANSIENT_ATTACHMENT_BIT | VK_IMAGE_USAGE_INPUT_ATTACHMENT_BIT | VK_IMAGE_USAGE_FRAGMENT_DENSITY_MAP_BIT_EXT | VK_IMAGE_USAGE_FRAGMENT_SHADING_RATE_ATTACHMENT_BIT_KHR | VK_IMAGE_USAGE_ATTACHMENT_FEEDBACK_LOOP_BIT_EXT); } /* Eliminate sampling & storage usages if the queue is neither graphics nor * compute capable */ if (!(queue_flags & (VK_QUEUE_GRAPHICS_BIT | VK_QUEUE_COMPUTE_BIT))) { usages &= ~(VK_IMAGE_USAGE_SAMPLED_BIT | VK_IMAGE_USAGE_STORAGE_BIT); } /* Eliminate transfer usages if the queue is neither transfer, compute or * graphics capable */ if (!(queue_flags & (VK_QUEUE_TRANSFER_BIT | VK_QUEUE_COMPUTE_BIT | VK_QUEUE_GRAPHICS_BIT))) { usages &= ~(VK_IMAGE_USAGE_TRANSFER_SRC_BIT | VK_IMAGE_USAGE_TRANSFER_DST_BIT); } return usages; } /** * This function returns the assumed isl_aux_state for a given VkImageLayout. * Because Vulkan image layouts don't map directly to isl_aux_state enums, the * returned enum is the assumed worst case. * * @param devinfo The device information of the Intel GPU. * @param image The image that may contain a collection of buffers. * @param aspect The aspect of the image to be accessed. * @param layout The current layout of the image aspect(s). * * @return The primary buffer that should be used for the given layout. */ enum isl_aux_state ATTRIBUTE_PURE anv_layout_to_aux_state(const struct intel_device_info * const devinfo, const struct anv_image * const image, const VkImageAspectFlagBits aspect, const VkImageLayout layout, const VkQueueFlagBits queue_flags) { /* Validate the inputs. */ /* The devinfo is needed as the optimal buffer varies across generations. */ assert(devinfo != NULL); /* The layout of a NULL image is not properly defined. */ assert(image != NULL); /* The aspect must be exactly one of the image aspects. */ assert(util_bitcount(aspect) == 1 && (aspect & image->vk.aspects)); /* Determine the optimal buffer. */ const uint32_t plane = anv_image_aspect_to_plane(image, aspect); /* If we don't have an aux buffer then aux state makes no sense */ const enum isl_aux_usage aux_usage = image->planes[plane].aux_usage; assert(aux_usage != ISL_AUX_USAGE_NONE); /* All images that use an auxiliary surface are required to be tiled. */ assert(image->planes[plane].primary_surface.isl.tiling != ISL_TILING_LINEAR); /* Handle a few special cases */ switch (layout) { /* Invalid layouts */ case VK_IMAGE_LAYOUT_MAX_ENUM: unreachable("Invalid image layout."); /* Undefined layouts * * The pre-initialized layout is equivalent to the undefined layout for * optimally-tiled images. We can only do color compression (CCS or HiZ) * on tiled images. */ case VK_IMAGE_LAYOUT_UNDEFINED: case VK_IMAGE_LAYOUT_PREINITIALIZED: return ISL_AUX_STATE_AUX_INVALID; case VK_IMAGE_LAYOUT_PRESENT_SRC_KHR: { assert(image->vk.aspects == VK_IMAGE_ASPECT_COLOR_BIT); enum isl_aux_state aux_state = isl_drm_modifier_get_default_aux_state(image->vk.drm_format_mod); switch (aux_state) { case ISL_AUX_STATE_AUX_INVALID: /* The modifier does not support compression. But, if we arrived * here, then we have enabled compression on it anyway, in which case * we must resolve the aux surface before we release ownership to the * presentation engine (because, having no modifier, the presentation * engine will not be aware of the aux surface). The presentation * engine will not access the aux surface (because it is unware of * it), and so the aux surface will still be resolved when we * re-acquire ownership. * * Therefore, at ownership transfers in either direction, there does * exist an aux surface despite the lack of modifier and its state is * pass-through. */ return ISL_AUX_STATE_PASS_THROUGH; case ISL_AUX_STATE_COMPRESSED_CLEAR: return ISL_AUX_STATE_COMPRESSED_CLEAR; case ISL_AUX_STATE_COMPRESSED_NO_CLEAR: return ISL_AUX_STATE_COMPRESSED_NO_CLEAR; default: unreachable("unexpected isl_aux_state"); } } default: break; } const bool read_only = vk_image_layout_is_read_only(layout, aspect); const VkImageUsageFlags image_aspect_usage = anv_image_flags_filter_for_queue( vk_image_usage(&image->vk, aspect), queue_flags); const VkImageUsageFlags usage = vk_image_layout_to_usage_flags(layout, aspect) & image_aspect_usage; bool aux_supported = true; bool clear_supported = isl_aux_usage_has_fast_clears(aux_usage); if ((usage & (VK_IMAGE_USAGE_INPUT_ATTACHMENT_BIT | VK_IMAGE_USAGE_ATTACHMENT_FEEDBACK_LOOP_BIT_EXT)) && !read_only) { /* This image could be used as both an input attachment and a render * target (depth, stencil, or color) at the same time and this can cause * corruption. * * We currently only disable aux in this way for depth even though we * disable it for color in GL. * * TODO: Should we be disabling this in more cases? */ if (aspect == VK_IMAGE_ASPECT_DEPTH_BIT && devinfo->ver <= 9) { aux_supported = false; clear_supported = false; } } if (usage & (VK_IMAGE_USAGE_TRANSFER_SRC_BIT | VK_IMAGE_USAGE_SAMPLED_BIT | VK_IMAGE_USAGE_INPUT_ATTACHMENT_BIT)) { switch (aux_usage) { case ISL_AUX_USAGE_HIZ: if (!anv_can_sample_with_hiz(devinfo, image)) { aux_supported = false; clear_supported = false; } break; case ISL_AUX_USAGE_HIZ_CCS: aux_supported = false; clear_supported = false; break; case ISL_AUX_USAGE_HIZ_CCS_WT: break; case ISL_AUX_USAGE_CCS_D: aux_supported = false; clear_supported = false; break; case ISL_AUX_USAGE_MCS: if (!anv_can_sample_mcs_with_clear(devinfo, image)) clear_supported = false; break; case ISL_AUX_USAGE_CCS_E: case ISL_AUX_USAGE_FCV_CCS_E: case ISL_AUX_USAGE_STC_CCS: break; default: unreachable("Unsupported aux usage"); } } switch (aux_usage) { case ISL_AUX_USAGE_HIZ: case ISL_AUX_USAGE_HIZ_CCS: case ISL_AUX_USAGE_HIZ_CCS_WT: if (aux_supported) { assert(clear_supported); return ISL_AUX_STATE_COMPRESSED_CLEAR; } else if (read_only) { return ISL_AUX_STATE_RESOLVED; } else { return ISL_AUX_STATE_AUX_INVALID; } case ISL_AUX_USAGE_CCS_D: /* We only support clear in exactly one state */ if (layout == VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL || layout == VK_IMAGE_LAYOUT_ATTACHMENT_OPTIMAL) { assert(aux_supported); assert(clear_supported); return ISL_AUX_STATE_PARTIAL_CLEAR; } else { return ISL_AUX_STATE_PASS_THROUGH; } case ISL_AUX_USAGE_CCS_E: case ISL_AUX_USAGE_FCV_CCS_E: if (aux_supported) { assert(clear_supported); return ISL_AUX_STATE_COMPRESSED_CLEAR; } else { return ISL_AUX_STATE_PASS_THROUGH; } case ISL_AUX_USAGE_MCS: assert(aux_supported); if (clear_supported) { return ISL_AUX_STATE_COMPRESSED_CLEAR; } else { return ISL_AUX_STATE_COMPRESSED_NO_CLEAR; } case ISL_AUX_USAGE_STC_CCS: assert(aux_supported); assert(!clear_supported); return ISL_AUX_STATE_COMPRESSED_NO_CLEAR; default: unreachable("Unsupported aux usage"); } } /** * This function determines the optimal buffer to use for a given * VkImageLayout and other pieces of information needed to make that * determination. This does not determine the optimal buffer to use * during a resolve operation. * * @param devinfo The device information of the Intel GPU. * @param image The image that may contain a collection of buffers. * @param aspect The aspect of the image to be accessed. * @param usage The usage which describes how the image will be accessed. * @param layout The current layout of the image aspect(s). * * @return The primary buffer that should be used for the given layout. */ enum isl_aux_usage ATTRIBUTE_PURE anv_layout_to_aux_usage(const struct intel_device_info * const devinfo, const struct anv_image * const image, const VkImageAspectFlagBits aspect, const VkImageUsageFlagBits usage, const VkImageLayout layout, const VkQueueFlagBits queue_flags) { const uint32_t plane = anv_image_aspect_to_plane(image, aspect); /* If there is no auxiliary surface allocated, we must use the one and only * main buffer. */ if (image->planes[plane].aux_usage == ISL_AUX_USAGE_NONE) return ISL_AUX_USAGE_NONE; enum isl_aux_state aux_state = anv_layout_to_aux_state(devinfo, image, aspect, layout, queue_flags); switch (aux_state) { case ISL_AUX_STATE_CLEAR: unreachable("We never use this state"); case ISL_AUX_STATE_PARTIAL_CLEAR: assert(image->vk.aspects & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV); assert(image->planes[plane].aux_usage == ISL_AUX_USAGE_CCS_D); assert(image->vk.samples == 1); return ISL_AUX_USAGE_CCS_D; case ISL_AUX_STATE_COMPRESSED_CLEAR: case ISL_AUX_STATE_COMPRESSED_NO_CLEAR: return image->planes[plane].aux_usage; case ISL_AUX_STATE_RESOLVED: /* We can only use RESOLVED in read-only layouts because any write will * either land us in AUX_INVALID or COMPRESSED_NO_CLEAR. We can do * writes in PASS_THROUGH without destroying it so that is allowed. */ assert(vk_image_layout_is_read_only(layout, aspect)); assert(util_is_power_of_two_or_zero(usage)); if (usage == VK_IMAGE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT) { /* If we have valid HiZ data and are using the image as a read-only * depth/stencil attachment, we should enable HiZ so that we can get * faster depth testing. */ return image->planes[plane].aux_usage; } else { return ISL_AUX_USAGE_NONE; } case ISL_AUX_STATE_PASS_THROUGH: case ISL_AUX_STATE_AUX_INVALID: return ISL_AUX_USAGE_NONE; } unreachable("Invalid isl_aux_state"); } /** * This function returns the level of unresolved fast-clear support of the * given image in the given VkImageLayout. * * @param devinfo The device information of the Intel GPU. * @param image The image that may contain a collection of buffers. * @param aspect The aspect of the image to be accessed. * @param usage The usage which describes how the image will be accessed. * @param layout The current layout of the image aspect(s). */ enum anv_fast_clear_type ATTRIBUTE_PURE anv_layout_to_fast_clear_type(const struct intel_device_info * const devinfo, const struct anv_image * const image, const VkImageAspectFlagBits aspect, const VkImageLayout layout, const VkQueueFlagBits queue_flags) { if (INTEL_DEBUG(DEBUG_NO_FAST_CLEAR)) return ANV_FAST_CLEAR_NONE; /* Xe2+ platforms don't have fast clear type and can always support * arbitrary fast-clear values. */ if (devinfo->ver >= 20) return ANV_FAST_CLEAR_ANY; const uint32_t plane = anv_image_aspect_to_plane(image, aspect); /* If there is no auxiliary surface allocated, there are no fast-clears */ if (image->planes[plane].aux_usage == ISL_AUX_USAGE_NONE) return ANV_FAST_CLEAR_NONE; enum isl_aux_state aux_state = anv_layout_to_aux_state(devinfo, image, aspect, layout, queue_flags); const VkImageUsageFlags layout_usage = vk_image_layout_to_usage_flags(layout, aspect); switch (aux_state) { case ISL_AUX_STATE_CLEAR: unreachable("We never use this state"); case ISL_AUX_STATE_PARTIAL_CLEAR: case ISL_AUX_STATE_COMPRESSED_CLEAR: if (aspect == VK_IMAGE_ASPECT_DEPTH_BIT) { return ANV_FAST_CLEAR_DEFAULT_VALUE; } else if (layout == VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL || layout == VK_IMAGE_LAYOUT_ATTACHMENT_OPTIMAL) { /* The image might not support non zero fast clears when mutable. */ if (!image->planes[plane].can_non_zero_fast_clear) return ANV_FAST_CLEAR_DEFAULT_VALUE; /* When we're in a render pass we have the clear color data from the * VkRenderPassBeginInfo and we can use arbitrary clear colors. They * must get partially resolved before we leave the render pass. */ return ANV_FAST_CLEAR_ANY; } else if (layout_usage & (VK_IMAGE_USAGE_TRANSFER_SRC_BIT | VK_IMAGE_USAGE_TRANSFER_DST_BIT)) { /* Fast clear with non zero color is not supported during transfer * operations since transfer may do format reinterpretation. */ return ANV_FAST_CLEAR_DEFAULT_VALUE; } else if (image->planes[plane].aux_usage == ISL_AUX_USAGE_MCS || image->planes[plane].aux_usage == ISL_AUX_USAGE_CCS_E || image->planes[plane].aux_usage == ISL_AUX_USAGE_FCV_CCS_E) { if (devinfo->ver >= 11) { /* The image might not support non zero fast clears when mutable. */ if (!image->planes[plane].can_non_zero_fast_clear) return ANV_FAST_CLEAR_DEFAULT_VALUE; /* On ICL and later, the sampler hardware uses a copy of the clear * value that is encoded as a pixel value. Therefore, we can use * any clear color we like for sampling. */ return ANV_FAST_CLEAR_ANY; } else { /* If the image has MCS or CCS_E enabled all the time then we can * use fast-clear as long as the clear color is the default value * of zero since this is the default value we program into every * surface state used for texturing. */ return ANV_FAST_CLEAR_DEFAULT_VALUE; } } else { return ANV_FAST_CLEAR_NONE; } case ISL_AUX_STATE_COMPRESSED_NO_CLEAR: case ISL_AUX_STATE_RESOLVED: case ISL_AUX_STATE_PASS_THROUGH: case ISL_AUX_STATE_AUX_INVALID: return ANV_FAST_CLEAR_NONE; } unreachable("Invalid isl_aux_state"); } /** * This function determines if the layout & usage of an image can have * untracked aux writes. When we see a transition that matches this criteria, * we need to mark the image as compressed written so that our predicated * resolves work properly. * * @param devinfo The device information of the Intel GPU. * @param image The image that may contain a collection of buffers. * @param aspect The aspect of the image to be accessed. * @param layout The current layout of the image aspect(s). */ bool anv_layout_has_untracked_aux_writes(const struct intel_device_info * const devinfo, const struct anv_image * const image, const VkImageAspectFlagBits aspect, const VkImageLayout layout, const VkQueueFlagBits queue_flags) { const VkImageUsageFlags image_aspect_usage = vk_image_usage(&image->vk, aspect); const VkImageUsageFlags usage = vk_image_layout_to_usage_flags(layout, aspect) & image_aspect_usage; /* Storage is the only usage where we do not write the image through a * render target but through a descriptor. Since VK_EXT_descriptor_indexing * and the update-after-bind feature, it has become impossible to track * writes to images in descriptor at the command buffer build time. So it's * not possible to mark an image as compressed like we do in * genX_cmd_buffer.c(EndRendering) or anv_blorp.c for all transfer * operations. */ if (!(usage & VK_IMAGE_USAGE_STORAGE_BIT)) return false; /* No AUX, no writes to the AUX surface :) */ const uint32_t plane = anv_image_aspect_to_plane(image, aspect); const enum isl_aux_usage aux_usage = image->planes[plane].aux_usage; if (aux_usage == ISL_AUX_USAGE_NONE) return false; return true; } void anv_GetRenderingAreaGranularityKHR( VkDevice _device, const VkRenderingAreaInfoKHR* pRenderingAreaInfo, VkExtent2D* pGranularity) { *pGranularity = (VkExtent2D) { .width = 1, .height = 1, }; }