/* * Copyright © 2010 Intel Corporation * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS * IN THE SOFTWARE. */ #include "brw_fs.h" #include "brw_fs_builder.h" #include "brw_nir.h" #include "brw_eu.h" #include "nir.h" #include "nir_intrinsics.h" #include "nir_search_helpers.h" #include "dev/intel_debug.h" #include "util/u_math.h" #include "util/bitscan.h" #include using namespace brw; struct brw_fs_bind_info { bool valid; bool bindless; unsigned block; unsigned set; unsigned binding; }; struct nir_to_brw_state { fs_visitor &s; const nir_shader *nir; const intel_device_info *devinfo; void *mem_ctx; /* Points to the end of the program. Annotated with the current NIR * instruction when applicable. */ fs_builder bld; brw_reg *ssa_values; fs_inst **resource_insts; struct brw_fs_bind_info *ssa_bind_infos; brw_reg *uniform_values; brw_reg *system_values; bool annotate; }; static brw_reg get_nir_src(nir_to_brw_state &ntb, const nir_src &src); static brw_reg get_nir_def(nir_to_brw_state &ntb, const nir_def &def); static nir_component_mask_t get_nir_write_mask(const nir_def &def); static void fs_nir_emit_intrinsic(nir_to_brw_state &ntb, const fs_builder &bld, nir_intrinsic_instr *instr); static brw_reg emit_samplepos_setup(nir_to_brw_state &ntb); static brw_reg emit_sampleid_setup(nir_to_brw_state &ntb); static brw_reg emit_samplemaskin_setup(nir_to_brw_state &ntb); static brw_reg emit_shading_rate_setup(nir_to_brw_state &ntb); static void fs_nir_emit_impl(nir_to_brw_state &ntb, nir_function_impl *impl); static void fs_nir_emit_cf_list(nir_to_brw_state &ntb, exec_list *list); static void fs_nir_emit_if(nir_to_brw_state &ntb, nir_if *if_stmt); static void fs_nir_emit_loop(nir_to_brw_state &ntb, nir_loop *loop); static void fs_nir_emit_block(nir_to_brw_state &ntb, nir_block *block); static void fs_nir_emit_instr(nir_to_brw_state &ntb, nir_instr *instr); static void fs_nir_emit_memory_access(nir_to_brw_state &ntb, const fs_builder &bld, nir_intrinsic_instr *instr); static bool brw_texture_offset(const nir_tex_instr *tex, unsigned src, uint32_t *offset_bits_out) { if (!nir_src_is_const(tex->src[src].src)) return false; const unsigned num_components = nir_tex_instr_src_size(tex, src); /* Combine all three offsets into a single unsigned dword: * * bits 11:8 - U Offset (X component) * bits 7:4 - V Offset (Y component) * bits 3:0 - R Offset (Z component) */ uint32_t offset_bits = 0; for (unsigned i = 0; i < num_components; i++) { int offset = nir_src_comp_as_int(tex->src[src].src, i); /* offset out of bounds; caller will handle it. */ if (offset > 7 || offset < -8) return false; const unsigned shift = 4 * (2 - i); offset_bits |= (offset & 0xF) << shift; } *offset_bits_out = offset_bits; return true; } static brw_reg setup_imm_b(const fs_builder &bld, int8_t v) { const brw_reg tmp = bld.vgrf(BRW_TYPE_B); bld.MOV(tmp, brw_imm_w(v)); return tmp; } static void fs_nir_setup_outputs(nir_to_brw_state &ntb) { fs_visitor &s = ntb.s; if (s.stage == MESA_SHADER_TESS_CTRL || s.stage == MESA_SHADER_TASK || s.stage == MESA_SHADER_MESH || s.stage == MESA_SHADER_FRAGMENT || s.stage == MESA_SHADER_COMPUTE) return; unsigned vec4s[VARYING_SLOT_TESS_MAX] = { 0, }; /* Calculate the size of output registers in a separate pass, before * allocating them. With ARB_enhanced_layouts, multiple output variables * may occupy the same slot, but have different type sizes. */ nir_foreach_shader_out_variable(var, s.nir) { const int loc = var->data.driver_location; const unsigned var_vec4s = nir_variable_count_slots(var, var->type); vec4s[loc] = MAX2(vec4s[loc], var_vec4s); } for (unsigned loc = 0; loc < ARRAY_SIZE(vec4s);) { if (vec4s[loc] == 0) { loc++; continue; } unsigned reg_size = vec4s[loc]; /* Check if there are any ranges that start within this range and extend * past it. If so, include them in this allocation. */ for (unsigned i = 1; i < reg_size; i++) { assert(i + loc < ARRAY_SIZE(vec4s)); reg_size = MAX2(vec4s[i + loc] + i, reg_size); } brw_reg reg = ntb.bld.vgrf(BRW_TYPE_F, 4 * reg_size); for (unsigned i = 0; i < reg_size; i++) { assert(loc + i < ARRAY_SIZE(s.outputs)); s.outputs[loc + i] = offset(reg, ntb.bld, 4 * i); } loc += reg_size; } } static void fs_nir_setup_uniforms(fs_visitor &s) { const intel_device_info *devinfo = s.devinfo; /* Only the first compile gets to set up uniforms. */ if (s.push_constant_loc) return; s.uniforms = s.nir->num_uniforms / 4; if (gl_shader_stage_is_compute(s.stage) && devinfo->verx10 < 125) { /* Add uniforms for builtins after regular NIR uniforms. */ assert(s.uniforms == s.prog_data->nr_params); /* Subgroup ID must be the last uniform on the list. This will make * easier later to split between cross thread and per thread * uniforms. */ uint32_t *param = brw_stage_prog_data_add_params(s.prog_data, 1); *param = BRW_PARAM_BUILTIN_SUBGROUP_ID; s.uniforms++; } } static brw_reg emit_work_group_id_setup(nir_to_brw_state &ntb) { fs_visitor &s = ntb.s; const fs_builder &bld = ntb.bld; assert(gl_shader_stage_is_compute(s.stage)); brw_reg id = bld.vgrf(BRW_TYPE_UD, 3); struct brw_reg r0_1(retype(brw_vec1_grf(0, 1), BRW_TYPE_UD)); bld.MOV(id, r0_1); struct brw_reg r0_6(retype(brw_vec1_grf(0, 6), BRW_TYPE_UD)); struct brw_reg r0_7(retype(brw_vec1_grf(0, 7), BRW_TYPE_UD)); bld.MOV(offset(id, bld, 1), r0_6); bld.MOV(offset(id, bld, 2), r0_7); return id; } static bool emit_system_values_block(nir_to_brw_state &ntb, nir_block *block) { fs_visitor &s = ntb.s; brw_reg *reg; nir_foreach_instr(instr, block) { if (instr->type != nir_instr_type_intrinsic) continue; nir_intrinsic_instr *intrin = nir_instr_as_intrinsic(instr); switch (intrin->intrinsic) { case nir_intrinsic_load_vertex_id: case nir_intrinsic_load_base_vertex: unreachable("should be lowered by nir_lower_system_values()."); case nir_intrinsic_load_vertex_id_zero_base: case nir_intrinsic_load_is_indexed_draw: case nir_intrinsic_load_first_vertex: case nir_intrinsic_load_instance_id: case nir_intrinsic_load_base_instance: unreachable("should be lowered by brw_nir_lower_vs_inputs()."); break; case nir_intrinsic_load_draw_id: /* For Task/Mesh, draw_id will be handled later in * nir_emit_mesh_task_intrinsic(). */ if (!gl_shader_stage_is_mesh(s.stage)) unreachable("should be lowered by brw_nir_lower_vs_inputs()."); break; case nir_intrinsic_load_invocation_id: if (s.stage == MESA_SHADER_TESS_CTRL) break; assert(s.stage == MESA_SHADER_GEOMETRY); reg = &ntb.system_values[SYSTEM_VALUE_INVOCATION_ID]; if (reg->file == BAD_FILE) { *reg = s.gs_payload().instance_id; } break; case nir_intrinsic_load_sample_pos: case nir_intrinsic_load_sample_pos_or_center: assert(s.stage == MESA_SHADER_FRAGMENT); reg = &ntb.system_values[SYSTEM_VALUE_SAMPLE_POS]; if (reg->file == BAD_FILE) *reg = emit_samplepos_setup(ntb); break; case nir_intrinsic_load_sample_id: assert(s.stage == MESA_SHADER_FRAGMENT); reg = &ntb.system_values[SYSTEM_VALUE_SAMPLE_ID]; if (reg->file == BAD_FILE) *reg = emit_sampleid_setup(ntb); break; case nir_intrinsic_load_sample_mask_in: assert(s.stage == MESA_SHADER_FRAGMENT); reg = &ntb.system_values[SYSTEM_VALUE_SAMPLE_MASK_IN]; if (reg->file == BAD_FILE) *reg = emit_samplemaskin_setup(ntb); break; case nir_intrinsic_load_workgroup_id: if (gl_shader_stage_is_mesh(s.stage)) unreachable("should be lowered by nir_lower_compute_system_values()."); assert(gl_shader_stage_is_compute(s.stage)); reg = &ntb.system_values[SYSTEM_VALUE_WORKGROUP_ID]; if (reg->file == BAD_FILE) *reg = emit_work_group_id_setup(ntb); break; case nir_intrinsic_load_helper_invocation: assert(s.stage == MESA_SHADER_FRAGMENT); reg = &ntb.system_values[SYSTEM_VALUE_HELPER_INVOCATION]; if (reg->file == BAD_FILE) { const fs_builder abld = ntb.bld.annotate("gl_HelperInvocation"); /* On Gfx6+ (gl_HelperInvocation is only exposed on Gfx7+) the * pixel mask is in g1.7 of the thread payload. * * We move the per-channel pixel enable bit to the low bit of each * channel by shifting the byte containing the pixel mask by the * vector immediate 0x76543210UV. * * The region of <1,8,0> reads only 1 byte (the pixel masks for * subspans 0 and 1) in SIMD8 and an additional byte (the pixel * masks for 2 and 3) in SIMD16. */ brw_reg shifted = abld.vgrf(BRW_TYPE_UW); for (unsigned i = 0; i < DIV_ROUND_UP(s.dispatch_width, 16); i++) { const fs_builder hbld = abld.group(MIN2(16, s.dispatch_width), i); /* According to the "PS Thread Payload for Normal * Dispatch" pages on the BSpec, the dispatch mask is * stored in R0.15/R1.15 on gfx20+ and in R1.7/R2.7 on * gfx6+. */ const struct brw_reg reg = s.devinfo->ver >= 20 ? xe2_vec1_grf(i, 15) : brw_vec1_grf(i + 1, 7); hbld.SHR(offset(shifted, hbld, i), stride(retype(reg, BRW_TYPE_UB), 1, 8, 0), brw_imm_v(0x76543210)); } /* A set bit in the pixel mask means the channel is enabled, but * that is the opposite of gl_HelperInvocation so we need to invert * the mask. * * The negate source-modifier bit of logical instructions on Gfx8+ * performs 1's complement negation, so we can use that instead of * a NOT instruction. */ brw_reg inverted = negate(shifted); /* We then resolve the 0/1 result to 0/~0 boolean values by ANDing * with 1 and negating. */ brw_reg anded = abld.vgrf(BRW_TYPE_UD); abld.AND(anded, inverted, brw_imm_uw(1)); *reg = abld.MOV(negate(retype(anded, BRW_TYPE_D))); } break; case nir_intrinsic_load_frag_shading_rate: reg = &ntb.system_values[SYSTEM_VALUE_FRAG_SHADING_RATE]; if (reg->file == BAD_FILE) *reg = emit_shading_rate_setup(ntb); break; default: break; } } return true; } static void fs_nir_emit_system_values(nir_to_brw_state &ntb) { fs_visitor &s = ntb.s; ntb.system_values = ralloc_array(ntb.mem_ctx, brw_reg, SYSTEM_VALUE_MAX); for (unsigned i = 0; i < SYSTEM_VALUE_MAX; i++) { ntb.system_values[i] = brw_reg(); } nir_function_impl *impl = nir_shader_get_entrypoint((nir_shader *)s.nir); nir_foreach_block(block, impl) emit_system_values_block(ntb, block); } static void fs_nir_emit_impl(nir_to_brw_state &ntb, nir_function_impl *impl) { ntb.ssa_values = rzalloc_array(ntb.mem_ctx, brw_reg, impl->ssa_alloc); ntb.resource_insts = rzalloc_array(ntb.mem_ctx, fs_inst *, impl->ssa_alloc); ntb.ssa_bind_infos = rzalloc_array(ntb.mem_ctx, struct brw_fs_bind_info, impl->ssa_alloc); ntb.uniform_values = rzalloc_array(ntb.mem_ctx, brw_reg, impl->ssa_alloc); fs_nir_emit_cf_list(ntb, &impl->body); } static void fs_nir_emit_cf_list(nir_to_brw_state &ntb, exec_list *list) { exec_list_validate(list); foreach_list_typed(nir_cf_node, node, node, list) { switch (node->type) { case nir_cf_node_if: fs_nir_emit_if(ntb, nir_cf_node_as_if(node)); break; case nir_cf_node_loop: fs_nir_emit_loop(ntb, nir_cf_node_as_loop(node)); break; case nir_cf_node_block: fs_nir_emit_block(ntb, nir_cf_node_as_block(node)); break; default: unreachable("Invalid CFG node block"); } } } static void fs_nir_emit_if(nir_to_brw_state &ntb, nir_if *if_stmt) { const fs_builder &bld = ntb.bld; bool invert; brw_reg cond_reg; /* If the condition has the form !other_condition, use other_condition as * the source, but invert the predicate on the if instruction. */ nir_alu_instr *cond = nir_src_as_alu_instr(if_stmt->condition); if (cond != NULL && cond->op == nir_op_inot) { invert = true; cond_reg = get_nir_src(ntb, cond->src[0].src); cond_reg = offset(cond_reg, bld, cond->src[0].swizzle[0]); } else { invert = false; cond_reg = get_nir_src(ntb, if_stmt->condition); } /* first, put the condition into f0 */ fs_inst *inst = bld.MOV(bld.null_reg_d(), retype(cond_reg, BRW_TYPE_D)); inst->conditional_mod = BRW_CONDITIONAL_NZ; fs_inst *iff = bld.IF(BRW_PREDICATE_NORMAL); iff->predicate_inverse = invert; fs_nir_emit_cf_list(ntb, &if_stmt->then_list); if (!nir_cf_list_is_empty_block(&if_stmt->else_list)) { bld.emit(BRW_OPCODE_ELSE); fs_nir_emit_cf_list(ntb, &if_stmt->else_list); } fs_inst *endif = bld.emit(BRW_OPCODE_ENDIF); /* Peephole: replace IF-JUMP-ENDIF with predicated jump */ if (endif->prev->prev == iff) { fs_inst *jump = (fs_inst *) endif->prev; if (jump->predicate == BRW_PREDICATE_NONE && (jump->opcode == BRW_OPCODE_BREAK || jump->opcode == BRW_OPCODE_CONTINUE)) { jump->predicate = iff->predicate; jump->predicate_inverse = iff->predicate_inverse; iff->exec_node::remove(); endif->exec_node::remove(); } } } static void fs_nir_emit_loop(nir_to_brw_state &ntb, nir_loop *loop) { const fs_builder &bld = ntb.bld; assert(!nir_loop_has_continue_construct(loop)); bld.emit(BRW_OPCODE_DO); fs_nir_emit_cf_list(ntb, &loop->body); fs_inst *peep_while = bld.emit(BRW_OPCODE_WHILE); /* Peephole: replace (+f0) break; while with (-f0) while */ fs_inst *peep_break = (fs_inst *) peep_while->prev; if (peep_break->opcode == BRW_OPCODE_BREAK && peep_break->predicate != BRW_PREDICATE_NONE) { peep_while->predicate = peep_break->predicate; peep_while->predicate_inverse = !peep_break->predicate_inverse; peep_break->exec_node::remove(); } } static void fs_nir_emit_block(nir_to_brw_state &ntb, nir_block *block) { fs_builder bld = ntb.bld; nir_foreach_instr(instr, block) { fs_nir_emit_instr(ntb, instr); } ntb.bld = bld; } /** * Recognizes a parent instruction of nir_op_extract_* and changes the type to * match instr. */ static bool optimize_extract_to_float(nir_to_brw_state &ntb, nir_alu_instr *instr, const brw_reg &result) { const intel_device_info *devinfo = ntb.devinfo; const fs_builder &bld = ntb.bld; /* No fast path for f16 (yet) or f64. */ assert(instr->op == nir_op_i2f32 || instr->op == nir_op_u2f32); if (!instr->src[0].src.ssa->parent_instr) return false; if (instr->src[0].src.ssa->parent_instr->type != nir_instr_type_alu) return false; nir_alu_instr *src0 = nir_instr_as_alu(instr->src[0].src.ssa->parent_instr); unsigned bytes; bool is_signed; switch (src0->op) { case nir_op_extract_u8: case nir_op_extract_u16: bytes = src0->op == nir_op_extract_u8 ? 1 : 2; /* i2f(extract_u8(a, b)) and u2f(extract_u8(a, b)) produce the same * result. Ditto for extract_u16. */ is_signed = false; break; case nir_op_extract_i8: case nir_op_extract_i16: bytes = src0->op == nir_op_extract_i8 ? 1 : 2; /* The fast path can't handle u2f(extract_i8(a, b)) because the implicit * sign extension of the extract_i8 is lost. For example, * u2f(extract_i8(0x0000ff00, 1)) should produce 4294967295.0, but a * fast path could either give 255.0 (by implementing the fast path as * u2f(extract_u8(x))) or -1.0 (by implementing the fast path as * i2f(extract_i8(x))). At one point in time, we incorrectly implemented * the former. */ if (instr->op != nir_op_i2f32) return false; is_signed = true; break; default: return false; } unsigned element = nir_src_as_uint(src0->src[1].src); /* Element type to extract.*/ const brw_reg_type type = brw_int_type(bytes, is_signed); brw_reg op0 = get_nir_src(ntb, src0->src[0].src); op0.type = brw_type_for_nir_type(devinfo, (nir_alu_type)(nir_op_infos[src0->op].input_types[0] | nir_src_bit_size(src0->src[0].src))); op0 = offset(op0, bld, src0->src[0].swizzle[0]); /* Bspec "Register Region Restrictions" for Xe says: * * "In case of all float point data types used in destination * * 1. Register Regioning patterns where register data bit location of * the LSB of the channels are changed between source and destination * are not supported on Src0 and Src1 except for broadcast of a * scalar." * * This restriction is enfored in brw_fs_lower_regioning. There is no * reason to generate an optimized instruction that brw_fs_lower_regioning * will have to break up later. */ if (devinfo->verx10 >= 125 && element != 0 && !is_uniform(op0)) return false; bld.MOV(result, subscript(op0, type, element)); return true; } static bool optimize_frontfacing_ternary(nir_to_brw_state &ntb, nir_alu_instr *instr, const brw_reg &result) { const intel_device_info *devinfo = ntb.devinfo; fs_visitor &s = ntb.s; nir_intrinsic_instr *src0 = nir_src_as_intrinsic(instr->src[0].src); if (src0 == NULL || src0->intrinsic != nir_intrinsic_load_front_face) return false; if (!nir_src_is_const(instr->src[1].src) || !nir_src_is_const(instr->src[2].src)) return false; const float value1 = nir_src_as_float(instr->src[1].src); const float value2 = nir_src_as_float(instr->src[2].src); if (fabsf(value1) != 1.0f || fabsf(value2) != 1.0f) return false; /* nir_opt_algebraic should have gotten rid of bcsel(b, a, a) */ assert(value1 == -value2); brw_reg tmp = ntb.bld.vgrf(BRW_TYPE_D); if (devinfo->ver >= 20) { /* Gfx20+ has separate back-facing bits for each pair of * subspans in order to support multiple polygons, so we need to * use a <1;8,0> region in order to select the correct word for * each channel. Unfortunately they're no longer aligned to the * sign bit of a 16-bit word, so a left shift is necessary. */ brw_reg ff = ntb.bld.vgrf(BRW_TYPE_UW); for (unsigned i = 0; i < DIV_ROUND_UP(s.dispatch_width, 16); i++) { const fs_builder hbld = ntb.bld.group(16, i); const struct brw_reg gi_uw = retype(xe2_vec1_grf(i, 9), BRW_TYPE_UW); hbld.SHL(offset(ff, hbld, i), stride(gi_uw, 1, 8, 0), brw_imm_ud(4)); } if (value1 == -1.0f) ff.negate = true; ntb.bld.OR(subscript(tmp, BRW_TYPE_UW, 1), ff, brw_imm_uw(0x3f80)); } else if (devinfo->ver >= 12 && s.max_polygons == 2) { /* According to the BSpec "PS Thread Payload for Normal * Dispatch", the front/back facing interpolation bit is stored * as bit 15 of either the R1.1 or R1.6 poly info field, for the * first and second polygons respectively in multipolygon PS * dispatch mode. */ assert(s.dispatch_width == 16); for (unsigned i = 0; i < s.max_polygons; i++) { const fs_builder hbld = ntb.bld.group(8, i); struct brw_reg g1 = retype(brw_vec1_grf(1, 1 + 5 * i), BRW_TYPE_UW); if (value1 == -1.0f) g1.negate = true; hbld.OR(subscript(offset(tmp, hbld, i), BRW_TYPE_UW, 1), g1, brw_imm_uw(0x3f80)); } } else if (devinfo->ver >= 12) { /* Bit 15 of g1.1 is 0 if the polygon is front facing. */ brw_reg g1 = brw_reg(retype(brw_vec1_grf(1, 1), BRW_TYPE_W)); /* For (gl_FrontFacing ? 1.0 : -1.0), emit: * * or(8) tmp.1<2>W g1.1<0,1,0>W 0x00003f80W * and(8) dst<1>D tmp<8,8,1>D 0xbf800000D * * and negate g1.1<0,1,0>W for (gl_FrontFacing ? -1.0 : 1.0). */ if (value1 == -1.0f) g1.negate = true; ntb.bld.OR(subscript(tmp, BRW_TYPE_W, 1), g1, brw_imm_uw(0x3f80)); } else { /* Bit 15 of g0.0 is 0 if the polygon is front facing. */ brw_reg g0 = brw_reg(retype(brw_vec1_grf(0, 0), BRW_TYPE_W)); /* For (gl_FrontFacing ? 1.0 : -1.0), emit: * * or(8) tmp.1<2>W g0.0<0,1,0>W 0x00003f80W * and(8) dst<1>D tmp<8,8,1>D 0xbf800000D * * and negate g0.0<0,1,0>W for (gl_FrontFacing ? -1.0 : 1.0). * * This negation looks like it's safe in practice, because bits 0:4 will * surely be TRIANGLES */ if (value1 == -1.0f) { g0.negate = true; } ntb.bld.OR(subscript(tmp, BRW_TYPE_W, 1), g0, brw_imm_uw(0x3f80)); } ntb.bld.AND(retype(result, BRW_TYPE_D), tmp, brw_imm_d(0xbf800000)); return true; } static brw_rnd_mode brw_rnd_mode_from_nir_op (const nir_op op) { switch (op) { case nir_op_f2f16_rtz: return BRW_RND_MODE_RTZ; case nir_op_f2f16_rtne: return BRW_RND_MODE_RTNE; default: unreachable("Operation doesn't support rounding mode"); } } static brw_rnd_mode brw_rnd_mode_from_execution_mode(unsigned execution_mode) { if (nir_has_any_rounding_mode_rtne(execution_mode)) return BRW_RND_MODE_RTNE; if (nir_has_any_rounding_mode_rtz(execution_mode)) return BRW_RND_MODE_RTZ; return BRW_RND_MODE_UNSPECIFIED; } static brw_reg prepare_alu_destination_and_sources(nir_to_brw_state &ntb, const fs_builder &bld, nir_alu_instr *instr, brw_reg *op, bool need_dest) { const intel_device_info *devinfo = ntb.devinfo; brw_reg result = need_dest ? get_nir_def(ntb, instr->def) : bld.null_reg_ud(); result.type = brw_type_for_nir_type(devinfo, (nir_alu_type)(nir_op_infos[instr->op].output_type | instr->def.bit_size)); for (unsigned i = 0; i < nir_op_infos[instr->op].num_inputs; i++) { op[i] = get_nir_src(ntb, instr->src[i].src); op[i].type = brw_type_for_nir_type(devinfo, (nir_alu_type)(nir_op_infos[instr->op].input_types[i] | nir_src_bit_size(instr->src[i].src))); } /* Move and vecN instrutions may still be vectored. Return the raw, * vectored source and destination so that fs_visitor::nir_emit_alu can * handle it. Other callers should not have to handle these kinds of * instructions. */ switch (instr->op) { case nir_op_mov: case nir_op_vec2: case nir_op_vec3: case nir_op_vec4: case nir_op_vec8: case nir_op_vec16: return result; default: break; } /* At this point, we have dealt with any instruction that operates on * more than a single channel. Therefore, we can just adjust the source * and destination registers for that channel and emit the instruction. */ unsigned channel = 0; if (nir_op_infos[instr->op].output_size == 0) { /* Since NIR is doing the scalarizing for us, we should only ever see * vectorized operations with a single channel. */ nir_component_mask_t write_mask = get_nir_write_mask(instr->def); assert(util_bitcount(write_mask) == 1); channel = ffs(write_mask) - 1; result = offset(result, bld, channel); } for (unsigned i = 0; i < nir_op_infos[instr->op].num_inputs; i++) { assert(nir_op_infos[instr->op].input_sizes[i] < 2); op[i] = offset(op[i], bld, instr->src[i].swizzle[channel]); } return result; } static brw_reg resolve_source_modifiers(const fs_builder &bld, const brw_reg &src) { return (src.abs || src.negate) ? bld.MOV(src) : src; } static void resolve_inot_sources(nir_to_brw_state &ntb, const fs_builder &bld, nir_alu_instr *instr, brw_reg *op) { for (unsigned i = 0; i < 2; i++) { nir_alu_instr *inot_instr = nir_src_as_alu_instr(instr->src[i].src); if (inot_instr != NULL && inot_instr->op == nir_op_inot) { /* The source of the inot is now the source of instr. */ prepare_alu_destination_and_sources(ntb, bld, inot_instr, &op[i], false); assert(!op[i].negate); op[i].negate = true; } else { op[i] = resolve_source_modifiers(bld, op[i]); } } } static bool try_emit_b2fi_of_inot(nir_to_brw_state &ntb, const fs_builder &bld, brw_reg result, nir_alu_instr *instr) { const intel_device_info *devinfo = bld.shader->devinfo; if (devinfo->verx10 >= 125) return false; nir_alu_instr *inot_instr = nir_src_as_alu_instr(instr->src[0].src); if (inot_instr == NULL || inot_instr->op != nir_op_inot) return false; /* HF is also possible as a destination on BDW+. For nir_op_b2i, the set * of valid size-changing combinations is a bit more complex. * * The source restriction is just because I was lazy about generating the * constant below. */ if (instr->def.bit_size != 32 || nir_src_bit_size(inot_instr->src[0].src) != 32) return false; /* b2[fi](inot(a)) maps a=0 => 1, a=-1 => 0. Since a can only be 0 or -1, * this is float(1 + a). */ brw_reg op; prepare_alu_destination_and_sources(ntb, bld, inot_instr, &op, false); /* Ignore the saturate modifier, if there is one. The result of the * arithmetic can only be 0 or 1, so the clamping will do nothing anyway. */ bld.ADD(result, op, brw_imm_d(1)); return true; } static bool is_const_zero(const nir_src &src) { return nir_src_is_const(src) && nir_src_as_int(src) == 0; } static void fs_nir_emit_alu(nir_to_brw_state &ntb, nir_alu_instr *instr, bool need_dest) { const intel_device_info *devinfo = ntb.devinfo; const fs_builder &bld = ntb.bld; fs_inst *inst; unsigned execution_mode = bld.shader->nir->info.float_controls_execution_mode; brw_reg op[NIR_MAX_VEC_COMPONENTS]; brw_reg result = prepare_alu_destination_and_sources(ntb, bld, instr, op, need_dest); #ifndef NDEBUG /* Everything except raw moves, some type conversions, iabs, and ineg * should have 8-bit sources lowered by nir_lower_bit_size in * brw_preprocess_nir or by brw_nir_lower_conversions in * brw_postprocess_nir. */ switch (instr->op) { case nir_op_mov: case nir_op_vec2: case nir_op_vec3: case nir_op_vec4: case nir_op_vec8: case nir_op_vec16: case nir_op_i2f16: case nir_op_i2f32: case nir_op_i2i16: case nir_op_i2i32: case nir_op_u2f16: case nir_op_u2f32: case nir_op_u2u16: case nir_op_u2u32: case nir_op_iabs: case nir_op_ineg: case nir_op_pack_32_4x8_split: break; default: for (unsigned i = 0; i < nir_op_infos[instr->op].num_inputs; i++) { assert(brw_type_size_bytes(op[i].type) > 1); } } #endif switch (instr->op) { case nir_op_mov: case nir_op_vec2: case nir_op_vec3: case nir_op_vec4: case nir_op_vec8: case nir_op_vec16: { brw_reg temp = result; bool need_extra_copy = false; nir_intrinsic_instr *store_reg = nir_store_reg_for_def(&instr->def); if (store_reg != NULL) { nir_def *dest_reg = store_reg->src[1].ssa; for (unsigned i = 0; i < nir_op_infos[instr->op].num_inputs; i++) { nir_intrinsic_instr *load_reg = nir_load_reg_for_def(instr->src[i].src.ssa); if (load_reg == NULL) continue; if (load_reg->src[0].ssa == dest_reg) { need_extra_copy = true; temp = bld.vgrf(result.type, 4); break; } } } nir_component_mask_t write_mask = get_nir_write_mask(instr->def); unsigned last_bit = util_last_bit(write_mask); assert(last_bit <= NIR_MAX_VEC_COMPONENTS); brw_reg comps[NIR_MAX_VEC_COMPONENTS]; for (unsigned i = 0; i < last_bit; i++) { if (instr->op == nir_op_mov) comps[i] = offset(op[0], bld, instr->src[0].swizzle[i]); else comps[i] = offset(op[i], bld, instr->src[i].swizzle[0]); } if (write_mask == (1u << last_bit) - 1) { bld.VEC(temp, comps, last_bit); } else { for (unsigned i = 0; i < last_bit; i++) { if (write_mask & (1 << i)) bld.MOV(offset(temp, bld, i), comps[i]); } } /* In this case the source and destination registers were the same, * so we need to insert an extra set of moves in order to deal with * any swizzling. */ if (need_extra_copy) { for (unsigned i = 0; i < last_bit; i++) { if (!(write_mask & (1 << i))) continue; bld.MOV(offset(result, bld, i), offset(temp, bld, i)); } } return; } case nir_op_i2f32: case nir_op_u2f32: if (optimize_extract_to_float(ntb, instr, result)) return; bld.MOV(result, op[0]); break; case nir_op_f2f16_rtne: case nir_op_f2f16_rtz: case nir_op_f2f16: { brw_rnd_mode rnd = BRW_RND_MODE_UNSPECIFIED; if (nir_op_f2f16 == instr->op) rnd = brw_rnd_mode_from_execution_mode(execution_mode); else rnd = brw_rnd_mode_from_nir_op(instr->op); if (BRW_RND_MODE_UNSPECIFIED != rnd) bld.exec_all().emit(SHADER_OPCODE_RND_MODE, bld.null_reg_ud(), brw_imm_d(rnd)); assert(brw_type_size_bytes(op[0].type) < 8); /* brw_nir_lower_conversions */ bld.MOV(result, op[0]); break; } case nir_op_b2i8: case nir_op_b2i16: case nir_op_b2i32: case nir_op_b2i64: case nir_op_b2f16: case nir_op_b2f32: case nir_op_b2f64: if (try_emit_b2fi_of_inot(ntb, bld, result, instr)) break; op[0].type = BRW_TYPE_D; op[0].negate = !op[0].negate; FALLTHROUGH; case nir_op_i2f64: case nir_op_i2i64: case nir_op_u2f64: case nir_op_u2u64: case nir_op_f2f64: case nir_op_f2i64: case nir_op_f2u64: case nir_op_i2i32: case nir_op_u2u32: case nir_op_f2i32: case nir_op_f2u32: case nir_op_i2f16: case nir_op_u2f16: case nir_op_f2i16: case nir_op_f2u16: case nir_op_f2i8: case nir_op_f2u8: if (result.type == BRW_TYPE_B || result.type == BRW_TYPE_UB || result.type == BRW_TYPE_HF) assert(brw_type_size_bytes(op[0].type) < 8); /* brw_nir_lower_conversions */ if (op[0].type == BRW_TYPE_B || op[0].type == BRW_TYPE_UB || op[0].type == BRW_TYPE_HF) assert(brw_type_size_bytes(result.type) < 8); /* brw_nir_lower_conversions */ bld.MOV(result, op[0]); break; case nir_op_i2i8: case nir_op_u2u8: assert(brw_type_size_bytes(op[0].type) < 8); /* brw_nir_lower_conversions */ FALLTHROUGH; case nir_op_i2i16: case nir_op_u2u16: { /* Emit better code for u2u8(extract_u8(a, b)) and similar patterns. * Emitting the instructions one by one results in two MOV instructions * that won't be propagated. By handling both instructions here, a * single MOV is emitted. */ nir_alu_instr *extract_instr = nir_src_as_alu_instr(instr->src[0].src); if (extract_instr != NULL) { if (extract_instr->op == nir_op_extract_u8 || extract_instr->op == nir_op_extract_i8) { prepare_alu_destination_and_sources(ntb, bld, extract_instr, op, false); const unsigned byte = nir_src_as_uint(extract_instr->src[1].src); const brw_reg_type type = brw_int_type(1, extract_instr->op == nir_op_extract_i8); op[0] = subscript(op[0], type, byte); } else if (extract_instr->op == nir_op_extract_u16 || extract_instr->op == nir_op_extract_i16) { prepare_alu_destination_and_sources(ntb, bld, extract_instr, op, false); const unsigned word = nir_src_as_uint(extract_instr->src[1].src); const brw_reg_type type = brw_int_type(2, extract_instr->op == nir_op_extract_i16); op[0] = subscript(op[0], type, word); } } bld.MOV(result, op[0]); break; } case nir_op_fsat: inst = bld.MOV(result, op[0]); inst->saturate = true; break; case nir_op_fneg: case nir_op_ineg: op[0].negate = true; bld.MOV(result, op[0]); break; case nir_op_fabs: case nir_op_iabs: op[0].negate = false; op[0].abs = true; bld.MOV(result, op[0]); break; case nir_op_f2f32: if (nir_has_any_rounding_mode_enabled(execution_mode)) { brw_rnd_mode rnd = brw_rnd_mode_from_execution_mode(execution_mode); bld.exec_all().emit(SHADER_OPCODE_RND_MODE, bld.null_reg_ud(), brw_imm_d(rnd)); } if (op[0].type == BRW_TYPE_HF) assert(brw_type_size_bytes(result.type) < 8); /* brw_nir_lower_conversions */ bld.MOV(result, op[0]); break; case nir_op_fsign: unreachable("Should have been lowered by brw_nir_lower_fsign."); case nir_op_frcp: bld.RCP(result, op[0]); break; case nir_op_fexp2: bld.EXP2(result, op[0]); break; case nir_op_flog2: bld.LOG2(result, op[0]); break; case nir_op_fsin: bld.SIN(result, op[0]); break; case nir_op_fcos: bld.COS(result, op[0]); break; case nir_op_fadd: if (nir_has_any_rounding_mode_enabled(execution_mode)) { brw_rnd_mode rnd = brw_rnd_mode_from_execution_mode(execution_mode); bld.exec_all().emit(SHADER_OPCODE_RND_MODE, bld.null_reg_ud(), brw_imm_d(rnd)); } FALLTHROUGH; case nir_op_iadd: bld.ADD(result, op[0], op[1]); break; case nir_op_iadd3: assert(instr->def.bit_size < 64); bld.ADD3(result, op[0], op[1], op[2]); break; case nir_op_iadd_sat: case nir_op_uadd_sat: inst = bld.ADD(result, op[0], op[1]); inst->saturate = true; break; case nir_op_isub_sat: bld.emit(SHADER_OPCODE_ISUB_SAT, result, op[0], op[1]); break; case nir_op_usub_sat: bld.emit(SHADER_OPCODE_USUB_SAT, result, op[0], op[1]); break; case nir_op_irhadd: case nir_op_urhadd: assert(instr->def.bit_size < 64); bld.AVG(result, op[0], op[1]); break; case nir_op_ihadd: case nir_op_uhadd: { assert(instr->def.bit_size < 64); op[0] = resolve_source_modifiers(bld, op[0]); op[1] = resolve_source_modifiers(bld, op[1]); /* AVG(x, y) - ((x ^ y) & 1) */ brw_reg one = retype(brw_imm_ud(1), result.type); bld.ADD(result, bld.AVG(op[0], op[1]), negate(bld.AND(bld.XOR(op[0], op[1]), one))); break; } case nir_op_fmul: if (nir_has_any_rounding_mode_enabled(execution_mode)) { brw_rnd_mode rnd = brw_rnd_mode_from_execution_mode(execution_mode); bld.exec_all().emit(SHADER_OPCODE_RND_MODE, bld.null_reg_ud(), brw_imm_d(rnd)); } bld.MUL(result, op[0], op[1]); break; case nir_op_imul_2x32_64: case nir_op_umul_2x32_64: bld.MUL(result, op[0], op[1]); break; case nir_op_imul_32x16: case nir_op_umul_32x16: { const bool ud = instr->op == nir_op_umul_32x16; const enum brw_reg_type word_type = ud ? BRW_TYPE_UW : BRW_TYPE_W; const enum brw_reg_type dword_type = ud ? BRW_TYPE_UD : BRW_TYPE_D; assert(instr->def.bit_size == 32); /* Before copy propagation there are no immediate values. */ assert(op[0].file != IMM && op[1].file != IMM); op[1] = subscript(op[1], word_type, 0); bld.MUL(result, retype(op[0], dword_type), op[1]); break; } case nir_op_imul: assert(instr->def.bit_size < 64); bld.MUL(result, op[0], op[1]); break; case nir_op_imul_high: case nir_op_umul_high: assert(instr->def.bit_size < 64); if (instr->def.bit_size == 32) { bld.emit(SHADER_OPCODE_MULH, result, op[0], op[1]); } else { brw_reg tmp = bld.vgrf(brw_type_with_size(op[0].type, 32)); bld.MUL(tmp, op[0], op[1]); bld.MOV(result, subscript(tmp, result.type, 1)); } break; case nir_op_idiv: case nir_op_udiv: assert(instr->def.bit_size < 64); bld.INT_QUOTIENT(result, op[0], op[1]); break; case nir_op_uadd_carry: unreachable("Should have been lowered by carry_to_arith()."); case nir_op_usub_borrow: unreachable("Should have been lowered by borrow_to_arith()."); case nir_op_umod: case nir_op_irem: /* According to the sign table for INT DIV in the Ivy Bridge PRM, it * appears that our hardware just does the right thing for signed * remainder. */ assert(instr->def.bit_size < 64); bld.INT_REMAINDER(result, op[0], op[1]); break; case nir_op_imod: { /* Get a regular C-style remainder. If a % b == 0, set the predicate. */ bld.INT_REMAINDER(result, op[0], op[1]); /* Math instructions don't support conditional mod */ inst = bld.MOV(bld.null_reg_d(), result); inst->conditional_mod = BRW_CONDITIONAL_NZ; /* Now, we need to determine if signs of the sources are different. * When we XOR the sources, the top bit is 0 if they are the same and 1 * if they are different. We can then use a conditional modifier to * turn that into a predicate. This leads us to an XOR.l instruction. * * Technically, according to the PRM, you're not allowed to use .l on a * XOR instruction. However, empirical experiments and Curro's reading * of the simulator source both indicate that it's safe. */ bld.XOR(op[0], op[1], &inst); inst->predicate = BRW_PREDICATE_NORMAL; inst->conditional_mod = BRW_CONDITIONAL_L; /* If the result of the initial remainder operation is non-zero and the * two sources have different signs, add in a copy of op[1] to get the * final integer modulus value. */ inst = bld.ADD(result, result, op[1]); inst->predicate = BRW_PREDICATE_NORMAL; break; } case nir_op_flt32: case nir_op_fge32: case nir_op_feq32: case nir_op_fneu32: { brw_reg dest = result; const uint32_t bit_size = nir_src_bit_size(instr->src[0].src); if (bit_size != 32) { dest = bld.vgrf(op[0].type); bld.UNDEF(dest); } bld.CMP(dest, op[0], op[1], brw_cmod_for_nir_comparison(instr->op)); if (bit_size > 32) { bld.MOV(result, subscript(dest, BRW_TYPE_UD, 0)); } else if(bit_size < 32) { /* When we convert the result to 32-bit we need to be careful and do * it as a signed conversion to get sign extension (for 32-bit true) */ const brw_reg_type src_type = brw_type_with_size(BRW_TYPE_D, bit_size); bld.MOV(retype(result, BRW_TYPE_D), retype(dest, src_type)); } break; } case nir_op_ilt32: case nir_op_ult32: case nir_op_ige32: case nir_op_uge32: case nir_op_ieq32: case nir_op_ine32: { brw_reg dest = result; const uint32_t bit_size = brw_type_size_bits(op[0].type); if (bit_size != 32) { dest = bld.vgrf(op[0].type); bld.UNDEF(dest); } bld.CMP(dest, op[0], op[1], brw_cmod_for_nir_comparison(instr->op)); if (bit_size > 32) { bld.MOV(result, subscript(dest, BRW_TYPE_UD, 0)); } else if (bit_size < 32) { /* When we convert the result to 32-bit we need to be careful and do * it as a signed conversion to get sign extension (for 32-bit true) */ const brw_reg_type src_type = brw_type_with_size(BRW_TYPE_D, bit_size); bld.MOV(retype(result, BRW_TYPE_D), retype(dest, src_type)); } break; } case nir_op_inot: { nir_alu_instr *inot_src_instr = nir_src_as_alu_instr(instr->src[0].src); if (inot_src_instr != NULL && (inot_src_instr->op == nir_op_ior || inot_src_instr->op == nir_op_ixor || inot_src_instr->op == nir_op_iand)) { /* The sources of the source logical instruction are now the * sources of the instruction that will be generated. */ prepare_alu_destination_and_sources(ntb, bld, inot_src_instr, op, false); resolve_inot_sources(ntb, bld, inot_src_instr, op); /* Smash all of the sources and destination to be signed. This * doesn't matter for the operation of the instruction, but cmod * propagation fails on unsigned sources with negation (due to * fs_inst::can_do_cmod returning false). */ result.type = brw_type_for_nir_type(devinfo, (nir_alu_type)(nir_type_int | instr->def.bit_size)); op[0].type = brw_type_for_nir_type(devinfo, (nir_alu_type)(nir_type_int | nir_src_bit_size(inot_src_instr->src[0].src))); op[1].type = brw_type_for_nir_type(devinfo, (nir_alu_type)(nir_type_int | nir_src_bit_size(inot_src_instr->src[1].src))); /* For XOR, only invert one of the sources. Arbitrarily choose * the first source. */ op[0].negate = !op[0].negate; if (inot_src_instr->op != nir_op_ixor) op[1].negate = !op[1].negate; switch (inot_src_instr->op) { case nir_op_ior: bld.AND(result, op[0], op[1]); return; case nir_op_iand: bld.OR(result, op[0], op[1]); return; case nir_op_ixor: bld.XOR(result, op[0], op[1]); return; default: unreachable("impossible opcode"); } } op[0] = resolve_source_modifiers(bld, op[0]); bld.NOT(result, op[0]); break; } case nir_op_ixor: resolve_inot_sources(ntb, bld, instr, op); bld.XOR(result, op[0], op[1]); break; case nir_op_ior: resolve_inot_sources(ntb, bld, instr, op); bld.OR(result, op[0], op[1]); break; case nir_op_iand: resolve_inot_sources(ntb, bld, instr, op); bld.AND(result, op[0], op[1]); break; case nir_op_fdot2: case nir_op_fdot3: case nir_op_fdot4: case nir_op_b32all_fequal2: case nir_op_b32all_iequal2: case nir_op_b32all_fequal3: case nir_op_b32all_iequal3: case nir_op_b32all_fequal4: case nir_op_b32all_iequal4: case nir_op_b32any_fnequal2: case nir_op_b32any_inequal2: case nir_op_b32any_fnequal3: case nir_op_b32any_inequal3: case nir_op_b32any_fnequal4: case nir_op_b32any_inequal4: unreachable("Lowered by nir_lower_alu_reductions"); case nir_op_ldexp: unreachable("not reached: should be handled by ldexp_to_arith()"); case nir_op_fsqrt: bld.SQRT(result, op[0]); break; case nir_op_frsq: bld.RSQ(result, op[0]); break; case nir_op_ftrunc: bld.RNDZ(result, op[0]); break; case nir_op_fceil: bld.MOV(result, negate(bld.RNDD(negate(op[0])))); break; case nir_op_ffloor: bld.RNDD(result, op[0]); break; case nir_op_ffract: bld.FRC(result, op[0]); break; case nir_op_fround_even: bld.RNDE(result, op[0]); break; case nir_op_fquantize2f16: { brw_reg tmp16 = bld.vgrf(BRW_TYPE_D); brw_reg tmp32 = bld.vgrf(BRW_TYPE_F); /* The destination stride must be at least as big as the source stride. */ tmp16 = subscript(tmp16, BRW_TYPE_HF, 0); /* Check for denormal */ brw_reg abs_src0 = op[0]; abs_src0.abs = true; bld.CMP(bld.null_reg_f(), abs_src0, brw_imm_f(ldexpf(1.0, -14)), BRW_CONDITIONAL_L); /* Get the appropriately signed zero */ brw_reg zero = retype(bld.AND(retype(op[0], BRW_TYPE_UD), brw_imm_ud(0x80000000)), BRW_TYPE_F); /* Do the actual F32 -> F16 -> F32 conversion */ bld.MOV(tmp16, op[0]); bld.MOV(tmp32, tmp16); /* Select that or zero based on normal status */ inst = bld.SEL(result, zero, tmp32); inst->predicate = BRW_PREDICATE_NORMAL; break; } case nir_op_imin: case nir_op_umin: case nir_op_fmin: bld.emit_minmax(result, op[0], op[1], BRW_CONDITIONAL_L); break; case nir_op_imax: case nir_op_umax: case nir_op_fmax: bld.emit_minmax(result, op[0], op[1], BRW_CONDITIONAL_GE); break; case nir_op_pack_snorm_2x16: case nir_op_pack_snorm_4x8: case nir_op_pack_unorm_2x16: case nir_op_pack_unorm_4x8: case nir_op_unpack_snorm_2x16: case nir_op_unpack_snorm_4x8: case nir_op_unpack_unorm_2x16: case nir_op_unpack_unorm_4x8: case nir_op_unpack_half_2x16: case nir_op_pack_half_2x16: unreachable("not reached: should be handled by lower_packing_builtins"); case nir_op_unpack_half_2x16_split_x: bld.MOV(result, subscript(op[0], BRW_TYPE_HF, 0)); break; case nir_op_unpack_half_2x16_split_y: bld.MOV(result, subscript(op[0], BRW_TYPE_HF, 1)); break; case nir_op_pack_64_2x32_split: case nir_op_pack_32_2x16_split: bld.emit(FS_OPCODE_PACK, result, op[0], op[1]); break; case nir_op_pack_32_4x8_split: bld.emit(FS_OPCODE_PACK, result, op, 4); break; case nir_op_unpack_64_2x32_split_x: case nir_op_unpack_64_2x32_split_y: { if (instr->op == nir_op_unpack_64_2x32_split_x) bld.MOV(result, subscript(op[0], BRW_TYPE_UD, 0)); else bld.MOV(result, subscript(op[0], BRW_TYPE_UD, 1)); break; } case nir_op_unpack_32_2x16_split_x: case nir_op_unpack_32_2x16_split_y: { if (instr->op == nir_op_unpack_32_2x16_split_x) bld.MOV(result, subscript(op[0], BRW_TYPE_UW, 0)); else bld.MOV(result, subscript(op[0], BRW_TYPE_UW, 1)); break; } case nir_op_fpow: bld.POW(result, op[0], op[1]); break; case nir_op_bitfield_reverse: assert(instr->def.bit_size == 32); assert(nir_src_bit_size(instr->src[0].src) == 32); bld.BFREV(result, op[0]); break; case nir_op_bit_count: assert(instr->def.bit_size == 32); assert(nir_src_bit_size(instr->src[0].src) < 64); bld.CBIT(result, op[0]); break; case nir_op_uclz: assert(instr->def.bit_size == 32); assert(nir_src_bit_size(instr->src[0].src) == 32); bld.LZD(retype(result, BRW_TYPE_UD), op[0]); break; case nir_op_ifind_msb: { assert(instr->def.bit_size == 32); assert(nir_src_bit_size(instr->src[0].src) == 32); brw_reg tmp = bld.FBH(retype(op[0], BRW_TYPE_D)); /* FBH counts from the MSB side, while GLSL's findMSB() wants the count * from the LSB side. If FBH didn't return an error (0xFFFFFFFF), then * subtract the result from 31 to convert the MSB count into an LSB * count. */ brw_reg count_from_lsb = bld.ADD(negate(tmp), brw_imm_w(31)); /* The high word of the FBH result will be 0xffff or 0x0000. After * calculating 31 - fbh, we can obtain the correct result for * ifind_msb(0) by ORing the (sign extended) upper word of the * intermediate result. */ bld.OR(result, count_from_lsb, subscript(tmp, BRW_TYPE_W, 1)); break; } case nir_op_find_lsb: assert(instr->def.bit_size == 32); assert(nir_src_bit_size(instr->src[0].src) == 32); bld.FBL(result, op[0]); break; case nir_op_ubitfield_extract: case nir_op_ibitfield_extract: unreachable("should have been lowered"); case nir_op_ubfe: case nir_op_ibfe: assert(instr->def.bit_size < 64); bld.BFE(result, op[2], op[1], op[0]); break; case nir_op_bfm: assert(instr->def.bit_size < 64); bld.BFI1(result, op[0], op[1]); break; case nir_op_bfi: assert(instr->def.bit_size < 64); /* bfi is ((...) | (~src0 & src2)). The second part is zero when src2 is * either 0 or src0. Replacing the 0 with another value can eliminate a * temporary register. */ if (is_const_zero(instr->src[2].src)) bld.BFI2(result, op[0], op[1], op[0]); else bld.BFI2(result, op[0], op[1], op[2]); break; case nir_op_bitfield_insert: unreachable("not reached: should have been lowered"); /* With regards to implicit masking of the shift counts for 8- and 16-bit * types, the PRMs are **incorrect**. They falsely state that on Gen9+ only * the low bits of src1 matching the size of src0 (e.g., 4-bits for W or UW * src0) are used. The Bspec (backed by data from experimentation) state * that 0x3f is used for Q and UQ types, and 0x1f is used for **all** other * types. * * The match the behavior expected for the NIR opcodes, explicit masks for * 8- and 16-bit types must be added. */ case nir_op_ishl: if (instr->def.bit_size < 32) { bld.SHL(result, op[0], bld.AND(op[1], brw_imm_ud(instr->def.bit_size - 1))); } else { bld.SHL(result, op[0], op[1]); } break; case nir_op_ishr: if (instr->def.bit_size < 32) { bld.ASR(result, op[0], bld.AND(op[1], brw_imm_ud(instr->def.bit_size - 1))); } else { bld.ASR(result, op[0], op[1]); } break; case nir_op_ushr: if (instr->def.bit_size < 32) { bld.SHR(result, op[0], bld.AND(op[1], brw_imm_ud(instr->def.bit_size - 1))); } else { bld.SHR(result, op[0], op[1]); } break; case nir_op_urol: bld.ROL(result, op[0], op[1]); break; case nir_op_uror: bld.ROR(result, op[0], op[1]); break; case nir_op_pack_half_2x16_split: bld.emit(FS_OPCODE_PACK_HALF_2x16_SPLIT, result, op[0], op[1]); break; case nir_op_sdot_4x8_iadd: case nir_op_sdot_4x8_iadd_sat: inst = bld.DP4A(retype(result, BRW_TYPE_D), retype(op[2], BRW_TYPE_D), retype(op[0], BRW_TYPE_D), retype(op[1], BRW_TYPE_D)); if (instr->op == nir_op_sdot_4x8_iadd_sat) inst->saturate = true; break; case nir_op_udot_4x8_uadd: case nir_op_udot_4x8_uadd_sat: inst = bld.DP4A(retype(result, BRW_TYPE_UD), retype(op[2], BRW_TYPE_UD), retype(op[0], BRW_TYPE_UD), retype(op[1], BRW_TYPE_UD)); if (instr->op == nir_op_udot_4x8_uadd_sat) inst->saturate = true; break; case nir_op_sudot_4x8_iadd: case nir_op_sudot_4x8_iadd_sat: inst = bld.DP4A(retype(result, BRW_TYPE_D), retype(op[2], BRW_TYPE_D), retype(op[0], BRW_TYPE_D), retype(op[1], BRW_TYPE_UD)); if (instr->op == nir_op_sudot_4x8_iadd_sat) inst->saturate = true; break; case nir_op_ffma: if (nir_has_any_rounding_mode_enabled(execution_mode)) { brw_rnd_mode rnd = brw_rnd_mode_from_execution_mode(execution_mode); bld.exec_all().emit(SHADER_OPCODE_RND_MODE, bld.null_reg_ud(), brw_imm_d(rnd)); } bld.MAD(result, op[2], op[1], op[0]); break; case nir_op_flrp: if (nir_has_any_rounding_mode_enabled(execution_mode)) { brw_rnd_mode rnd = brw_rnd_mode_from_execution_mode(execution_mode); bld.exec_all().emit(SHADER_OPCODE_RND_MODE, bld.null_reg_ud(), brw_imm_d(rnd)); } bld.LRP(result, op[0], op[1], op[2]); break; case nir_op_b32csel: if (optimize_frontfacing_ternary(ntb, instr, result)) return; bld.CMP(bld.null_reg_d(), op[0], brw_imm_d(0), BRW_CONDITIONAL_NZ); inst = bld.SEL(result, op[1], op[2]); inst->predicate = BRW_PREDICATE_NORMAL; break; case nir_op_fcsel: bld.CSEL(result, op[1], op[2], op[0], BRW_CONDITIONAL_NZ); break; case nir_op_fcsel_gt: bld.CSEL(result, op[1], op[2], op[0], BRW_CONDITIONAL_G); break; case nir_op_fcsel_ge: bld.CSEL(result, op[1], op[2], op[0], BRW_CONDITIONAL_GE); break; case nir_op_extract_u8: case nir_op_extract_i8: { const brw_reg_type type = brw_int_type(1, instr->op == nir_op_extract_i8); unsigned byte = nir_src_as_uint(instr->src[1].src); /* The PRMs say: * * BDW+ * There is no direct conversion from B/UB to Q/UQ or Q/UQ to B/UB. * Use two instructions and a word or DWord intermediate integer type. */ if (instr->def.bit_size == 64) { if (instr->op == nir_op_extract_i8) { /* If we need to sign extend, extract to a word first */ brw_reg w_temp = bld.vgrf(BRW_TYPE_W); bld.MOV(w_temp, subscript(op[0], type, byte)); bld.MOV(result, w_temp); } else if (byte & 1) { /* Extract the high byte from the word containing the desired byte * offset. */ bld.SHR(result, subscript(op[0], BRW_TYPE_UW, byte / 2), brw_imm_uw(8)); } else { /* Otherwise use an AND with 0xff and a word type */ bld.AND(result, subscript(op[0], BRW_TYPE_UW, byte / 2), brw_imm_uw(0xff)); } } else { bld.MOV(result, subscript(op[0], type, byte)); } break; } case nir_op_extract_u16: case nir_op_extract_i16: { const brw_reg_type type = brw_int_type(2, instr->op == nir_op_extract_i16); unsigned word = nir_src_as_uint(instr->src[1].src); bld.MOV(result, subscript(op[0], type, word)); break; } default: unreachable("unhandled instruction"); } } static void fs_nir_emit_load_const(nir_to_brw_state &ntb, nir_load_const_instr *instr) { const intel_device_info *devinfo = ntb.devinfo; const fs_builder &bld = ntb.bld; const brw_reg_type reg_type = brw_type_with_size(BRW_TYPE_D, instr->def.bit_size); brw_reg reg = bld.vgrf(reg_type, instr->def.num_components); brw_reg comps[NIR_MAX_VEC_COMPONENTS]; switch (instr->def.bit_size) { case 8: for (unsigned i = 0; i < instr->def.num_components; i++) comps[i] = setup_imm_b(bld, instr->value[i].i8); break; case 16: for (unsigned i = 0; i < instr->def.num_components; i++) comps[i] = brw_imm_w(instr->value[i].i16); break; case 32: for (unsigned i = 0; i < instr->def.num_components; i++) comps[i] = brw_imm_d(instr->value[i].i32); break; case 64: if (!devinfo->has_64bit_int) { reg.type = BRW_TYPE_DF; for (unsigned i = 0; i < instr->def.num_components; i++) comps[i] = brw_imm_df(instr->value[i].f64); } else { for (unsigned i = 0; i < instr->def.num_components; i++) comps[i] = brw_imm_q(instr->value[i].i64); } break; default: unreachable("Invalid bit size"); } bld.VEC(reg, comps, instr->def.num_components); ntb.ssa_values[instr->def.index] = reg; } static bool get_nir_src_bindless(nir_to_brw_state &ntb, const nir_src &src) { return ntb.ssa_bind_infos[src.ssa->index].bindless; } static bool is_resource_src(nir_src src) { return src.ssa->parent_instr->type == nir_instr_type_intrinsic && nir_instr_as_intrinsic(src.ssa->parent_instr)->intrinsic == nir_intrinsic_resource_intel; } static brw_reg get_resource_nir_src(nir_to_brw_state &ntb, const nir_src &src) { if (!is_resource_src(src)) return brw_reg(); return ntb.uniform_values[src.ssa->index]; } static brw_reg get_nir_src(nir_to_brw_state &ntb, const nir_src &src) { nir_intrinsic_instr *load_reg = nir_load_reg_for_def(src.ssa); brw_reg reg; if (!load_reg) { if (nir_src_is_undef(src)) { const brw_reg_type reg_type = brw_type_with_size(BRW_TYPE_D, src.ssa->bit_size); reg = ntb.bld.vgrf(reg_type, src.ssa->num_components); } else { reg = ntb.ssa_values[src.ssa->index]; } } else { nir_intrinsic_instr *decl_reg = nir_reg_get_decl(load_reg->src[0].ssa); /* We don't handle indirects on locals */ assert(nir_intrinsic_base(load_reg) == 0); assert(load_reg->intrinsic != nir_intrinsic_load_reg_indirect); reg = ntb.ssa_values[decl_reg->def.index]; } /* To avoid floating-point denorm flushing problems, set the type by * default to an integer type - instructions that need floating point * semantics will set this to F if they need to */ reg.type = brw_type_with_size(BRW_TYPE_D, nir_src_bit_size(src)); return reg; } /** * Return an IMM for constants; otherwise call get_nir_src() as normal. * * This function should not be called on any value which may be 64 bits. * We could theoretically support 64-bit on gfx8+ but we choose not to * because it wouldn't work in general (no gfx7 support) and there are * enough restrictions in 64-bit immediates that you can't take the return * value and treat it the same as the result of get_nir_src(). */ static brw_reg get_nir_src_imm(nir_to_brw_state &ntb, const nir_src &src) { assert(nir_src_bit_size(src) == 32); return nir_src_is_const(src) ? brw_reg(brw_imm_d(nir_src_as_int(src))) : get_nir_src(ntb, src); } static brw_reg get_nir_def(nir_to_brw_state &ntb, const nir_def &def) { const fs_builder &bld = ntb.bld; nir_intrinsic_instr *store_reg = nir_store_reg_for_def(&def); if (!store_reg) { const brw_reg_type reg_type = brw_type_with_size(def.bit_size == 8 ? BRW_TYPE_D : BRW_TYPE_F, def.bit_size); ntb.ssa_values[def.index] = bld.vgrf(reg_type, def.num_components); if (def.bit_size * bld.dispatch_width() < 8 * REG_SIZE) bld.UNDEF(ntb.ssa_values[def.index]); return ntb.ssa_values[def.index]; } else { nir_intrinsic_instr *decl_reg = nir_reg_get_decl(store_reg->src[1].ssa); /* We don't handle indirects on locals */ assert(nir_intrinsic_base(store_reg) == 0); assert(store_reg->intrinsic != nir_intrinsic_store_reg_indirect); return ntb.ssa_values[decl_reg->def.index]; } } static nir_component_mask_t get_nir_write_mask(const nir_def &def) { nir_intrinsic_instr *store_reg = nir_store_reg_for_def(&def); if (!store_reg) { return nir_component_mask(def.num_components); } else { return nir_intrinsic_write_mask(store_reg); } } static fs_inst * emit_pixel_interpolater_send(const fs_builder &bld, enum opcode opcode, const brw_reg &dst, const brw_reg &src, const brw_reg &desc, const brw_reg &flag_reg, glsl_interp_mode interpolation) { struct brw_wm_prog_data *wm_prog_data = brw_wm_prog_data(bld.shader->prog_data); brw_reg srcs[INTERP_NUM_SRCS]; srcs[INTERP_SRC_OFFSET] = src; srcs[INTERP_SRC_MSG_DESC] = desc; srcs[INTERP_SRC_DYNAMIC_MODE] = flag_reg; fs_inst *inst = bld.emit(opcode, dst, srcs, INTERP_NUM_SRCS); /* 2 floats per slot returned */ inst->size_written = 2 * dst.component_size(inst->exec_size); if (interpolation == INTERP_MODE_NOPERSPECTIVE) { inst->pi_noperspective = true; /* TGL BSpec says: * This field cannot be set to "Linear Interpolation" * unless Non-Perspective Barycentric Enable in 3DSTATE_CLIP is enabled" */ wm_prog_data->uses_nonperspective_interp_modes = true; } wm_prog_data->pulls_bary = true; return inst; } /** * Return the specified component \p subreg of a per-polygon PS * payload register for the polygon corresponding to each channel * specified in the provided \p bld. * * \p reg specifies the payload register in REG_SIZE units for the * first polygon dispatched to the thread. This function requires * that subsequent registers on the payload contain the corresponding * register for subsequent polygons, one GRF register per polygon, if * multiple polygons are being processed by the same PS thread. * * This can be used to access the value of a "Source Depth and/or W * Attribute Vertex Deltas", "Perspective Bary Planes" or * "Non-Perspective Bary Planes" payload field conveniently for * multiple polygons as a single brw_reg. */ static brw_reg fetch_polygon_reg(const fs_builder &bld, unsigned reg, unsigned subreg) { const fs_visitor *shader = bld.shader; assert(shader->stage == MESA_SHADER_FRAGMENT); const struct intel_device_info *devinfo = shader->devinfo; const unsigned poly_width = shader->dispatch_width / shader->max_polygons; const unsigned poly_idx = bld.group() / poly_width; assert(bld.group() % poly_width == 0); if (bld.dispatch_width() > poly_width) { assert(bld.dispatch_width() <= 2 * poly_width); const unsigned reg_size = reg_unit(devinfo) * REG_SIZE; const unsigned vstride = reg_size / brw_type_size_bytes(BRW_TYPE_F); return stride(brw_vec1_grf(reg + reg_unit(devinfo) * poly_idx, subreg), vstride, poly_width, 0); } else { return brw_vec1_grf(reg + reg_unit(devinfo) * poly_idx, subreg); } } /** * Interpolate per-polygon barycentrics at a specific offset relative * to each channel fragment coordinates, optionally using * perspective-correct interpolation if requested. This is mostly * useful as replacement for the PI shared function that existed on * platforms prior to Xe2, but is expected to work on earlier * platforms since we can get the required polygon setup information * from the thread payload as far back as ICL. */ static void emit_pixel_interpolater_alu_at_offset(const fs_builder &bld, const brw_reg &dst, const brw_reg &offs, glsl_interp_mode interpolation) { const fs_visitor *shader = bld.shader; assert(shader->stage == MESA_SHADER_FRAGMENT); const intel_device_info *devinfo = shader->devinfo; assert(devinfo->ver >= 11); const fs_thread_payload &payload = shader->fs_payload(); const struct brw_wm_prog_data *wm_prog_data = brw_wm_prog_data(shader->prog_data); if (interpolation == INTERP_MODE_NOPERSPECTIVE) { assert(wm_prog_data->uses_npc_bary_coefficients && wm_prog_data->uses_nonperspective_interp_modes); } else { assert(interpolation == INTERP_MODE_SMOOTH); assert(wm_prog_data->uses_pc_bary_coefficients && wm_prog_data->uses_depth_w_coefficients); } /* Account for half-pixel X/Y coordinate offset. */ const brw_reg off_x = bld.vgrf(BRW_TYPE_F); bld.ADD(off_x, offs, brw_imm_f(0.5)); const brw_reg off_y = bld.vgrf(BRW_TYPE_F); bld.ADD(off_y, offset(offs, bld, 1), brw_imm_f(0.5)); /* Process no more than two polygons at a time to avoid hitting * regioning restrictions. */ const unsigned poly_width = shader->dispatch_width / shader->max_polygons; for (unsigned i = 0; i < DIV_ROUND_UP(shader->max_polygons, 2); i++) { const fs_builder ibld = bld.group(MIN2(bld.dispatch_width(), 2 * poly_width), i); /* Fetch needed parameters from the thread payload. */ const unsigned bary_coef_reg = interpolation == INTERP_MODE_NOPERSPECTIVE ? payload.npc_bary_coef_reg : payload.pc_bary_coef_reg; const brw_reg start_x = devinfo->ver < 12 ? fetch_polygon_reg(ibld, 1, 1) : fetch_polygon_reg(ibld, bary_coef_reg, devinfo->ver >= 20 ? 6 : 2); const brw_reg start_y = devinfo->ver < 12 ? fetch_polygon_reg(ibld, 1, 6) : fetch_polygon_reg(ibld, bary_coef_reg, devinfo->ver >= 20 ? 7 : 6); const brw_reg bary1_c0 = fetch_polygon_reg(ibld, bary_coef_reg, devinfo->ver >= 20 ? 2 : 3); const brw_reg bary1_cx = fetch_polygon_reg(ibld, bary_coef_reg, 1); const brw_reg bary1_cy = fetch_polygon_reg(ibld, bary_coef_reg, 0); const brw_reg bary2_c0 = fetch_polygon_reg(ibld, bary_coef_reg, devinfo->ver >= 20 ? 5 : 7); const brw_reg bary2_cx = fetch_polygon_reg(ibld, bary_coef_reg, devinfo->ver >= 20 ? 4 : 5); const brw_reg bary2_cy = fetch_polygon_reg(ibld, bary_coef_reg, devinfo->ver >= 20 ? 3 : 4); const brw_reg rhw_c0 = devinfo->ver >= 20 ? fetch_polygon_reg(ibld, payload.depth_w_coef_reg + 1, 5) : fetch_polygon_reg(ibld, payload.depth_w_coef_reg, 7); const brw_reg rhw_cx = devinfo->ver >= 20 ? fetch_polygon_reg(ibld, payload.depth_w_coef_reg + 1, 4) : fetch_polygon_reg(ibld, payload.depth_w_coef_reg, 5); const brw_reg rhw_cy = devinfo->ver >= 20 ? fetch_polygon_reg(ibld, payload.depth_w_coef_reg + 1, 3) : fetch_polygon_reg(ibld, payload.depth_w_coef_reg, 4); /* Compute X/Y coordinate deltas relative to the origin of the polygon. */ const brw_reg delta_x = ibld.vgrf(BRW_TYPE_F); ibld.ADD(delta_x, offset(shader->pixel_x, ibld, i), negate(start_x)); ibld.ADD(delta_x, delta_x, offset(off_x, ibld, i)); const brw_reg delta_y = ibld.vgrf(BRW_TYPE_F); ibld.ADD(delta_y, offset(shader->pixel_y, ibld, i), negate(start_y)); ibld.ADD(delta_y, delta_y, offset(off_y, ibld, i)); /* Evaluate the plane equations obtained above for the * barycentrics and RHW coordinate at the offset specified for * each channel. Limit arithmetic to acc_width in order to * allow the accumulator to be used for linear interpolation. */ const unsigned acc_width = 16 * reg_unit(devinfo); const brw_reg rhw = ibld.vgrf(BRW_TYPE_F); const brw_reg bary1 = ibld.vgrf(BRW_TYPE_F); const brw_reg bary2 = ibld.vgrf(BRW_TYPE_F); for (unsigned j = 0; j < DIV_ROUND_UP(ibld.dispatch_width(), acc_width); j++) { const fs_builder jbld = ibld.group(MIN2(ibld.dispatch_width(), acc_width), j); const brw_reg acc = suboffset(brw_acc_reg(16), jbld.group() % acc_width); if (interpolation != INTERP_MODE_NOPERSPECTIVE) { jbld.MAD(acc, horiz_offset(rhw_c0, acc_width * j), horiz_offset(rhw_cx, acc_width * j), offset(delta_x, jbld, j)); jbld.MAC(offset(rhw, jbld, j), horiz_offset(rhw_cy, acc_width * j), offset(delta_y, jbld, j)); } jbld.MAD(acc, horiz_offset(bary1_c0, acc_width * j), horiz_offset(bary1_cx, acc_width * j), offset(delta_x, jbld, j)); jbld.MAC(offset(bary1, jbld, j), horiz_offset(bary1_cy, acc_width * j), offset(delta_y, jbld, j)); jbld.MAD(acc, horiz_offset(bary2_c0, acc_width * j), horiz_offset(bary2_cx, acc_width * j), offset(delta_x, jbld, j)); jbld.MAC(offset(bary2, jbld, j), horiz_offset(bary2_cy, acc_width * j), offset(delta_y, jbld, j)); } /* Scale the results dividing by the interpolated RHW coordinate * if the interpolation is required to be perspective-correct. */ if (interpolation == INTERP_MODE_NOPERSPECTIVE) { ibld.MOV(offset(dst, ibld, i), bary1); ibld.MOV(offset(offset(dst, bld, 1), ibld, i), bary2); } else { const brw_reg w = ibld.vgrf(BRW_TYPE_F); ibld.emit(SHADER_OPCODE_RCP, w, rhw); ibld.MUL(offset(dst, ibld, i), bary1, w); ibld.MUL(offset(offset(dst, bld, 1), ibld, i), bary2, w); } } } /** * Interpolate per-polygon barycentrics at a specified sample index, * optionally using perspective-correct interpolation if requested. * This is mostly useful as replacement for the PI shared function * that existed on platforms prior to Xe2, but is expected to work on * earlier platforms since we can get the required polygon setup * information from the thread payload as far back as ICL. */ static void emit_pixel_interpolater_alu_at_sample(const fs_builder &bld, const brw_reg &dst, const brw_reg &idx, glsl_interp_mode interpolation) { const fs_thread_payload &payload = bld.shader->fs_payload(); const struct brw_wm_prog_data *wm_prog_data = brw_wm_prog_data(bld.shader->prog_data); const fs_builder ubld = bld.exec_all().group(16, 0); const brw_reg sample_offs_xy = ubld.vgrf(BRW_TYPE_UD); assert(wm_prog_data->uses_sample_offsets); /* Interleave the X/Y coordinates of each sample in order to allow * a single indirect look-up, by using a MOV for the 16 X * coordinates, then another MOV for the 16 Y coordinates. */ for (unsigned i = 0; i < 2; i++) { const brw_reg reg = retype(brw_vec16_grf(payload.sample_offsets_reg, 4 * i), BRW_TYPE_UB); ubld.MOV(subscript(sample_offs_xy, BRW_TYPE_UW, i), reg); } /* Use indirect addressing to fetch the X/Y offsets of the sample * index provided for each channel. */ const brw_reg idx_b = bld.vgrf(BRW_TYPE_UD); bld.MUL(idx_b, idx, brw_imm_ud(brw_type_size_bytes(BRW_TYPE_UD))); const brw_reg off_xy = bld.vgrf(BRW_TYPE_UD); bld.emit(SHADER_OPCODE_MOV_INDIRECT, off_xy, component(sample_offs_xy, 0), idx_b, brw_imm_ud(16 * brw_type_size_bytes(BRW_TYPE_UD))); /* Convert the selected fixed-point offsets to floating-point * offsets. */ const brw_reg offs = bld.vgrf(BRW_TYPE_F, 2); for (unsigned i = 0; i < 2; i++) { const brw_reg tmp = bld.vgrf(BRW_TYPE_F); bld.MOV(tmp, subscript(off_xy, BRW_TYPE_UW, i)); bld.MUL(tmp, tmp, brw_imm_f(0.0625)); bld.ADD(offset(offs, bld, i), tmp, brw_imm_f(-0.5)); } /* Interpolate at the resulting offsets. */ emit_pixel_interpolater_alu_at_offset(bld, dst, offs, interpolation); } /** * Computes 1 << x, given a D/UD register containing some value x. */ static brw_reg intexp2(const fs_builder &bld, const brw_reg &x) { assert(x.type == BRW_TYPE_UD || x.type == BRW_TYPE_D); return bld.SHL(bld.MOV(retype(brw_imm_d(1), x.type)), x); } static void emit_gs_end_primitive(nir_to_brw_state &ntb, const nir_src &vertex_count_nir_src) { fs_visitor &s = ntb.s; assert(s.stage == MESA_SHADER_GEOMETRY); struct brw_gs_prog_data *gs_prog_data = brw_gs_prog_data(s.prog_data); if (s.gs_compile->control_data_header_size_bits == 0) return; /* We can only do EndPrimitive() functionality when the control data * consists of cut bits. Fortunately, the only time it isn't is when the * output type is points, in which case EndPrimitive() is a no-op. */ if (gs_prog_data->control_data_format != GFX7_GS_CONTROL_DATA_FORMAT_GSCTL_CUT) { return; } /* Cut bits use one bit per vertex. */ assert(s.gs_compile->control_data_bits_per_vertex == 1); brw_reg vertex_count = get_nir_src(ntb, vertex_count_nir_src); vertex_count.type = BRW_TYPE_UD; /* Cut bit n should be set to 1 if EndPrimitive() was called after emitting * vertex n, 0 otherwise. So all we need to do here is mark bit * (vertex_count - 1) % 32 in the cut_bits register to indicate that * EndPrimitive() was called after emitting vertex (vertex_count - 1); * vec4_gs_visitor::emit_control_data_bits() will take care of the rest. * * Note that if EndPrimitive() is called before emitting any vertices, this * will cause us to set bit 31 of the control_data_bits register to 1. * That's fine because: * * - If max_vertices < 32, then vertex number 31 (zero-based) will never be * output, so the hardware will ignore cut bit 31. * * - If max_vertices == 32, then vertex number 31 is guaranteed to be the * last vertex, so setting cut bit 31 has no effect (since the primitive * is automatically ended when the GS terminates). * * - If max_vertices > 32, then the ir_emit_vertex visitor will reset the * control_data_bits register to 0 when the first vertex is emitted. */ const fs_builder abld = ntb.bld.annotate("end primitive"); /* control_data_bits |= 1 << ((vertex_count - 1) % 32) */ brw_reg prev_count = abld.ADD(vertex_count, brw_imm_ud(0xffffffffu)); brw_reg mask = intexp2(abld, prev_count); /* Note: we're relying on the fact that the GEN SHL instruction only pays * attention to the lower 5 bits of its second source argument, so on this * architecture, 1 << (vertex_count - 1) is equivalent to 1 << * ((vertex_count - 1) % 32). */ abld.OR(s.control_data_bits, s.control_data_bits, mask); } brw_reg fs_visitor::gs_urb_per_slot_dword_index(const brw_reg &vertex_count) { /* We use a single UD register to accumulate control data bits (32 bits * for each of the SIMD8 channels). So we need to write a DWord (32 bits) * at a time. * * On platforms < Xe2: * Unfortunately,the URB_WRITE_SIMD8 message uses 128-bit (OWord) * offsets. We have select a 128-bit group via the Global and Per-Slot * Offsets, then use the Channel Mask phase to enable/disable which DWord * within that group to write. (Remember, different SIMD8 channels may * have emitted different numbers of vertices, so we may need per-slot * offsets.) * * Channel masking presents an annoying problem: we may have to replicate * the data up to 4 times: * * Msg = Handles, Per-Slot Offsets, Channel Masks, Data, Data, Data, * Data. * * To avoid penalizing shaders that emit a small number of vertices, we * can avoid these sometimes: if the size of the control data header is * <= 128 bits, then there is only 1 OWord. All SIMD8 channels will land * land in the same 128-bit group, so we can skip per-slot offsets. * * Similarly, if the control data header is <= 32 bits, there is only one * DWord, so we can skip channel masks. */ const fs_builder bld = fs_builder(this).at_end(); const fs_builder abld = bld.annotate("urb per slot offset"); /* Figure out which DWord we're trying to write to using the formula: * * dword_index = (vertex_count - 1) * bits_per_vertex / 32 * * Since bits_per_vertex is a power of two, and is known at compile * time, this can be optimized to: * * dword_index = (vertex_count - 1) >> (6 - log2(bits_per_vertex)) */ brw_reg prev_count = abld.ADD(vertex_count, brw_imm_ud(0xffffffffu)); unsigned log2_bits_per_vertex = util_last_bit(gs_compile->control_data_bits_per_vertex); return abld.SHR(prev_count, brw_imm_ud(6u - log2_bits_per_vertex)); } brw_reg fs_visitor::gs_urb_channel_mask(const brw_reg &dword_index) { brw_reg channel_mask; /* Xe2+ can do URB loads with a byte offset, so we don't need to * construct a channel mask. */ if (devinfo->ver >= 20) return channel_mask; /* Channel masking presents an annoying problem: we may have to replicate * the data up to 4 times: * * Msg = Handles, Per-Slot Offsets, Channel Masks, Data, Data, Data, Data. * * To avoid penalizing shaders that emit a small number of vertices, we * can avoid these sometimes: if the size of the control data header is * <= 128 bits, then there is only 1 OWord. All SIMD8 channels will land * land in the same 128-bit group, so we can skip per-slot offsets. * * Similarly, if the control data header is <= 32 bits, there is only one * DWord, so we can skip channel masks. */ if (gs_compile->control_data_header_size_bits <= 32) return channel_mask; const fs_builder bld = fs_builder(this).at_end(); const fs_builder ubld = bld.exec_all(); /* Set the channel masks to 1 << (dword_index % 4), so that we'll * write to the appropriate DWORD within the OWORD. */ brw_reg channel = ubld.AND(dword_index, brw_imm_ud(3u)); /* Then the channel masks need to be in bits 23:16. */ return ubld.SHL(intexp2(ubld, channel), brw_imm_ud(16u)); } void fs_visitor::emit_gs_control_data_bits(const brw_reg &vertex_count) { assert(stage == MESA_SHADER_GEOMETRY); assert(gs_compile->control_data_bits_per_vertex != 0); const struct brw_gs_prog_data *gs_prog_data = brw_gs_prog_data(prog_data); const fs_builder bld = fs_builder(this).at_end(); const fs_builder abld = bld.annotate("emit control data bits"); brw_reg dword_index = gs_urb_per_slot_dword_index(vertex_count); brw_reg channel_mask = gs_urb_channel_mask(dword_index); brw_reg per_slot_offset; const unsigned max_control_data_header_size_bits = devinfo->ver >= 20 ? 32 : 128; if (gs_compile->control_data_header_size_bits > max_control_data_header_size_bits) { /* Convert dword_index to bytes on Xe2+ since LSC can do operate on byte * offset granularity. */ if (devinfo->ver >= 20) { per_slot_offset = abld.SHL(dword_index, brw_imm_ud(2u)); } else { /* Set the per-slot offset to dword_index / 4, so that we'll write to * the appropriate OWord within the control data header. */ per_slot_offset = abld.SHR(dword_index, brw_imm_ud(2u)); } } /* If there are channel masks, add 3 extra copies of the data. */ const unsigned length = 1 + 3 * unsigned(channel_mask.file != BAD_FILE); assert(length <= 4); brw_reg sources[4]; for (unsigned i = 0; i < length; i++) sources[i] = this->control_data_bits; brw_reg srcs[URB_LOGICAL_NUM_SRCS]; srcs[URB_LOGICAL_SRC_HANDLE] = gs_payload().urb_handles; srcs[URB_LOGICAL_SRC_PER_SLOT_OFFSETS] = per_slot_offset; srcs[URB_LOGICAL_SRC_CHANNEL_MASK] = channel_mask; srcs[URB_LOGICAL_SRC_DATA] = bld.vgrf(BRW_TYPE_F, length); srcs[URB_LOGICAL_SRC_COMPONENTS] = brw_imm_ud(length); abld.LOAD_PAYLOAD(srcs[URB_LOGICAL_SRC_DATA], sources, length, 0); fs_inst *inst = abld.emit(SHADER_OPCODE_URB_WRITE_LOGICAL, reg_undef, srcs, ARRAY_SIZE(srcs)); /* We need to increment Global Offset by 256-bits to make room for * Broadwell's extra "Vertex Count" payload at the beginning of the * URB entry. Since this is an OWord message, Global Offset is counted * in 128-bit units, so we must set it to 2. */ if (gs_prog_data->static_vertex_count == -1) inst->offset = 2; } static void set_gs_stream_control_data_bits(nir_to_brw_state &ntb, const brw_reg &vertex_count, unsigned stream_id) { fs_visitor &s = ntb.s; /* control_data_bits |= stream_id << ((2 * (vertex_count - 1)) % 32) */ /* Note: we are calling this *before* increasing vertex_count, so * this->vertex_count == vertex_count - 1 in the formula above. */ /* Stream mode uses 2 bits per vertex */ assert(s.gs_compile->control_data_bits_per_vertex == 2); /* Must be a valid stream */ assert(stream_id < 4); /* MAX_VERTEX_STREAMS */ /* Control data bits are initialized to 0 so we don't have to set any * bits when sending vertices to stream 0. */ if (stream_id == 0) return; const fs_builder abld = ntb.bld.annotate("set stream control data bits"); /* reg::sid = stream_id */ brw_reg sid = abld.MOV(brw_imm_ud(stream_id)); /* reg:shift_count = 2 * (vertex_count - 1) */ brw_reg shift_count = abld.SHL(vertex_count, brw_imm_ud(1u)); /* Note: we're relying on the fact that the GEN SHL instruction only pays * attention to the lower 5 bits of its second source argument, so on this * architecture, stream_id << 2 * (vertex_count - 1) is equivalent to * stream_id << ((2 * (vertex_count - 1)) % 32). */ brw_reg mask = abld.SHL(sid, shift_count); abld.OR(s.control_data_bits, s.control_data_bits, mask); } static void emit_gs_vertex(nir_to_brw_state &ntb, const nir_src &vertex_count_nir_src, unsigned stream_id) { fs_visitor &s = ntb.s; assert(s.stage == MESA_SHADER_GEOMETRY); struct brw_gs_prog_data *gs_prog_data = brw_gs_prog_data(s.prog_data); brw_reg vertex_count = get_nir_src(ntb, vertex_count_nir_src); vertex_count.type = BRW_TYPE_UD; /* Haswell and later hardware ignores the "Render Stream Select" bits * from the 3DSTATE_STREAMOUT packet when the SOL stage is disabled, * and instead sends all primitives down the pipeline for rasterization. * If the SOL stage is enabled, "Render Stream Select" is honored and * primitives bound to non-zero streams are discarded after stream output. * * Since the only purpose of primives sent to non-zero streams is to * be recorded by transform feedback, we can simply discard all geometry * bound to these streams when transform feedback is disabled. */ if (stream_id > 0 && !s.nir->info.has_transform_feedback_varyings) return; /* If we're outputting 32 control data bits or less, then we can wait * until the shader is over to output them all. Otherwise we need to * output them as we go. Now is the time to do it, since we're about to * output the vertex_count'th vertex, so it's guaranteed that the * control data bits associated with the (vertex_count - 1)th vertex are * correct. */ if (s.gs_compile->control_data_header_size_bits > 32) { const fs_builder abld = ntb.bld.annotate("emit vertex: emit control data bits"); /* Only emit control data bits if we've finished accumulating a batch * of 32 bits. This is the case when: * * (vertex_count * bits_per_vertex) % 32 == 0 * * (in other words, when the last 5 bits of vertex_count * * bits_per_vertex are 0). Assuming bits_per_vertex == 2^n for some * integer n (which is always the case, since bits_per_vertex is * always 1 or 2), this is equivalent to requiring that the last 5-n * bits of vertex_count are 0: * * vertex_count & (2^(5-n) - 1) == 0 * * 2^(5-n) == 2^5 / 2^n == 32 / bits_per_vertex, so this is * equivalent to: * * vertex_count & (32 / bits_per_vertex - 1) == 0 * * TODO: If vertex_count is an immediate, we could do some of this math * at compile time... */ fs_inst *inst = abld.AND(ntb.bld.null_reg_d(), vertex_count, brw_imm_ud(32u / s.gs_compile->control_data_bits_per_vertex - 1u)); inst->conditional_mod = BRW_CONDITIONAL_Z; abld.IF(BRW_PREDICATE_NORMAL); /* If vertex_count is 0, then no control data bits have been * accumulated yet, so we can skip emitting them. */ abld.CMP(ntb.bld.null_reg_d(), vertex_count, brw_imm_ud(0u), BRW_CONDITIONAL_NEQ); abld.IF(BRW_PREDICATE_NORMAL); s.emit_gs_control_data_bits(vertex_count); abld.emit(BRW_OPCODE_ENDIF); /* Reset control_data_bits to 0 so we can start accumulating a new * batch. * * Note: in the case where vertex_count == 0, this neutralizes the * effect of any call to EndPrimitive() that the shader may have * made before outputting its first vertex. */ abld.exec_all().MOV(s.control_data_bits, brw_imm_ud(0u)); abld.emit(BRW_OPCODE_ENDIF); } s.emit_urb_writes(vertex_count); /* In stream mode we have to set control data bits for all vertices * unless we have disabled control data bits completely (which we do * do for MESA_PRIM_POINTS outputs that don't use streams). */ if (s.gs_compile->control_data_header_size_bits > 0 && gs_prog_data->control_data_format == GFX7_GS_CONTROL_DATA_FORMAT_GSCTL_SID) { set_gs_stream_control_data_bits(ntb, vertex_count, stream_id); } } static void brw_combine_with_vec(const fs_builder &bld, const brw_reg &dst, const brw_reg &src, unsigned n) { assert(n <= NIR_MAX_VEC_COMPONENTS); brw_reg comps[NIR_MAX_VEC_COMPONENTS]; for (unsigned i = 0; i < n; i++) comps[i] = offset(src, bld, i); bld.VEC(dst, comps, n); } static void emit_gs_input_load(nir_to_brw_state &ntb, const brw_reg &dst, const nir_src &vertex_src, unsigned base_offset, const nir_src &offset_src, unsigned num_components, unsigned first_component) { const fs_builder &bld = ntb.bld; const struct intel_device_info *devinfo = ntb.devinfo; fs_visitor &s = ntb.s; assert(brw_type_size_bytes(dst.type) == 4); struct brw_gs_prog_data *gs_prog_data = brw_gs_prog_data(s.prog_data); const unsigned push_reg_count = gs_prog_data->base.urb_read_length * 8; /* TODO: figure out push input layout for invocations == 1 */ if (gs_prog_data->invocations == 1 && nir_src_is_const(offset_src) && nir_src_is_const(vertex_src) && 4 * (base_offset + nir_src_as_uint(offset_src)) < push_reg_count) { int imm_offset = (base_offset + nir_src_as_uint(offset_src)) * 4 + nir_src_as_uint(vertex_src) * push_reg_count; const brw_reg attr = offset(brw_attr_reg(0, dst.type), bld, first_component + imm_offset); brw_combine_with_vec(bld, dst, attr, num_components); return; } /* Resort to the pull model. Ensure the VUE handles are provided. */ assert(gs_prog_data->base.include_vue_handles); brw_reg start = s.gs_payload().icp_handle_start; brw_reg icp_handle = ntb.bld.vgrf(BRW_TYPE_UD); const unsigned grf_size_bytes = REG_SIZE * reg_unit(devinfo); if (gs_prog_data->invocations == 1) { if (nir_src_is_const(vertex_src)) { /* The vertex index is constant; just select the proper URB handle. */ icp_handle = byte_offset(start, nir_src_as_uint(vertex_src) * grf_size_bytes); } else { /* The vertex index is non-constant. We need to use indirect * addressing to fetch the proper URB handle. * * First, we start with the sequence <7, 6, 5, 4, 3, 2, 1, 0> * indicating that channel should read the handle from * DWord . We convert that to bytes by multiplying by 4. * * Next, we convert the vertex index to bytes by multiplying * by 32/64 (shifting by 5/6), and add the two together. This is * the final indirect byte offset. */ brw_reg sequence = bld.LOAD_SUBGROUP_INVOCATION(); /* channel_offsets = 4 * sequence = <28, 24, 20, 16, 12, 8, 4, 0> */ brw_reg channel_offsets = bld.SHL(sequence, brw_imm_ud(2u)); /* Convert vertex_index to bytes (multiply by 32/64) */ assert(util_is_power_of_two_nonzero(grf_size_bytes)); /* for ffs() */ brw_reg vertex_offset_bytes = bld.SHL(retype(get_nir_src(ntb, vertex_src), BRW_TYPE_UD), brw_imm_ud(ffs(grf_size_bytes) - 1)); brw_reg icp_offset_bytes = bld.ADD(vertex_offset_bytes, channel_offsets); /* Use first_icp_handle as the base offset. There is one register * of URB handles per vertex, so inform the register allocator that * we might read up to nir->info.gs.vertices_in registers. */ bld.emit(SHADER_OPCODE_MOV_INDIRECT, icp_handle, start, brw_reg(icp_offset_bytes), brw_imm_ud(s.nir->info.gs.vertices_in * grf_size_bytes)); } } else { assert(gs_prog_data->invocations > 1); if (nir_src_is_const(vertex_src)) { unsigned vertex = nir_src_as_uint(vertex_src); bld.MOV(icp_handle, component(start, vertex)); } else { /* The vertex index is non-constant. We need to use indirect * addressing to fetch the proper URB handle. * * Convert vertex_index to bytes (multiply by 4) */ brw_reg icp_offset_bytes = bld.SHL(retype(get_nir_src(ntb, vertex_src), BRW_TYPE_UD), brw_imm_ud(2u)); /* Use first_icp_handle as the base offset. There is one DWord * of URB handles per vertex, so inform the register allocator that * we might read up to ceil(nir->info.gs.vertices_in / 8) registers. */ bld.emit(SHADER_OPCODE_MOV_INDIRECT, icp_handle, start, brw_reg(icp_offset_bytes), brw_imm_ud(DIV_ROUND_UP(s.nir->info.gs.vertices_in, 8) * grf_size_bytes)); } } fs_inst *inst; brw_reg indirect_offset = get_nir_src(ntb, offset_src); if (nir_src_is_const(offset_src)) { brw_reg srcs[URB_LOGICAL_NUM_SRCS]; srcs[URB_LOGICAL_SRC_HANDLE] = icp_handle; /* Constant indexing - use global offset. */ if (first_component != 0) { unsigned read_components = num_components + first_component; brw_reg tmp = bld.vgrf(dst.type, read_components); inst = bld.emit(SHADER_OPCODE_URB_READ_LOGICAL, tmp, srcs, ARRAY_SIZE(srcs)); inst->size_written = read_components * tmp.component_size(inst->exec_size); brw_combine_with_vec(bld, dst, offset(tmp, bld, first_component), num_components); } else { inst = bld.emit(SHADER_OPCODE_URB_READ_LOGICAL, dst, srcs, ARRAY_SIZE(srcs)); inst->size_written = num_components * dst.component_size(inst->exec_size); } inst->offset = base_offset + nir_src_as_uint(offset_src); } else { /* Indirect indexing - use per-slot offsets as well. */ unsigned read_components = num_components + first_component; brw_reg tmp = bld.vgrf(dst.type, read_components); /* Convert oword offset to bytes on Xe2+ */ if (devinfo->ver >= 20) indirect_offset = bld.SHL(indirect_offset, brw_imm_ud(4u)); brw_reg srcs[URB_LOGICAL_NUM_SRCS]; srcs[URB_LOGICAL_SRC_HANDLE] = icp_handle; srcs[URB_LOGICAL_SRC_PER_SLOT_OFFSETS] = indirect_offset; if (first_component != 0) { inst = bld.emit(SHADER_OPCODE_URB_READ_LOGICAL, tmp, srcs, ARRAY_SIZE(srcs)); inst->size_written = read_components * tmp.component_size(inst->exec_size); brw_combine_with_vec(bld, dst, offset(tmp, bld, first_component), num_components); } else { inst = bld.emit(SHADER_OPCODE_URB_READ_LOGICAL, dst, srcs, ARRAY_SIZE(srcs)); inst->size_written = num_components * dst.component_size(inst->exec_size); } inst->offset = base_offset; } } static brw_reg get_indirect_offset(nir_to_brw_state &ntb, nir_intrinsic_instr *instr) { const intel_device_info *devinfo = ntb.devinfo; nir_src *offset_src = nir_get_io_offset_src(instr); if (nir_src_is_const(*offset_src)) { /* The only constant offset we should find is 0. brw_nir.c's * add_const_offset_to_base() will fold other constant offsets * into the "base" index. */ assert(nir_src_as_uint(*offset_src) == 0); return brw_reg(); } brw_reg offset = get_nir_src(ntb, *offset_src); if (devinfo->ver < 20) return offset; /* Convert Owords (16-bytes) to bytes */ return ntb.bld.SHL(retype(offset, BRW_TYPE_UD), brw_imm_ud(4u)); } static void fs_nir_emit_vs_intrinsic(nir_to_brw_state &ntb, nir_intrinsic_instr *instr) { const fs_builder &bld = ntb.bld; fs_visitor &s = ntb.s; assert(s.stage == MESA_SHADER_VERTEX); brw_reg dest; if (nir_intrinsic_infos[instr->intrinsic].has_dest) dest = get_nir_def(ntb, instr->def); switch (instr->intrinsic) { case nir_intrinsic_load_vertex_id: case nir_intrinsic_load_base_vertex: unreachable("should be lowered by nir_lower_system_values()"); case nir_intrinsic_load_input: { assert(instr->def.bit_size == 32); const brw_reg src = offset(brw_attr_reg(0, dest.type), bld, nir_intrinsic_base(instr) * 4 + nir_intrinsic_component(instr) + nir_src_as_uint(instr->src[0])); brw_combine_with_vec(bld, dest, src, instr->num_components); break; } case nir_intrinsic_load_vertex_id_zero_base: case nir_intrinsic_load_instance_id: case nir_intrinsic_load_base_instance: case nir_intrinsic_load_draw_id: case nir_intrinsic_load_first_vertex: case nir_intrinsic_load_is_indexed_draw: unreachable("lowered by brw_nir_lower_vs_inputs"); default: fs_nir_emit_intrinsic(ntb, bld, instr); break; } } static brw_reg get_tcs_single_patch_icp_handle(nir_to_brw_state &ntb, const fs_builder &bld, nir_intrinsic_instr *instr) { fs_visitor &s = ntb.s; struct brw_tcs_prog_data *tcs_prog_data = brw_tcs_prog_data(s.prog_data); const nir_src &vertex_src = instr->src[0]; nir_intrinsic_instr *vertex_intrin = nir_src_as_intrinsic(vertex_src); const brw_reg start = s.tcs_payload().icp_handle_start; brw_reg icp_handle; if (nir_src_is_const(vertex_src)) { /* Emit a MOV to resolve <0,1,0> regioning. */ unsigned vertex = nir_src_as_uint(vertex_src); icp_handle = bld.MOV(component(start, vertex)); } else if (tcs_prog_data->instances == 1 && vertex_intrin && vertex_intrin->intrinsic == nir_intrinsic_load_invocation_id) { /* For the common case of only 1 instance, an array index of * gl_InvocationID means reading the handles from the start. Skip all * the indirect work. */ icp_handle = start; } else { /* The vertex index is non-constant. We need to use indirect * addressing to fetch the proper URB handle. */ icp_handle = bld.vgrf(BRW_TYPE_UD); /* Each ICP handle is a single DWord (4 bytes) */ brw_reg vertex_offset_bytes = bld.SHL(retype(get_nir_src(ntb, vertex_src), BRW_TYPE_UD), brw_imm_ud(2u)); /* We might read up to 4 registers. */ bld.emit(SHADER_OPCODE_MOV_INDIRECT, icp_handle, start, vertex_offset_bytes, brw_imm_ud(4 * REG_SIZE)); } return icp_handle; } static brw_reg get_tcs_multi_patch_icp_handle(nir_to_brw_state &ntb, const fs_builder &bld, nir_intrinsic_instr *instr) { fs_visitor &s = ntb.s; const intel_device_info *devinfo = s.devinfo; struct brw_tcs_prog_key *tcs_key = (struct brw_tcs_prog_key *) s.key; const nir_src &vertex_src = instr->src[0]; const unsigned grf_size_bytes = REG_SIZE * reg_unit(devinfo); const brw_reg start = s.tcs_payload().icp_handle_start; if (nir_src_is_const(vertex_src)) return byte_offset(start, nir_src_as_uint(vertex_src) * grf_size_bytes); /* The vertex index is non-constant. We need to use indirect * addressing to fetch the proper URB handle. * * First, we start with the sequence indicating that channel * should read the handle from DWord . We convert that to bytes * by multiplying by 4. * * Next, we convert the vertex index to bytes by multiplying * by the GRF size (by shifting), and add the two together. This is * the final indirect byte offset. */ brw_reg sequence = bld.LOAD_SUBGROUP_INVOCATION(); /* Offsets will be 0, 4, 8, ... */ brw_reg channel_offsets = bld.SHL(sequence, brw_imm_ud(2u)); /* Convert vertex_index to bytes (multiply by 32) */ assert(util_is_power_of_two_nonzero(grf_size_bytes)); /* for ffs() */ brw_reg vertex_offset_bytes = bld.SHL(retype(get_nir_src(ntb, vertex_src), BRW_TYPE_UD), brw_imm_ud(ffs(grf_size_bytes) - 1)); brw_reg icp_offset_bytes = bld.ADD(vertex_offset_bytes, channel_offsets); /* Use start of ICP handles as the base offset. There is one register * of URB handles per vertex, so inform the register allocator that * we might read up to nir->info.gs.vertices_in registers. */ brw_reg icp_handle = bld.vgrf(BRW_TYPE_UD); bld.emit(SHADER_OPCODE_MOV_INDIRECT, icp_handle, start, icp_offset_bytes, brw_imm_ud(brw_tcs_prog_key_input_vertices(tcs_key) * grf_size_bytes)); return icp_handle; } static void setup_barrier_message_payload_gfx125(const fs_builder &bld, const brw_reg &msg_payload) { const fs_builder ubld = bld.exec_all().group(1, 0); const struct intel_device_info *devinfo = bld.shader->devinfo; assert(devinfo->verx10 >= 125); /* From BSpec: 54006, mov r0.2[31:24] into m0.2[31:24] and m0.2[23:16] */ brw_reg m0_10ub = horiz_offset(retype(msg_payload, BRW_TYPE_UB), 10); brw_reg r0_11ub = stride(suboffset(retype(brw_vec1_grf(0, 0), BRW_TYPE_UB), 11), 0, 1, 0); ubld.group(2, 0).MOV(m0_10ub, r0_11ub); if (devinfo->ver >= 20) { /* Use an active threads barrier. */ const brw_reg m0_2ud = component(retype(msg_payload, BRW_TYPE_UD), 2); ubld.OR(m0_2ud, m0_2ud, brw_imm_ud(1u << 8)); } } static void emit_barrier(nir_to_brw_state &ntb) { const intel_device_info *devinfo = ntb.devinfo; const fs_builder &bld = ntb.bld; fs_visitor &s = ntb.s; /* We are getting the barrier ID from the compute shader header */ assert(gl_shader_stage_uses_workgroup(s.stage)); brw_reg payload = brw_vgrf(s.alloc.allocate(1), BRW_TYPE_UD); /* Clear the message payload */ bld.exec_all().group(8, 0).MOV(payload, brw_imm_ud(0u)); if (devinfo->verx10 >= 125) { setup_barrier_message_payload_gfx125(bld, payload); } else { assert(gl_shader_stage_is_compute(s.stage)); uint32_t barrier_id_mask; switch (devinfo->ver) { case 7: case 8: barrier_id_mask = 0x0f000000u; break; case 9: barrier_id_mask = 0x8f000000u; break; case 11: case 12: barrier_id_mask = 0x7f000000u; break; default: unreachable("barrier is only available on gen >= 7"); } /* Copy the barrier id from r0.2 to the message payload reg.2 */ brw_reg r0_2 = brw_reg(retype(brw_vec1_grf(0, 2), BRW_TYPE_UD)); bld.exec_all().group(1, 0).AND(component(payload, 2), r0_2, brw_imm_ud(barrier_id_mask)); } /* Emit a gateway "barrier" message using the payload we set up, followed * by a wait instruction. */ bld.exec_all().emit(SHADER_OPCODE_BARRIER, reg_undef, payload); } static void emit_tcs_barrier(nir_to_brw_state &ntb) { const intel_device_info *devinfo = ntb.devinfo; const fs_builder &bld = ntb.bld; fs_visitor &s = ntb.s; assert(s.stage == MESA_SHADER_TESS_CTRL); struct brw_tcs_prog_data *tcs_prog_data = brw_tcs_prog_data(s.prog_data); brw_reg m0 = bld.vgrf(BRW_TYPE_UD); brw_reg m0_2 = component(m0, 2); const fs_builder chanbld = bld.exec_all().group(1, 0); /* Zero the message header */ bld.exec_all().MOV(m0, brw_imm_ud(0u)); if (devinfo->verx10 >= 125) { setup_barrier_message_payload_gfx125(bld, m0); } else if (devinfo->ver >= 11) { chanbld.AND(m0_2, retype(brw_vec1_grf(0, 2), BRW_TYPE_UD), brw_imm_ud(INTEL_MASK(30, 24))); /* Set the Barrier Count and the enable bit */ chanbld.OR(m0_2, m0_2, brw_imm_ud(tcs_prog_data->instances << 8 | (1 << 15))); } else { /* Copy "Barrier ID" from r0.2, bits 16:13 */ chanbld.AND(m0_2, retype(brw_vec1_grf(0, 2), BRW_TYPE_UD), brw_imm_ud(INTEL_MASK(16, 13))); /* Shift it up to bits 27:24. */ chanbld.SHL(m0_2, m0_2, brw_imm_ud(11)); /* Set the Barrier Count and the enable bit */ chanbld.OR(m0_2, m0_2, brw_imm_ud(tcs_prog_data->instances << 9 | (1 << 15))); } bld.emit(SHADER_OPCODE_BARRIER, bld.null_reg_ud(), m0); } static void fs_nir_emit_tcs_intrinsic(nir_to_brw_state &ntb, nir_intrinsic_instr *instr) { const intel_device_info *devinfo = ntb.devinfo; const fs_builder &bld = ntb.bld; fs_visitor &s = ntb.s; assert(s.stage == MESA_SHADER_TESS_CTRL); struct brw_tcs_prog_data *tcs_prog_data = brw_tcs_prog_data(s.prog_data); struct brw_vue_prog_data *vue_prog_data = &tcs_prog_data->base; brw_reg dst; if (nir_intrinsic_infos[instr->intrinsic].has_dest) dst = get_nir_def(ntb, instr->def); switch (instr->intrinsic) { case nir_intrinsic_load_primitive_id: bld.MOV(dst, s.tcs_payload().primitive_id); break; case nir_intrinsic_load_invocation_id: bld.MOV(retype(dst, s.invocation_id.type), s.invocation_id); break; case nir_intrinsic_barrier: if (nir_intrinsic_memory_scope(instr) != SCOPE_NONE) fs_nir_emit_intrinsic(ntb, bld, instr); if (nir_intrinsic_execution_scope(instr) == SCOPE_WORKGROUP) { if (tcs_prog_data->instances != 1) emit_tcs_barrier(ntb); } break; case nir_intrinsic_load_input: unreachable("nir_lower_io should never give us these."); break; case nir_intrinsic_load_per_vertex_input: { assert(instr->def.bit_size == 32); brw_reg indirect_offset = get_indirect_offset(ntb, instr); unsigned imm_offset = nir_intrinsic_base(instr); fs_inst *inst; const bool multi_patch = vue_prog_data->dispatch_mode == INTEL_DISPATCH_MODE_TCS_MULTI_PATCH; brw_reg icp_handle = multi_patch ? get_tcs_multi_patch_icp_handle(ntb, bld, instr) : get_tcs_single_patch_icp_handle(ntb, bld, instr); /* We can only read two double components with each URB read, so * we send two read messages in that case, each one loading up to * two double components. */ unsigned num_components = instr->num_components; unsigned first_component = nir_intrinsic_component(instr); brw_reg srcs[URB_LOGICAL_NUM_SRCS]; srcs[URB_LOGICAL_SRC_HANDLE] = icp_handle; if (indirect_offset.file == BAD_FILE) { /* Constant indexing - use global offset. */ if (first_component != 0) { unsigned read_components = num_components + first_component; brw_reg tmp = bld.vgrf(dst.type, read_components); inst = bld.emit(SHADER_OPCODE_URB_READ_LOGICAL, tmp, srcs, ARRAY_SIZE(srcs)); brw_combine_with_vec(bld, dst, offset(tmp, bld, first_component), num_components); } else { inst = bld.emit(SHADER_OPCODE_URB_READ_LOGICAL, dst, srcs, ARRAY_SIZE(srcs)); } inst->offset = imm_offset; } else { /* Indirect indexing - use per-slot offsets as well. */ srcs[URB_LOGICAL_SRC_PER_SLOT_OFFSETS] = indirect_offset; if (first_component != 0) { unsigned read_components = num_components + first_component; brw_reg tmp = bld.vgrf(dst.type, read_components); inst = bld.emit(SHADER_OPCODE_URB_READ_LOGICAL, tmp, srcs, ARRAY_SIZE(srcs)); brw_combine_with_vec(bld, dst, offset(tmp, bld, first_component), num_components); } else { inst = bld.emit(SHADER_OPCODE_URB_READ_LOGICAL, dst, srcs, ARRAY_SIZE(srcs)); } inst->offset = imm_offset; } inst->size_written = (num_components + first_component) * inst->dst.component_size(inst->exec_size); /* Copy the temporary to the destination to deal with writemasking. * * Also attempt to deal with gl_PointSize being in the .w component. */ if (inst->offset == 0 && indirect_offset.file == BAD_FILE) { assert(brw_type_size_bytes(dst.type) == 4); inst->dst = bld.vgrf(dst.type, 4); inst->size_written = 4 * REG_SIZE * reg_unit(devinfo); bld.MOV(dst, offset(inst->dst, bld, 3)); } break; } case nir_intrinsic_load_output: case nir_intrinsic_load_per_vertex_output: { assert(instr->def.bit_size == 32); brw_reg indirect_offset = get_indirect_offset(ntb, instr); unsigned imm_offset = nir_intrinsic_base(instr); unsigned first_component = nir_intrinsic_component(instr); fs_inst *inst; if (indirect_offset.file == BAD_FILE) { /* This MOV replicates the output handle to all enabled channels * is SINGLE_PATCH mode. */ brw_reg patch_handle = bld.MOV(s.tcs_payload().patch_urb_output); { brw_reg srcs[URB_LOGICAL_NUM_SRCS]; srcs[URB_LOGICAL_SRC_HANDLE] = patch_handle; if (first_component != 0) { unsigned read_components = instr->num_components + first_component; brw_reg tmp = bld.vgrf(dst.type, read_components); inst = bld.emit(SHADER_OPCODE_URB_READ_LOGICAL, tmp, srcs, ARRAY_SIZE(srcs)); inst->size_written = read_components * REG_SIZE * reg_unit(devinfo); brw_combine_with_vec(bld, dst, offset(tmp, bld, first_component), instr->num_components); } else { inst = bld.emit(SHADER_OPCODE_URB_READ_LOGICAL, dst, srcs, ARRAY_SIZE(srcs)); inst->size_written = instr->num_components * REG_SIZE * reg_unit(devinfo); } inst->offset = imm_offset; } } else { /* Indirect indexing - use per-slot offsets as well. */ brw_reg srcs[URB_LOGICAL_NUM_SRCS]; srcs[URB_LOGICAL_SRC_HANDLE] = s.tcs_payload().patch_urb_output; srcs[URB_LOGICAL_SRC_PER_SLOT_OFFSETS] = indirect_offset; if (first_component != 0) { unsigned read_components = instr->num_components + first_component; brw_reg tmp = bld.vgrf(dst.type, read_components); inst = bld.emit(SHADER_OPCODE_URB_READ_LOGICAL, tmp, srcs, ARRAY_SIZE(srcs)); inst->size_written = read_components * REG_SIZE * reg_unit(devinfo); brw_combine_with_vec(bld, dst, offset(tmp, bld, first_component), instr->num_components); } else { inst = bld.emit(SHADER_OPCODE_URB_READ_LOGICAL, dst, srcs, ARRAY_SIZE(srcs)); inst->size_written = instr->num_components * REG_SIZE * reg_unit(devinfo); } inst->offset = imm_offset; } break; } case nir_intrinsic_store_output: case nir_intrinsic_store_per_vertex_output: { assert(nir_src_bit_size(instr->src[0]) == 32); brw_reg value = get_nir_src(ntb, instr->src[0]); brw_reg indirect_offset = get_indirect_offset(ntb, instr); unsigned imm_offset = nir_intrinsic_base(instr); unsigned mask = nir_intrinsic_write_mask(instr); if (mask == 0) break; unsigned num_components = util_last_bit(mask); unsigned first_component = nir_intrinsic_component(instr); assert((first_component + num_components) <= 4); mask = mask << first_component; const bool has_urb_lsc = devinfo->ver >= 20; brw_reg mask_reg; if (mask != WRITEMASK_XYZW) mask_reg = brw_imm_ud(mask << 16); brw_reg sources[4]; unsigned m = has_urb_lsc ? 0 : first_component; for (unsigned i = 0; i < num_components; i++) { int c = i + first_component; if (mask & (1 << c)) { sources[m++] = offset(value, bld, i); } else if (devinfo->ver < 20) { m++; } } assert(has_urb_lsc || m == (first_component + num_components)); brw_reg srcs[URB_LOGICAL_NUM_SRCS]; srcs[URB_LOGICAL_SRC_HANDLE] = s.tcs_payload().patch_urb_output; srcs[URB_LOGICAL_SRC_PER_SLOT_OFFSETS] = indirect_offset; srcs[URB_LOGICAL_SRC_CHANNEL_MASK] = mask_reg; srcs[URB_LOGICAL_SRC_DATA] = bld.vgrf(BRW_TYPE_F, m); srcs[URB_LOGICAL_SRC_COMPONENTS] = brw_imm_ud(m); bld.LOAD_PAYLOAD(srcs[URB_LOGICAL_SRC_DATA], sources, m, 0); fs_inst *inst = bld.emit(SHADER_OPCODE_URB_WRITE_LOGICAL, reg_undef, srcs, ARRAY_SIZE(srcs)); inst->offset = imm_offset; break; } default: fs_nir_emit_intrinsic(ntb, bld, instr); break; } } static void fs_nir_emit_tes_intrinsic(nir_to_brw_state &ntb, nir_intrinsic_instr *instr) { const intel_device_info *devinfo = ntb.devinfo; const fs_builder &bld = ntb.bld; fs_visitor &s = ntb.s; assert(s.stage == MESA_SHADER_TESS_EVAL); struct brw_tes_prog_data *tes_prog_data = brw_tes_prog_data(s.prog_data); brw_reg dest; if (nir_intrinsic_infos[instr->intrinsic].has_dest) dest = get_nir_def(ntb, instr->def); switch (instr->intrinsic) { case nir_intrinsic_load_primitive_id: bld.MOV(dest, s.tes_payload().primitive_id); break; case nir_intrinsic_load_tess_coord: for (unsigned i = 0; i < 3; i++) bld.MOV(offset(dest, bld, i), s.tes_payload().coords[i]); break; case nir_intrinsic_load_input: case nir_intrinsic_load_per_vertex_input: { assert(instr->def.bit_size == 32); brw_reg indirect_offset = get_indirect_offset(ntb, instr); unsigned imm_offset = nir_intrinsic_base(instr); unsigned first_component = nir_intrinsic_component(instr); fs_inst *inst; if (indirect_offset.file == BAD_FILE) { /* Arbitrarily only push up to 32 vec4 slots worth of data, * which is 16 registers (since each holds 2 vec4 slots). */ const unsigned max_push_slots = 32; if (imm_offset < max_push_slots) { const brw_reg src = horiz_offset(brw_attr_reg(0, dest.type), 4 * imm_offset + first_component); brw_reg comps[NIR_MAX_VEC_COMPONENTS]; for (unsigned i = 0; i < instr->num_components; i++) { comps[i] = component(src, i); } bld.VEC(dest, comps, instr->num_components); tes_prog_data->base.urb_read_length = MAX2(tes_prog_data->base.urb_read_length, (imm_offset / 2) + 1); } else { /* Replicate the patch handle to all enabled channels */ brw_reg srcs[URB_LOGICAL_NUM_SRCS]; srcs[URB_LOGICAL_SRC_HANDLE] = s.tes_payload().patch_urb_input; if (first_component != 0) { unsigned read_components = instr->num_components + first_component; brw_reg tmp = bld.vgrf(dest.type, read_components); inst = bld.emit(SHADER_OPCODE_URB_READ_LOGICAL, tmp, srcs, ARRAY_SIZE(srcs)); inst->size_written = read_components * REG_SIZE * reg_unit(devinfo); brw_combine_with_vec(bld, dest, offset(tmp, bld, first_component), instr->num_components); } else { inst = bld.emit(SHADER_OPCODE_URB_READ_LOGICAL, dest, srcs, ARRAY_SIZE(srcs)); inst->size_written = instr->num_components * REG_SIZE * reg_unit(devinfo); } inst->offset = imm_offset; } } else { /* Indirect indexing - use per-slot offsets as well. */ /* We can only read two double components with each URB read, so * we send two read messages in that case, each one loading up to * two double components. */ unsigned num_components = instr->num_components; brw_reg srcs[URB_LOGICAL_NUM_SRCS]; srcs[URB_LOGICAL_SRC_HANDLE] = s.tes_payload().patch_urb_input; srcs[URB_LOGICAL_SRC_PER_SLOT_OFFSETS] = indirect_offset; if (first_component != 0) { unsigned read_components = num_components + first_component; brw_reg tmp = bld.vgrf(dest.type, read_components); inst = bld.emit(SHADER_OPCODE_URB_READ_LOGICAL, tmp, srcs, ARRAY_SIZE(srcs)); brw_combine_with_vec(bld, dest, offset(tmp, bld, first_component), num_components); } else { inst = bld.emit(SHADER_OPCODE_URB_READ_LOGICAL, dest, srcs, ARRAY_SIZE(srcs)); } inst->offset = imm_offset; inst->size_written = (num_components + first_component) * inst->dst.component_size(inst->exec_size); } break; } default: fs_nir_emit_intrinsic(ntb, bld, instr); break; } } static void fs_nir_emit_gs_intrinsic(nir_to_brw_state &ntb, nir_intrinsic_instr *instr) { const fs_builder &bld = ntb.bld; fs_visitor &s = ntb.s; assert(s.stage == MESA_SHADER_GEOMETRY); brw_reg dest; if (nir_intrinsic_infos[instr->intrinsic].has_dest) dest = get_nir_def(ntb, instr->def); switch (instr->intrinsic) { case nir_intrinsic_load_primitive_id: assert(s.stage == MESA_SHADER_GEOMETRY); assert(brw_gs_prog_data(s.prog_data)->include_primitive_id); bld.MOV(retype(dest, BRW_TYPE_UD), s.gs_payload().primitive_id); break; case nir_intrinsic_load_input: unreachable("load_input intrinsics are invalid for the GS stage"); case nir_intrinsic_load_per_vertex_input: emit_gs_input_load(ntb, dest, instr->src[0], nir_intrinsic_base(instr), instr->src[1], instr->num_components, nir_intrinsic_component(instr)); break; case nir_intrinsic_emit_vertex_with_counter: emit_gs_vertex(ntb, instr->src[0], nir_intrinsic_stream_id(instr)); /* After an EmitVertex() call, the values of all outputs are undefined. * If this is not in control flow, recreate a fresh set of output * registers to keep their live ranges separate. */ if (instr->instr.block->cf_node.parent->type == nir_cf_node_function) fs_nir_setup_outputs(ntb); break; case nir_intrinsic_end_primitive_with_counter: emit_gs_end_primitive(ntb, instr->src[0]); break; case nir_intrinsic_set_vertex_and_primitive_count: bld.MOV(s.final_gs_vertex_count, get_nir_src(ntb, instr->src[0])); break; case nir_intrinsic_load_invocation_id: { brw_reg val = ntb.system_values[SYSTEM_VALUE_INVOCATION_ID]; assert(val.file != BAD_FILE); dest.type = val.type; bld.MOV(dest, val); break; } default: fs_nir_emit_intrinsic(ntb, bld, instr); break; } } /** * Fetch the current render target layer index. */ static brw_reg fetch_render_target_array_index(const fs_builder &bld) { const fs_visitor *v = bld.shader; if (bld.shader->devinfo->ver >= 20) { /* Gfx20+ has separate Render Target Array indices for each pair * of subspans in order to support multiple polygons, so we need * to use a <1;8,0> region in order to select the correct word * for each channel. */ const brw_reg idx = bld.vgrf(BRW_TYPE_UD); for (unsigned i = 0; i < DIV_ROUND_UP(bld.dispatch_width(), 16); i++) { const fs_builder hbld = bld.group(16, i); const struct brw_reg reg = retype(brw_vec1_grf(2 * i + 1, 1), BRW_TYPE_UW); hbld.AND(offset(idx, hbld, i), stride(reg, 1, 8, 0), brw_imm_uw(0x7ff)); } return idx; } else if (bld.shader->devinfo->ver >= 12 && v->max_polygons == 2) { /* According to the BSpec "PS Thread Payload for Normal * Dispatch", the render target array index is stored as bits * 26:16 of either the R1.1 or R1.6 poly info dwords, for the * first and second polygons respectively in multipolygon PS * dispatch mode. */ assert(bld.dispatch_width() == 16); const brw_reg idx = bld.vgrf(BRW_TYPE_UD); for (unsigned i = 0; i < v->max_polygons; i++) { const fs_builder hbld = bld.group(8, i); const struct brw_reg g1 = brw_uw1_reg(FIXED_GRF, 1, 3 + 10 * i); hbld.AND(offset(idx, hbld, i), g1, brw_imm_uw(0x7ff)); } return idx; } else if (bld.shader->devinfo->ver >= 12) { /* The render target array index is provided in the thread payload as * bits 26:16 of r1.1. */ const brw_reg idx = bld.vgrf(BRW_TYPE_UD); bld.AND(idx, brw_uw1_reg(FIXED_GRF, 1, 3), brw_imm_uw(0x7ff)); return idx; } else { /* The render target array index is provided in the thread payload as * bits 26:16 of r0.0. */ const brw_reg idx = bld.vgrf(BRW_TYPE_UD); bld.AND(idx, brw_uw1_reg(FIXED_GRF, 0, 1), brw_imm_uw(0x7ff)); return idx; } } static brw_reg fetch_viewport_index(const fs_builder &bld) { const fs_visitor *v = bld.shader; if (bld.shader->devinfo->ver >= 20) { /* Gfx20+ has separate viewport indices for each pair * of subspans in order to support multiple polygons, so we need * to use a <1;8,0> region in order to select the correct word * for each channel. */ const brw_reg idx = bld.vgrf(BRW_TYPE_UD); for (unsigned i = 0; i < DIV_ROUND_UP(bld.dispatch_width(), 16); i++) { const fs_builder hbld = bld.group(16, i); const struct brw_reg reg = retype(xe2_vec1_grf(i, 9), BRW_TYPE_UW); hbld.AND(offset(idx, hbld, i), stride(reg, 1, 8, 0), brw_imm_uw(0xf000)); } bld.SHR(idx, idx, brw_imm_ud(12)); return idx; } else if (bld.shader->devinfo->ver >= 12 && v->max_polygons == 2) { /* According to the BSpec "PS Thread Payload for Normal * Dispatch", the viewport index is stored as bits * 30:27 of either the R1.1 or R1.6 poly info dwords, for the * first and second polygons respectively in multipolygon PS * dispatch mode. */ assert(bld.dispatch_width() == 16); const brw_reg idx = bld.vgrf(BRW_TYPE_UD); brw_reg vp_idx_per_poly_dw[2] = { brw_ud1_reg(FIXED_GRF, 1, 1), /* R1.1 bits 30:27 */ brw_ud1_reg(FIXED_GRF, 1, 6), /* R1.6 bits 30:27 */ }; for (unsigned i = 0; i < v->max_polygons; i++) { const fs_builder hbld = bld.group(8, i); hbld.SHR(offset(idx, hbld, i), vp_idx_per_poly_dw[i], brw_imm_ud(27)); } return bld.AND(idx, brw_imm_ud(0xf)); } else if (bld.shader->devinfo->ver >= 12) { /* The viewport index is provided in the thread payload as * bits 30:27 of r1.1. */ const brw_reg idx = bld.vgrf(BRW_TYPE_UD); bld.SHR(idx, bld.AND(brw_uw1_reg(FIXED_GRF, 1, 3), brw_imm_uw(0x7800)), brw_imm_ud(11)); return idx; } else { /* The viewport index is provided in the thread payload as * bits 30:27 of r0.0. */ const brw_reg idx = bld.vgrf(BRW_TYPE_UD); bld.SHR(idx, bld.AND(brw_uw1_reg(FIXED_GRF, 0, 1), brw_imm_uw(0x7800)), brw_imm_ud(11)); return idx; } } /* Sample from the MCS surface attached to this multisample texture. */ static brw_reg emit_mcs_fetch(nir_to_brw_state &ntb, const brw_reg &coordinate, unsigned components, const brw_reg &texture, const brw_reg &texture_handle) { const fs_builder &bld = ntb.bld; const brw_reg dest = bld.vgrf(BRW_TYPE_UD, 4); brw_reg srcs[TEX_LOGICAL_NUM_SRCS]; srcs[TEX_LOGICAL_SRC_COORDINATE] = coordinate; srcs[TEX_LOGICAL_SRC_SURFACE] = texture; srcs[TEX_LOGICAL_SRC_SAMPLER] = brw_imm_ud(0); srcs[TEX_LOGICAL_SRC_SURFACE_HANDLE] = texture_handle; srcs[TEX_LOGICAL_SRC_COORD_COMPONENTS] = brw_imm_d(components); srcs[TEX_LOGICAL_SRC_GRAD_COMPONENTS] = brw_imm_d(0); srcs[TEX_LOGICAL_SRC_RESIDENCY] = brw_imm_d(0); fs_inst *inst = bld.emit(SHADER_OPCODE_TXF_MCS_LOGICAL, dest, srcs, ARRAY_SIZE(srcs)); /* We only care about one or two regs of response, but the sampler always * writes 4/8. */ inst->size_written = 4 * dest.component_size(inst->exec_size); return dest; } /** * Fake non-coherent framebuffer read implemented using TXF to fetch from the * framebuffer at the current fragment coordinates and sample index. */ static fs_inst * emit_non_coherent_fb_read(nir_to_brw_state &ntb, const fs_builder &bld, const brw_reg &dst, unsigned target) { fs_visitor &s = ntb.s; const struct intel_device_info *devinfo = s.devinfo; assert(bld.shader->stage == MESA_SHADER_FRAGMENT); const brw_wm_prog_key *wm_key = reinterpret_cast(s.key); assert(!wm_key->coherent_fb_fetch); /* Calculate the fragment coordinates. */ const brw_reg coords = bld.vgrf(BRW_TYPE_UD, 3); bld.MOV(offset(coords, bld, 0), s.pixel_x); bld.MOV(offset(coords, bld, 1), s.pixel_y); bld.MOV(offset(coords, bld, 2), fetch_render_target_array_index(bld)); /* Calculate the sample index and MCS payload when multisampling. Luckily * the MCS fetch message behaves deterministically for UMS surfaces, so it * shouldn't be necessary to recompile based on whether the framebuffer is * CMS or UMS. */ assert(wm_key->multisample_fbo == BRW_ALWAYS || wm_key->multisample_fbo == BRW_NEVER); if (wm_key->multisample_fbo && ntb.system_values[SYSTEM_VALUE_SAMPLE_ID].file == BAD_FILE) ntb.system_values[SYSTEM_VALUE_SAMPLE_ID] = emit_sampleid_setup(ntb); const brw_reg sample = ntb.system_values[SYSTEM_VALUE_SAMPLE_ID]; const brw_reg mcs = wm_key->multisample_fbo ? emit_mcs_fetch(ntb, coords, 3, brw_imm_ud(target), brw_reg()) : brw_reg(); /* Use either a normal or a CMS texel fetch message depending on whether * the framebuffer is single or multisample. On SKL+ use the wide CMS * message just in case the framebuffer uses 16x multisampling, it should * be equivalent to the normal CMS fetch for lower multisampling modes. */ opcode op; if (wm_key->multisample_fbo) { /* On SKL+ use the wide CMS message just in case the framebuffer uses 16x * multisampling, it should be equivalent to the normal CMS fetch for * lower multisampling modes. * * On Gfx12HP, there is only CMS_W variant available. */ if (devinfo->verx10 >= 125) op = SHADER_OPCODE_TXF_CMS_W_GFX12_LOGICAL; else op = SHADER_OPCODE_TXF_CMS_W_LOGICAL; } else { op = SHADER_OPCODE_TXF_LOGICAL; } /* Emit the instruction. */ brw_reg srcs[TEX_LOGICAL_NUM_SRCS]; srcs[TEX_LOGICAL_SRC_COORDINATE] = coords; srcs[TEX_LOGICAL_SRC_LOD] = brw_imm_ud(0); srcs[TEX_LOGICAL_SRC_SAMPLE_INDEX] = sample; srcs[TEX_LOGICAL_SRC_MCS] = mcs; srcs[TEX_LOGICAL_SRC_SURFACE] = brw_imm_ud(target); srcs[TEX_LOGICAL_SRC_SAMPLER] = brw_imm_ud(0); srcs[TEX_LOGICAL_SRC_COORD_COMPONENTS] = brw_imm_ud(3); srcs[TEX_LOGICAL_SRC_GRAD_COMPONENTS] = brw_imm_ud(0); srcs[TEX_LOGICAL_SRC_RESIDENCY] = brw_imm_ud(0); fs_inst *inst = bld.emit(op, dst, srcs, ARRAY_SIZE(srcs)); inst->size_written = 4 * inst->dst.component_size(inst->exec_size); return inst; } /** * Actual coherent framebuffer read implemented using the native render target * read message. Requires SKL+. */ static fs_inst * emit_coherent_fb_read(const fs_builder &bld, const brw_reg &dst, unsigned target) { fs_inst *inst = bld.emit(FS_OPCODE_FB_READ_LOGICAL, dst); inst->target = target; inst->size_written = 4 * inst->dst.component_size(inst->exec_size); return inst; } static brw_reg alloc_temporary(const fs_builder &bld, unsigned size, brw_reg *regs, unsigned n) { if (n && regs[0].file != BAD_FILE) { return regs[0]; } else { const brw_reg tmp = bld.vgrf(BRW_TYPE_F, size); for (unsigned i = 0; i < n; i++) regs[i] = tmp; return tmp; } } static brw_reg alloc_frag_output(nir_to_brw_state &ntb, unsigned location) { fs_visitor &s = ntb.s; assert(s.stage == MESA_SHADER_FRAGMENT); const brw_wm_prog_key *const key = reinterpret_cast(s.key); const unsigned l = GET_FIELD(location, BRW_NIR_FRAG_OUTPUT_LOCATION); const unsigned i = GET_FIELD(location, BRW_NIR_FRAG_OUTPUT_INDEX); if (i > 0 || (key->force_dual_color_blend && l == FRAG_RESULT_DATA1)) return alloc_temporary(ntb.bld, 4, &s.dual_src_output, 1); else if (l == FRAG_RESULT_COLOR) return alloc_temporary(ntb.bld, 4, s.outputs, MAX2(key->nr_color_regions, 1)); else if (l == FRAG_RESULT_DEPTH) return alloc_temporary(ntb.bld, 1, &s.frag_depth, 1); else if (l == FRAG_RESULT_STENCIL) return alloc_temporary(ntb.bld, 1, &s.frag_stencil, 1); else if (l == FRAG_RESULT_SAMPLE_MASK) return alloc_temporary(ntb.bld, 1, &s.sample_mask, 1); else if (l >= FRAG_RESULT_DATA0 && l < FRAG_RESULT_DATA0 + BRW_MAX_DRAW_BUFFERS) return alloc_temporary(ntb.bld, 4, &s.outputs[l - FRAG_RESULT_DATA0], 1); else unreachable("Invalid location"); } static void emit_is_helper_invocation(nir_to_brw_state &ntb, brw_reg result) { const fs_builder &bld = ntb.bld; /* Unlike the regular gl_HelperInvocation, that is defined at dispatch, * the helperInvocationEXT() (aka SpvOpIsHelperInvocationEXT) takes into * consideration demoted invocations. */ result.type = BRW_TYPE_UD; bld.MOV(result, brw_imm_ud(0)); /* See brw_sample_mask_reg() for why we split SIMD32 into SIMD16 here. */ unsigned width = bld.dispatch_width(); for (unsigned i = 0; i < DIV_ROUND_UP(width, 16); i++) { const fs_builder b = bld.group(MIN2(width, 16), i); fs_inst *mov = b.MOV(offset(result, b, i), brw_imm_ud(~0)); /* The at() ensures that any code emitted to get the predicate happens * before the mov right above. This is not an issue elsewhere because * lowering code already set up the builder this way. */ brw_emit_predicate_on_sample_mask(b.at(NULL, mov), mov); mov->predicate_inverse = true; } } static brw_reg emit_frontfacing_interpolation(nir_to_brw_state &ntb) { const intel_device_info *devinfo = ntb.devinfo; const fs_builder &bld = ntb.bld; fs_visitor &s = ntb.s; brw_reg ff = bld.vgrf(BRW_TYPE_D); if (devinfo->ver >= 20) { /* Gfx20+ has separate back-facing bits for each pair of * subspans in order to support multiple polygons, so we need to * use a <1;8,0> region in order to select the correct word for * each channel. */ const brw_reg tmp = bld.vgrf(BRW_TYPE_UW); for (unsigned i = 0; i < DIV_ROUND_UP(s.dispatch_width, 16); i++) { const fs_builder hbld = bld.group(16, i); const struct brw_reg gi_uw = retype(xe2_vec1_grf(i, 9), BRW_TYPE_UW); hbld.AND(offset(tmp, hbld, i), gi_uw, brw_imm_uw(0x800)); } bld.CMP(ff, tmp, brw_imm_uw(0), BRW_CONDITIONAL_Z); } else if (devinfo->ver >= 12 && s.max_polygons == 2) { /* According to the BSpec "PS Thread Payload for Normal * Dispatch", the front/back facing interpolation bit is stored * as bit 15 of either the R1.1 or R1.6 poly info field, for the * first and second polygons respectively in multipolygon PS * dispatch mode. */ assert(s.dispatch_width == 16); brw_reg tmp = bld.vgrf(BRW_TYPE_W); for (unsigned i = 0; i < s.max_polygons; i++) { const fs_builder hbld = bld.group(8, i); const struct brw_reg g1 = retype(brw_vec1_grf(1, 1 + 5 * i), BRW_TYPE_W); hbld.ASR(offset(tmp, hbld, i), g1, brw_imm_d(15)); } bld.NOT(ff, tmp); } else if (devinfo->ver >= 12) { brw_reg g1 = brw_reg(retype(brw_vec1_grf(1, 1), BRW_TYPE_W)); brw_reg tmp = bld.vgrf(BRW_TYPE_W); bld.ASR(tmp, g1, brw_imm_d(15)); bld.NOT(ff, tmp); } else { /* Bit 15 of g0.0 is 0 if the polygon is front facing. We want to create * a boolean result from this (~0/true or 0/false). * * We can use the fact that bit 15 is the MSB of g0.0:W to accomplish * this task in only one instruction: * - a negation source modifier will flip the bit; and * - a W -> D type conversion will sign extend the bit into the high * word of the destination. * * An ASR 15 fills the low word of the destination. */ brw_reg g0 = brw_reg(retype(brw_vec1_grf(0, 0), BRW_TYPE_W)); bld.ASR(ff, negate(g0), brw_imm_d(15)); } return ff; } static brw_reg emit_samplepos_setup(nir_to_brw_state &ntb) { const fs_builder &bld = ntb.bld; fs_visitor &s = ntb.s; assert(s.stage == MESA_SHADER_FRAGMENT); struct brw_wm_prog_data *wm_prog_data = brw_wm_prog_data(s.prog_data); const fs_builder abld = bld.annotate("compute sample position"); brw_reg pos = abld.vgrf(BRW_TYPE_F, 2); if (wm_prog_data->persample_dispatch == BRW_NEVER) { /* From ARB_sample_shading specification: * "When rendering to a non-multisample buffer, or if multisample * rasterization is disabled, gl_SamplePosition will always be * (0.5, 0.5). */ bld.MOV(offset(pos, bld, 0), brw_imm_f(0.5f)); bld.MOV(offset(pos, bld, 1), brw_imm_f(0.5f)); return pos; } /* WM will be run in MSDISPMODE_PERSAMPLE. So, only one of SIMD8 or SIMD16 * mode will be enabled. * * From the Ivy Bridge PRM, volume 2 part 1, page 344: * R31.1:0 Position Offset X/Y for Slot[3:0] * R31.3:2 Position Offset X/Y for Slot[7:4] * ..... * * The X, Y sample positions come in as bytes in thread payload. So, read * the positions using vstride=16, width=8, hstride=2. */ const brw_reg sample_pos_reg = fetch_payload_reg(abld, s.fs_payload().sample_pos_reg, BRW_TYPE_W); for (unsigned i = 0; i < 2; i++) { brw_reg tmp_d = bld.vgrf(BRW_TYPE_D); abld.MOV(tmp_d, subscript(sample_pos_reg, BRW_TYPE_B, i)); /* Convert int_sample_pos to floating point */ brw_reg tmp_f = bld.vgrf(BRW_TYPE_F); abld.MOV(tmp_f, tmp_d); /* Scale to the range [0, 1] */ abld.MUL(offset(pos, abld, i), tmp_f, brw_imm_f(1 / 16.0f)); } if (wm_prog_data->persample_dispatch == BRW_SOMETIMES) { check_dynamic_msaa_flag(abld, wm_prog_data, INTEL_MSAA_FLAG_PERSAMPLE_DISPATCH); for (unsigned i = 0; i < 2; i++) { set_predicate(BRW_PREDICATE_NORMAL, bld.SEL(offset(pos, abld, i), offset(pos, abld, i), brw_imm_f(0.5f))); } } return pos; } static brw_reg emit_sampleid_setup(nir_to_brw_state &ntb) { const intel_device_info *devinfo = ntb.devinfo; const fs_builder &bld = ntb.bld; fs_visitor &s = ntb.s; assert(s.stage == MESA_SHADER_FRAGMENT); ASSERTED brw_wm_prog_key *key = (brw_wm_prog_key*) s.key; struct brw_wm_prog_data *wm_prog_data = brw_wm_prog_data(s.prog_data); const fs_builder abld = bld.annotate("compute sample id"); brw_reg sample_id = abld.vgrf(BRW_TYPE_UD); assert(key->multisample_fbo != BRW_NEVER); /* Sample ID comes in as 4-bit numbers in g1.0: * * 15:12 Slot 3 SampleID (only used in SIMD16) * 11:8 Slot 2 SampleID (only used in SIMD16) * 7:4 Slot 1 SampleID * 3:0 Slot 0 SampleID * * Each slot corresponds to four channels, so we want to replicate each * half-byte value to 4 channels in a row: * * dst+0: .7 .6 .5 .4 .3 .2 .1 .0 * 7:4 7:4 7:4 7:4 3:0 3:0 3:0 3:0 * * dst+1: .7 .6 .5 .4 .3 .2 .1 .0 (if SIMD16) * 15:12 15:12 15:12 15:12 11:8 11:8 11:8 11:8 * * First, we read g1.0 with a <1,8,0>UB region, causing the first 8 * channels to read the first byte (7:0), and the second group of 8 * channels to read the second byte (15:8). Then, we shift right by * a vector immediate of <4, 4, 4, 4, 0, 0, 0, 0>, moving the slot 1 / 3 * values into place. Finally, we AND with 0xf to keep the low nibble. * * shr(16) tmp<1>W g1.0<1,8,0>B 0x44440000:V * and(16) dst<1>D tmp<8,8,1>W 0xf:W * * TODO: These payload bits exist on Gfx7 too, but they appear to always * be zero, so this code fails to work. We should find out why. */ const brw_reg tmp = abld.vgrf(BRW_TYPE_UW); for (unsigned i = 0; i < DIV_ROUND_UP(s.dispatch_width, 16); i++) { const fs_builder hbld = abld.group(MIN2(16, s.dispatch_width), i); /* According to the "PS Thread Payload for Normal Dispatch" * pages on the BSpec, the sample ids are stored in R0.8/R1.8 * on gfx20+ and in R1.0/R2.0 on gfx8+. */ const struct brw_reg id_reg = devinfo->ver >= 20 ? xe2_vec1_grf(i, 8) : brw_vec1_grf(i + 1, 0); hbld.SHR(offset(tmp, hbld, i), stride(retype(id_reg, BRW_TYPE_UB), 1, 8, 0), brw_imm_v(0x44440000)); } abld.AND(sample_id, tmp, brw_imm_w(0xf)); if (key->multisample_fbo == BRW_SOMETIMES) { check_dynamic_msaa_flag(abld, wm_prog_data, INTEL_MSAA_FLAG_MULTISAMPLE_FBO); set_predicate(BRW_PREDICATE_NORMAL, abld.SEL(sample_id, sample_id, brw_imm_ud(0))); } return sample_id; } static brw_reg emit_samplemaskin_setup(nir_to_brw_state &ntb) { const fs_builder &bld = ntb.bld; fs_visitor &s = ntb.s; assert(s.stage == MESA_SHADER_FRAGMENT); struct brw_wm_prog_data *wm_prog_data = brw_wm_prog_data(s.prog_data); /* The HW doesn't provide us with expected values. */ assert(wm_prog_data->coarse_pixel_dispatch != BRW_ALWAYS); brw_reg coverage_mask = fetch_payload_reg(bld, s.fs_payload().sample_mask_in_reg, BRW_TYPE_UD); if (wm_prog_data->persample_dispatch == BRW_NEVER) return coverage_mask; /* gl_SampleMaskIn[] comes from two sources: the input coverage mask, * and a mask representing which sample is being processed by the * current shader invocation. * * From the OES_sample_variables specification: * "When per-sample shading is active due to the use of a fragment input * qualified by "sample" or due to the use of the gl_SampleID or * gl_SamplePosition variables, only the bit for the current sample is * set in gl_SampleMaskIn." */ const fs_builder abld = bld.annotate("compute gl_SampleMaskIn"); if (ntb.system_values[SYSTEM_VALUE_SAMPLE_ID].file == BAD_FILE) ntb.system_values[SYSTEM_VALUE_SAMPLE_ID] = emit_sampleid_setup(ntb); brw_reg one = abld.MOV(brw_imm_ud(1)); brw_reg enabled_mask = abld.SHL(one, ntb.system_values[SYSTEM_VALUE_SAMPLE_ID]); brw_reg mask = abld.AND(enabled_mask, coverage_mask); if (wm_prog_data->persample_dispatch == BRW_ALWAYS) return mask; check_dynamic_msaa_flag(abld, wm_prog_data, INTEL_MSAA_FLAG_PERSAMPLE_DISPATCH); set_predicate(BRW_PREDICATE_NORMAL, abld.SEL(mask, mask, coverage_mask)); return mask; } static brw_reg emit_shading_rate_setup(nir_to_brw_state &ntb) { const intel_device_info *devinfo = ntb.devinfo; const fs_builder &bld = ntb.bld; assert(devinfo->ver >= 11); struct brw_wm_prog_data *wm_prog_data = brw_wm_prog_data(bld.shader->prog_data); /* Coarse pixel shading size fields overlap with other fields of not in * coarse pixel dispatch mode, so report 0 when that's not the case. */ if (wm_prog_data->coarse_pixel_dispatch == BRW_NEVER) return brw_imm_ud(0); const fs_builder abld = bld.annotate("compute fragment shading rate"); /* The shading rates provided in the shader are the actual 2D shading * rate while the SPIR-V built-in is the enum value that has the shading * rate encoded as a bitfield. Fortunately, the bitfield value is just * the shading rate divided by two and shifted. */ /* r1.0 - 0:7 ActualCoarsePixelShadingSize.X */ brw_reg actual_x = brw_reg(retype(brw_vec1_grf(1, 0), BRW_TYPE_UB)); /* r1.0 - 15:8 ActualCoarsePixelShadingSize.Y */ brw_reg actual_y = byte_offset(actual_x, 1); brw_reg int_rate_y = abld.SHR(actual_y, brw_imm_ud(1)); brw_reg int_rate_x = abld.SHR(actual_x, brw_imm_ud(1)); brw_reg rate = abld.OR(abld.SHL(int_rate_x, brw_imm_ud(2)), int_rate_y); if (wm_prog_data->coarse_pixel_dispatch == BRW_ALWAYS) return rate; check_dynamic_msaa_flag(abld, wm_prog_data, INTEL_MSAA_FLAG_COARSE_RT_WRITES); set_predicate(BRW_PREDICATE_NORMAL, abld.SEL(rate, rate, brw_imm_ud(0))); return rate; } /* Input data is organized with first the per-primitive values, followed * by per-vertex values. The per-vertex will have interpolation information * associated, so use 4 components for each value. */ /* The register location here is relative to the start of the URB * data. It will get adjusted to be a real location before * generate_code() time. */ static brw_reg brw_interp_reg(const fs_builder &bld, unsigned location, unsigned channel, unsigned comp) { fs_visitor &s = *bld.shader; assert(s.stage == MESA_SHADER_FRAGMENT); assert(BITFIELD64_BIT(location) & ~s.nir->info.per_primitive_inputs); const struct brw_wm_prog_data *prog_data = brw_wm_prog_data(s.prog_data); assert(prog_data->urb_setup[location] >= 0); unsigned nr = prog_data->urb_setup[location]; channel += prog_data->urb_setup_channel[location]; /* Adjust so we start counting from the first per_vertex input. */ assert(nr >= prog_data->num_per_primitive_inputs); nr -= prog_data->num_per_primitive_inputs; const unsigned per_vertex_start = prog_data->num_per_primitive_inputs; const unsigned regnr = per_vertex_start + (nr * 4) + channel; if (s.max_polygons > 1) { /* In multipolygon dispatch each plane parameter is a * dispatch_width-wide SIMD vector (see comment in * assign_urb_setup()), so we need to use offset() instead of * component() to select the specified parameter. */ const brw_reg tmp = bld.vgrf(BRW_TYPE_UD); bld.MOV(tmp, offset(brw_attr_reg(regnr, BRW_TYPE_UD), s.dispatch_width, comp)); return retype(tmp, BRW_TYPE_F); } else { return component(brw_attr_reg(regnr, BRW_TYPE_F), comp); } } /* The register location here is relative to the start of the URB * data. It will get adjusted to be a real location before * generate_code() time. */ static brw_reg brw_per_primitive_reg(const fs_builder &bld, int location, unsigned comp) { fs_visitor &s = *bld.shader; assert(s.stage == MESA_SHADER_FRAGMENT); assert(BITFIELD64_BIT(location) & s.nir->info.per_primitive_inputs); const struct brw_wm_prog_data *prog_data = brw_wm_prog_data(s.prog_data); comp += prog_data->urb_setup_channel[location]; assert(prog_data->urb_setup[location] >= 0); const unsigned regnr = prog_data->urb_setup[location] + comp / 4; assert(regnr < prog_data->num_per_primitive_inputs); if (s.max_polygons > 1) { /* In multipolygon dispatch each primitive constant is a * dispatch_width-wide SIMD vector (see comment in * assign_urb_setup()), so we need to use offset() instead of * component() to select the specified parameter. */ const brw_reg tmp = bld.vgrf(BRW_TYPE_UD); bld.MOV(tmp, offset(brw_attr_reg(regnr, BRW_TYPE_UD), s.dispatch_width, comp % 4)); return retype(tmp, BRW_TYPE_F); } else { return component(brw_attr_reg(regnr, BRW_TYPE_F), comp % 4); } } static void fs_nir_emit_fs_intrinsic(nir_to_brw_state &ntb, nir_intrinsic_instr *instr) { const intel_device_info *devinfo = ntb.devinfo; const fs_builder &bld = ntb.bld; fs_visitor &s = ntb.s; assert(s.stage == MESA_SHADER_FRAGMENT); brw_reg dest; if (nir_intrinsic_infos[instr->intrinsic].has_dest) dest = get_nir_def(ntb, instr->def); switch (instr->intrinsic) { case nir_intrinsic_load_front_face: bld.MOV(retype(dest, BRW_TYPE_D), emit_frontfacing_interpolation(ntb)); break; case nir_intrinsic_load_sample_pos: case nir_intrinsic_load_sample_pos_or_center: { brw_reg sample_pos = ntb.system_values[SYSTEM_VALUE_SAMPLE_POS]; assert(sample_pos.file != BAD_FILE); dest.type = sample_pos.type; bld.MOV(dest, sample_pos); bld.MOV(offset(dest, bld, 1), offset(sample_pos, bld, 1)); break; } case nir_intrinsic_load_layer_id: dest.type = BRW_TYPE_UD; bld.MOV(dest, fetch_render_target_array_index(bld)); break; case nir_intrinsic_is_helper_invocation: emit_is_helper_invocation(ntb, dest); break; case nir_intrinsic_load_helper_invocation: case nir_intrinsic_load_sample_mask_in: case nir_intrinsic_load_sample_id: case nir_intrinsic_load_frag_shading_rate: { gl_system_value sv = nir_system_value_from_intrinsic(instr->intrinsic); brw_reg val = ntb.system_values[sv]; assert(val.file != BAD_FILE); dest.type = val.type; bld.MOV(dest, val); break; } case nir_intrinsic_store_output: { const brw_reg src = get_nir_src(ntb, instr->src[0]); const unsigned store_offset = nir_src_as_uint(instr->src[1]); const unsigned location = nir_intrinsic_base(instr) + SET_FIELD(store_offset, BRW_NIR_FRAG_OUTPUT_LOCATION); const brw_reg new_dest = offset(retype(alloc_frag_output(ntb, location), src.type), bld, nir_intrinsic_component(instr)); brw_combine_with_vec(bld, new_dest, src, instr->num_components); break; } case nir_intrinsic_load_output: { const unsigned l = GET_FIELD(nir_intrinsic_base(instr), BRW_NIR_FRAG_OUTPUT_LOCATION); assert(l >= FRAG_RESULT_DATA0); const unsigned load_offset = nir_src_as_uint(instr->src[0]); const unsigned target = l - FRAG_RESULT_DATA0 + load_offset; const brw_reg tmp = bld.vgrf(dest.type, 4); if (reinterpret_cast(s.key)->coherent_fb_fetch) emit_coherent_fb_read(bld, tmp, target); else emit_non_coherent_fb_read(ntb, bld, tmp, target); brw_combine_with_vec(bld, dest, offset(tmp, bld, nir_intrinsic_component(instr)), instr->num_components); break; } case nir_intrinsic_demote: case nir_intrinsic_terminate: case nir_intrinsic_demote_if: case nir_intrinsic_terminate_if: { /* We track our discarded pixels in f0.1/f1.0. By predicating on it, we * can update just the flag bits that aren't yet discarded. If there's * no condition, we emit a CMP of g0 != g0, so all currently executing * channels will get turned off. */ fs_inst *cmp = NULL; if (instr->intrinsic == nir_intrinsic_demote_if || instr->intrinsic == nir_intrinsic_terminate_if) { nir_alu_instr *alu = nir_src_as_alu_instr(instr->src[0]); if (alu != NULL && alu->op != nir_op_bcsel) { /* Re-emit the instruction that generated the Boolean value, but * do not store it. Since this instruction will be conditional, * other instructions that want to use the real Boolean value may * get garbage. This was a problem for piglit's fs-discard-exit-2 * test. * * Ideally we'd detect that the instruction cannot have a * conditional modifier before emitting the instructions. Alas, * that is nigh impossible. Instead, we're going to assume the * instruction (or last instruction) generated can have a * conditional modifier. If it cannot, fallback to the old-style * compare, and hope dead code elimination will clean up the * extra instructions generated. */ fs_nir_emit_alu(ntb, alu, false); cmp = (fs_inst *) s.instructions.get_tail(); if (cmp->conditional_mod == BRW_CONDITIONAL_NONE) { if (cmp->can_do_cmod()) cmp->conditional_mod = BRW_CONDITIONAL_Z; else cmp = NULL; } else { /* The old sequence that would have been generated is, * basically, bool_result == false. This is equivalent to * !bool_result, so negate the old modifier. */ cmp->conditional_mod = brw_negate_cmod(cmp->conditional_mod); } } if (cmp == NULL) { cmp = bld.CMP(bld.null_reg_f(), get_nir_src(ntb, instr->src[0]), brw_imm_d(0), BRW_CONDITIONAL_Z); } } else { brw_reg some_reg = brw_reg(retype(brw_vec8_grf(0, 0), BRW_TYPE_UW)); cmp = bld.CMP(bld.null_reg_f(), some_reg, some_reg, BRW_CONDITIONAL_NZ); } cmp->predicate = BRW_PREDICATE_NORMAL; cmp->flag_subreg = sample_mask_flag_subreg(s); fs_inst *jump = bld.emit(BRW_OPCODE_HALT); jump->flag_subreg = sample_mask_flag_subreg(s); jump->predicate_inverse = true; if (instr->intrinsic == nir_intrinsic_terminate || instr->intrinsic == nir_intrinsic_terminate_if) { jump->predicate = BRW_PREDICATE_NORMAL; } else { /* Only jump when the whole quad is demoted. For historical * reasons this is also used for discard. */ jump->predicate = (devinfo->ver >= 20 ? XE2_PREDICATE_ANY : BRW_PREDICATE_ALIGN1_ANY4H); } break; } case nir_intrinsic_load_input: case nir_intrinsic_load_per_primitive_input: { /* In Fragment Shaders load_input is used either for flat inputs or * per-primitive inputs. */ assert(instr->def.bit_size == 32); unsigned base = nir_intrinsic_base(instr); unsigned comp = nir_intrinsic_component(instr); unsigned num_components = instr->num_components; /* TODO(mesh): Multiview. Verify and handle these special cases for Mesh. */ if (base == VARYING_SLOT_LAYER) { dest.type = BRW_TYPE_UD; bld.MOV(dest, fetch_render_target_array_index(bld)); break; } else if (base == VARYING_SLOT_VIEWPORT) { dest.type = BRW_TYPE_UD; bld.MOV(dest, fetch_viewport_index(bld)); break; } if (BITFIELD64_BIT(base) & s.nir->info.per_primitive_inputs) { assert(base != VARYING_SLOT_PRIMITIVE_INDICES); for (unsigned int i = 0; i < num_components; i++) { bld.MOV(offset(dest, bld, i), retype(brw_per_primitive_reg(bld, base, comp + i), dest.type)); } } else { /* Gfx20+ packs the plane parameters of a single logical * input in a vec3 format instead of the previously used vec4 * format. */ const unsigned k = devinfo->ver >= 20 ? 0 : 3; for (unsigned int i = 0; i < num_components; i++) { bld.MOV(offset(dest, bld, i), retype(brw_interp_reg(bld, base, comp + i, k), dest.type)); } } break; } case nir_intrinsic_load_fs_input_interp_deltas: { assert(s.stage == MESA_SHADER_FRAGMENT); assert(nir_src_as_uint(instr->src[0]) == 0); const unsigned base = nir_intrinsic_base(instr); const unsigned comp = nir_intrinsic_component(instr); dest.type = BRW_TYPE_F; /* Gfx20+ packs the plane parameters of a single logical * input in a vec3 format instead of the previously used vec4 * format. */ if (devinfo->ver >= 20) { bld.MOV(offset(dest, bld, 0), brw_interp_reg(bld, base, comp, 0)); bld.MOV(offset(dest, bld, 1), brw_interp_reg(bld, base, comp, 2)); bld.MOV(offset(dest, bld, 2), brw_interp_reg(bld, base, comp, 1)); } else { bld.MOV(offset(dest, bld, 0), brw_interp_reg(bld, base, comp, 3)); bld.MOV(offset(dest, bld, 1), brw_interp_reg(bld, base, comp, 1)); bld.MOV(offset(dest, bld, 2), brw_interp_reg(bld, base, comp, 0)); } break; } case nir_intrinsic_load_barycentric_pixel: case nir_intrinsic_load_barycentric_centroid: case nir_intrinsic_load_barycentric_sample: { /* Use the delta_xy values computed from the payload */ enum brw_barycentric_mode bary = brw_barycentric_mode( reinterpret_cast(s.key), instr); const brw_reg srcs[] = { offset(s.delta_xy[bary], bld, 0), offset(s.delta_xy[bary], bld, 1) }; bld.LOAD_PAYLOAD(dest, srcs, ARRAY_SIZE(srcs), 0); break; } case nir_intrinsic_load_barycentric_at_sample: { const glsl_interp_mode interpolation = (enum glsl_interp_mode) nir_intrinsic_interp_mode(instr); if (devinfo->ver >= 20) { emit_pixel_interpolater_alu_at_sample( bld, dest, retype(get_nir_src(ntb, instr->src[0]), BRW_TYPE_UD), interpolation); } else { brw_reg msg_data; if (nir_src_is_const(instr->src[0])) { msg_data = brw_imm_ud(nir_src_as_uint(instr->src[0]) << 4); } else { const brw_reg sample_src = retype(get_nir_src(ntb, instr->src[0]), BRW_TYPE_UD); const brw_reg sample_id = bld.emit_uniformize(sample_src); msg_data = component(bld.group(8, 0).vgrf(BRW_TYPE_UD), 0); bld.exec_all().group(1, 0).SHL(msg_data, sample_id, brw_imm_ud(4u)); } brw_reg flag_reg; struct brw_wm_prog_key *wm_prog_key = (struct brw_wm_prog_key *) s.key; if (wm_prog_key->multisample_fbo == BRW_SOMETIMES) { struct brw_wm_prog_data *wm_prog_data = brw_wm_prog_data(s.prog_data); check_dynamic_msaa_flag(bld.exec_all().group(8, 0), wm_prog_data, INTEL_MSAA_FLAG_MULTISAMPLE_FBO); flag_reg = brw_flag_reg(0, 0); } emit_pixel_interpolater_send(bld, FS_OPCODE_INTERPOLATE_AT_SAMPLE, dest, brw_reg(), /* src */ msg_data, flag_reg, interpolation); } break; } case nir_intrinsic_load_barycentric_at_offset: { const glsl_interp_mode interpolation = (enum glsl_interp_mode) nir_intrinsic_interp_mode(instr); if (devinfo->ver >= 20) { emit_pixel_interpolater_alu_at_offset( bld, dest, retype(get_nir_src(ntb, instr->src[0]), BRW_TYPE_F), interpolation); } else if (nir_const_value *const_offset = nir_src_as_const_value(instr->src[0])) { assert(nir_src_bit_size(instr->src[0]) == 32); unsigned off_x = const_offset[0].u32 & 0xf; unsigned off_y = const_offset[1].u32 & 0xf; emit_pixel_interpolater_send(bld, FS_OPCODE_INTERPOLATE_AT_SHARED_OFFSET, dest, brw_reg(), /* src */ brw_imm_ud(off_x | (off_y << 4)), brw_reg(), /* flag_reg */ interpolation); } else { brw_reg src = retype(get_nir_src(ntb, instr->src[0]), BRW_TYPE_D); const enum opcode opcode = FS_OPCODE_INTERPOLATE_AT_PER_SLOT_OFFSET; emit_pixel_interpolater_send(bld, opcode, dest, src, brw_imm_ud(0u), brw_reg(), /* flag_reg */ interpolation); } break; } case nir_intrinsic_load_frag_coord: { brw_reg comps[4] = { s.pixel_x, s.pixel_y, s.pixel_z, s.wpos_w }; bld.VEC(dest, comps, 4); break; } case nir_intrinsic_load_interpolated_input: { assert(instr->src[0].ssa && instr->src[0].ssa->parent_instr->type == nir_instr_type_intrinsic); nir_intrinsic_instr *bary_intrinsic = nir_instr_as_intrinsic(instr->src[0].ssa->parent_instr); nir_intrinsic_op bary_intrin = bary_intrinsic->intrinsic; brw_reg dst_xy; if (bary_intrin == nir_intrinsic_load_barycentric_at_offset || bary_intrin == nir_intrinsic_load_barycentric_at_sample) { /* Use the result of the PI message. */ dst_xy = retype(get_nir_src(ntb, instr->src[0]), BRW_TYPE_F); } else { /* Use the delta_xy values computed from the payload */ enum brw_barycentric_mode bary = brw_barycentric_mode( reinterpret_cast(s.key), bary_intrinsic); dst_xy = s.delta_xy[bary]; } for (unsigned int i = 0; i < instr->num_components; i++) { brw_reg interp = brw_interp_reg(bld, nir_intrinsic_base(instr), nir_intrinsic_component(instr) + i, 0); interp.type = BRW_TYPE_F; dest.type = BRW_TYPE_F; bld.PLN(offset(dest, bld, i), interp, dst_xy); } break; } default: fs_nir_emit_intrinsic(ntb, bld, instr); break; } } static unsigned brw_workgroup_size(fs_visitor &s) { assert(gl_shader_stage_uses_workgroup(s.stage)); assert(!s.nir->info.workgroup_size_variable); const struct brw_cs_prog_data *cs = brw_cs_prog_data(s.prog_data); return cs->local_size[0] * cs->local_size[1] * cs->local_size[2]; } static void fs_nir_emit_cs_intrinsic(nir_to_brw_state &ntb, nir_intrinsic_instr *instr) { const intel_device_info *devinfo = ntb.devinfo; const fs_builder &bld = ntb.bld; fs_visitor &s = ntb.s; assert(gl_shader_stage_uses_workgroup(s.stage)); struct brw_cs_prog_data *cs_prog_data = brw_cs_prog_data(s.prog_data); brw_reg dest; if (nir_intrinsic_infos[instr->intrinsic].has_dest) dest = get_nir_def(ntb, instr->def); switch (instr->intrinsic) { case nir_intrinsic_barrier: if (nir_intrinsic_memory_scope(instr) != SCOPE_NONE) fs_nir_emit_intrinsic(ntb, bld, instr); if (nir_intrinsic_execution_scope(instr) == SCOPE_WORKGROUP) { /* The whole workgroup fits in a single HW thread, so all the * invocations are already executed lock-step. Instead of an actual * barrier just emit a scheduling fence, that will generate no code. */ if (!s.nir->info.workgroup_size_variable && brw_workgroup_size(s) <= s.dispatch_width) { bld.exec_all().group(1, 0).emit(FS_OPCODE_SCHEDULING_FENCE); break; } emit_barrier(ntb); cs_prog_data->uses_barrier = true; } break; case nir_intrinsic_load_subgroup_id: s.cs_payload().load_subgroup_id(bld, dest); break; case nir_intrinsic_load_local_invocation_id: /* This is only used for hardware generated local IDs. */ assert(cs_prog_data->generate_local_id); dest.type = BRW_TYPE_UD; for (unsigned i = 0; i < 3; i++) bld.MOV(offset(dest, bld, i), s.cs_payload().local_invocation_id[i]); break; case nir_intrinsic_load_workgroup_id: { brw_reg val = ntb.system_values[SYSTEM_VALUE_WORKGROUP_ID]; assert(val.file != BAD_FILE); dest.type = val.type; for (unsigned i = 0; i < 3; i++) bld.MOV(offset(dest, bld, i), offset(val, bld, i)); break; } case nir_intrinsic_load_num_workgroups: { assert(instr->def.bit_size == 32); cs_prog_data->uses_num_work_groups = true; brw_reg srcs[MEMORY_LOGICAL_NUM_SRCS]; srcs[MEMORY_LOGICAL_OPCODE] = brw_imm_ud(LSC_OP_LOAD); srcs[MEMORY_LOGICAL_MODE] = brw_imm_ud(MEMORY_MODE_UNTYPED); srcs[MEMORY_LOGICAL_BINDING_TYPE] = brw_imm_ud(LSC_ADDR_SURFTYPE_BTI); srcs[MEMORY_LOGICAL_BINDING] = brw_imm_ud(0); srcs[MEMORY_LOGICAL_ADDRESS] = brw_imm_ud(0); srcs[MEMORY_LOGICAL_COORD_COMPONENTS] = brw_imm_ud(1); srcs[MEMORY_LOGICAL_ALIGNMENT] = brw_imm_ud(4); srcs[MEMORY_LOGICAL_DATA_SIZE] = brw_imm_ud(LSC_DATA_SIZE_D32); srcs[MEMORY_LOGICAL_COMPONENTS] = brw_imm_ud(3); srcs[MEMORY_LOGICAL_FLAGS] = brw_imm_ud(0); fs_inst *inst = bld.emit(SHADER_OPCODE_MEMORY_LOAD_LOGICAL, dest, srcs, MEMORY_LOGICAL_NUM_SRCS); inst->size_written = 3 * s.dispatch_width * 4; break; } case nir_intrinsic_load_workgroup_size: { /* Should have been lowered by brw_nir_lower_cs_intrinsics() or * crocus/iris_setup_uniforms() for the variable group size case. */ unreachable("Should have been lowered"); break; } case nir_intrinsic_dpas_intel: { const unsigned sdepth = nir_intrinsic_systolic_depth(instr); const unsigned rcount = nir_intrinsic_repeat_count(instr); const brw_reg_type dest_type = brw_type_for_nir_type(devinfo, nir_intrinsic_dest_type(instr)); const brw_reg_type src_type = brw_type_for_nir_type(devinfo, nir_intrinsic_src_type(instr)); dest = retype(dest, dest_type); brw_reg src0 = retype(get_nir_src(ntb, instr->src[0]), dest_type); fs_builder bld16 = bld.exec_all().group(16, 0); fs_builder bldn = devinfo->ver >= 20 ? bld16 : bld.exec_all().group(8, 0); bldn.DPAS(dest, src0, retype(get_nir_src(ntb, instr->src[2]), src_type), retype(get_nir_src(ntb, instr->src[1]), src_type), sdepth, rcount) ->saturate = nir_intrinsic_saturate(instr); cs_prog_data->uses_systolic = true; break; } default: fs_nir_emit_intrinsic(ntb, bld, instr); break; } } static void emit_rt_lsc_fence(const fs_builder &bld, enum lsc_fence_scope scope, enum lsc_flush_type flush_type) { const intel_device_info *devinfo = bld.shader->devinfo; const fs_builder ubld = bld.exec_all().group(8, 0); brw_reg tmp = ubld.vgrf(BRW_TYPE_UD); fs_inst *send = ubld.emit(SHADER_OPCODE_SEND, tmp, brw_imm_ud(0) /* desc */, brw_imm_ud(0) /* ex_desc */, brw_vec8_grf(0, 0) /* payload */); send->sfid = GFX12_SFID_UGM; send->desc = lsc_fence_msg_desc(devinfo, scope, flush_type, true); send->mlen = reg_unit(devinfo); /* g0 header */ send->ex_mlen = 0; /* Temp write for scheduling */ send->size_written = REG_SIZE * reg_unit(devinfo); send->send_has_side_effects = true; ubld.emit(FS_OPCODE_SCHEDULING_FENCE, ubld.null_reg_ud(), tmp); } static void fs_nir_emit_bs_intrinsic(nir_to_brw_state &ntb, nir_intrinsic_instr *instr) { const fs_builder &bld = ntb.bld; fs_visitor &s = ntb.s; assert(brw_shader_stage_is_bindless(s.stage)); const bs_thread_payload &payload = s.bs_payload(); brw_reg dest; if (nir_intrinsic_infos[instr->intrinsic].has_dest) dest = get_nir_def(ntb, instr->def); switch (instr->intrinsic) { case nir_intrinsic_load_btd_global_arg_addr_intel: bld.MOV(dest, retype(payload.global_arg_ptr, dest.type)); break; case nir_intrinsic_load_btd_local_arg_addr_intel: bld.MOV(dest, retype(payload.local_arg_ptr, dest.type)); break; case nir_intrinsic_load_btd_shader_type_intel: payload.load_shader_type(bld, dest); break; default: fs_nir_emit_intrinsic(ntb, bld, instr); break; } } static brw_reg brw_nir_reduction_op_identity(const fs_builder &bld, nir_op op, brw_reg_type type) { nir_const_value value = nir_alu_binop_identity(op, brw_type_size_bits(type)); switch (brw_type_size_bytes(type)) { case 1: if (type == BRW_TYPE_UB) { return brw_imm_uw(value.u8); } else { assert(type == BRW_TYPE_B); return brw_imm_w(value.i8); } case 2: return retype(brw_imm_uw(value.u16), type); case 4: return retype(brw_imm_ud(value.u32), type); case 8: if (type == BRW_TYPE_DF) return brw_imm_df(value.f64); else return retype(brw_imm_u64(value.u64), type); default: unreachable("Invalid type size"); } } static opcode brw_op_for_nir_reduction_op(nir_op op) { switch (op) { case nir_op_iadd: return BRW_OPCODE_ADD; case nir_op_fadd: return BRW_OPCODE_ADD; case nir_op_imul: return BRW_OPCODE_MUL; case nir_op_fmul: return BRW_OPCODE_MUL; case nir_op_imin: return BRW_OPCODE_SEL; case nir_op_umin: return BRW_OPCODE_SEL; case nir_op_fmin: return BRW_OPCODE_SEL; case nir_op_imax: return BRW_OPCODE_SEL; case nir_op_umax: return BRW_OPCODE_SEL; case nir_op_fmax: return BRW_OPCODE_SEL; case nir_op_iand: return BRW_OPCODE_AND; case nir_op_ior: return BRW_OPCODE_OR; case nir_op_ixor: return BRW_OPCODE_XOR; default: unreachable("Invalid reduction operation"); } } static brw_conditional_mod brw_cond_mod_for_nir_reduction_op(nir_op op) { switch (op) { case nir_op_iadd: return BRW_CONDITIONAL_NONE; case nir_op_fadd: return BRW_CONDITIONAL_NONE; case nir_op_imul: return BRW_CONDITIONAL_NONE; case nir_op_fmul: return BRW_CONDITIONAL_NONE; case nir_op_imin: return BRW_CONDITIONAL_L; case nir_op_umin: return BRW_CONDITIONAL_L; case nir_op_fmin: return BRW_CONDITIONAL_L; case nir_op_imax: return BRW_CONDITIONAL_GE; case nir_op_umax: return BRW_CONDITIONAL_GE; case nir_op_fmax: return BRW_CONDITIONAL_GE; case nir_op_iand: return BRW_CONDITIONAL_NONE; case nir_op_ior: return BRW_CONDITIONAL_NONE; case nir_op_ixor: return BRW_CONDITIONAL_NONE; default: unreachable("Invalid reduction operation"); } } struct rebuild_resource { unsigned idx; std::vector array; }; static bool skip_rebuild_instr(nir_instr *instr) { if (instr->type != nir_instr_type_intrinsic) return false; nir_intrinsic_instr *intrin = nir_instr_as_intrinsic(instr); switch (intrin->intrinsic) { case nir_intrinsic_load_ubo_uniform_block_intel: case nir_intrinsic_load_ssbo_uniform_block_intel: case nir_intrinsic_load_global_constant_uniform_block_intel: /* Those intrinsic are generated using NoMask so we can trust their * destination registers are fully populated. No need to rematerialize * further. */ return true; default: return false; } } static bool add_rebuild_src(nir_src *src, void *state) { struct rebuild_resource *res = (struct rebuild_resource *) state; for (nir_def *def : res->array) { if (def == src->ssa) return true; } if (!skip_rebuild_instr(src->ssa->parent_instr)) nir_foreach_src(src->ssa->parent_instr, add_rebuild_src, state); res->array.push_back(src->ssa); return true; } static brw_reg try_rebuild_source(nir_to_brw_state &ntb, const brw::fs_builder &bld, nir_def *resource_def, bool a64 = false) { /* Create a build at the location of the resource_intel intrinsic */ fs_builder ubld = bld.exec_all().group(8 * reg_unit(ntb.devinfo), 0); const unsigned grf_size = REG_SIZE * reg_unit(ntb.devinfo); struct rebuild_resource resources = {}; resources.idx = 0; if (!nir_foreach_src(resource_def->parent_instr, add_rebuild_src, &resources)) return brw_reg(); resources.array.push_back(resource_def); if (resources.array.size() == 1) { nir_def *def = resources.array[0]; if (def->parent_instr->type == nir_instr_type_load_const) { nir_load_const_instr *load_const = nir_instr_as_load_const(def->parent_instr); return brw_imm_ud(load_const->value[0].i32); } else { nir_intrinsic_instr *intrin = nir_instr_as_intrinsic(def->parent_instr); switch (intrin->intrinsic) { case nir_intrinsic_load_uniform: { unsigned base_offset = nir_intrinsic_base(intrin); unsigned load_offset = nir_src_as_uint(intrin->src[0]); brw_reg src = brw_uniform_reg(base_offset / 4, brw_type_with_size(BRW_TYPE_D, intrin->def.bit_size)); src.offset = load_offset + base_offset % 4; return src; } case nir_intrinsic_load_mesh_inline_data_intel: { assert(ntb.s.stage == MESA_SHADER_MESH || ntb.s.stage == MESA_SHADER_TASK); const task_mesh_thread_payload &payload = ntb.s.task_mesh_payload(); brw_reg data = offset(payload.inline_parameter, 1, nir_intrinsic_align_offset(intrin)); return retype(data, brw_type_with_size(BRW_TYPE_D, intrin->def.bit_size)); } case nir_intrinsic_load_btd_local_arg_addr_intel: { assert(brw_shader_stage_is_bindless(ntb.s.stage)); const bs_thread_payload &payload = ntb.s.bs_payload(); return retype(payload.local_arg_ptr, BRW_TYPE_Q); } case nir_intrinsic_load_btd_global_arg_addr_intel: { assert(brw_shader_stage_is_bindless(ntb.s.stage)); const bs_thread_payload &payload = ntb.s.bs_payload(); return retype(payload.global_arg_ptr, BRW_TYPE_Q); } default: /* Execute the code below, since we have to generate new * instructions. */ break; } } } #if 0 fprintf(stderr, "Trying remat :\n"); for (unsigned i = 0; i < resources.array.size(); i++) { fprintf(stderr, " "); nir_print_instr(resources.array[i]->parent_instr, stderr); fprintf(stderr, "\n"); } #endif for (unsigned i = 0; i < resources.array.size(); i++) { nir_def *def = resources.array[i]; nir_instr *instr = def->parent_instr; switch (instr->type) { case nir_instr_type_load_const: { nir_load_const_instr *load_const = nir_instr_as_load_const(instr); ubld.MOV(brw_imm_d(load_const->value[0].i32), &ntb.resource_insts[def->index]); break; } case nir_instr_type_alu: { nir_alu_instr *alu = nir_instr_as_alu(instr); /* Not supported ALU source count */ if (nir_op_infos[alu->op].num_inputs > 3) break; brw_reg srcs[3]; for (unsigned s = 0; s < nir_op_infos[alu->op].num_inputs; s++) { srcs[s] = offset( ntb.resource_insts[alu->src[s].src.ssa->index]->dst, ubld, alu->src[s].swizzle[0]); assert(srcs[s].file != BAD_FILE); } switch (alu->op) { case nir_op_iadd: ubld.ADD(srcs[0].file != IMM ? srcs[0] : srcs[1], srcs[0].file != IMM ? srcs[1] : srcs[0], &ntb.resource_insts[def->index]); break; case nir_op_iadd3: { brw_reg dst = ubld.vgrf(srcs[0].type); ntb.resource_insts[def->index] = ubld.ADD3(dst, srcs[1].file == IMM ? srcs[1] : srcs[0], srcs[1].file == IMM ? srcs[0] : srcs[1], srcs[2]); break; } case nir_op_ushr: { enum brw_reg_type utype = brw_type_with_size(srcs[0].type, brw_type_size_bits(srcs[0].type)); ubld.SHR(retype(srcs[0], utype), retype(srcs[1], utype), &ntb.resource_insts[def->index]); break; } case nir_op_iand: ubld.AND(srcs[0], srcs[1], &ntb.resource_insts[def->index]); break; case nir_op_ishl: ubld.SHL(srcs[0], srcs[1], &ntb.resource_insts[def->index]); break; case nir_op_mov: break; case nir_op_ult32: { if (brw_type_size_bits(srcs[0].type) != 32) break; brw_reg dst = ubld.vgrf(srcs[0].type); enum brw_reg_type utype = brw_type_with_size(srcs[0].type, brw_type_size_bits(srcs[0].type)); ntb.resource_insts[def->index] = ubld.CMP(dst, retype(srcs[0], utype), retype(srcs[1], utype), brw_cmod_for_nir_comparison(alu->op)); break; } case nir_op_b2i32: ubld.MOV(negate(retype(srcs[0], BRW_TYPE_D)), &ntb.resource_insts[def->index]); break; case nir_op_unpack_64_2x32_split_x: ubld.MOV(subscript(srcs[0], BRW_TYPE_D, 0), &ntb.resource_insts[def->index]); break; case nir_op_unpack_64_2x32_split_y: ubld.MOV(subscript(srcs[0], BRW_TYPE_D, 1), &ntb.resource_insts[def->index]); break; case nir_op_pack_64_2x32_split: { brw_reg dst = ubld.vgrf(BRW_TYPE_Q); ntb.resource_insts[def->index] = ubld.emit(FS_OPCODE_PACK, dst, srcs[0], srcs[1]); } default: break; } break; } case nir_instr_type_intrinsic: { nir_intrinsic_instr *intrin = nir_instr_as_intrinsic(instr); switch (intrin->intrinsic) { case nir_intrinsic_resource_intel: ntb.resource_insts[def->index] = ntb.resource_insts[intrin->src[1].ssa->index]; break; case nir_intrinsic_load_uniform: { if (!nir_src_is_const(intrin->src[0])) break; unsigned base_offset = nir_intrinsic_base(intrin); unsigned load_offset = nir_src_as_uint(intrin->src[0]); enum brw_reg_type type = brw_type_with_size(BRW_TYPE_D, intrin->def.bit_size); brw_reg dst_data = ubld.vgrf(type, intrin->def.num_components); for (unsigned i = 0; i < intrin->def.num_components; i++) { brw_reg src = brw_uniform_reg(base_offset / 4, type); src.offset = load_offset + base_offset % 4 + i * intrin->def.bit_size / 8; fs_inst *inst = ubld.MOV(byte_offset(dst_data, i * grf_size), src); if (i == 0) ntb.resource_insts[def->index] = inst; } break; } case nir_intrinsic_load_mesh_inline_data_intel: { assert(ntb.s.stage == MESA_SHADER_MESH || ntb.s.stage == MESA_SHADER_TASK); const task_mesh_thread_payload &payload = ntb.s.task_mesh_payload(); enum brw_reg_type type = brw_type_with_size(BRW_TYPE_D, intrin->def.bit_size); brw_reg dst_data = ubld.vgrf(type, intrin->def.num_components); for (unsigned i = 0; i < intrin->def.num_components; i++) { brw_reg src = retype( offset(payload.inline_parameter, 1, nir_intrinsic_align_offset(intrin) + i * intrin->def.bit_size / 8), brw_type_with_size(BRW_TYPE_D, intrin->def.bit_size)); fs_inst *inst = ubld.MOV(byte_offset(dst_data, i * grf_size), src); if (i == 0) ntb.resource_insts[def->index] = inst; } break; } case nir_intrinsic_load_btd_local_arg_addr_intel: { assert(brw_shader_stage_is_bindless(ntb.s.stage)); const bs_thread_payload &payload = ntb.s.bs_payload(); ubld.MOV(retype(payload.local_arg_ptr, BRW_TYPE_Q), &ntb.resource_insts[def->index]); break; } case nir_intrinsic_load_btd_global_arg_addr_intel: { assert(brw_shader_stage_is_bindless(ntb.s.stage)); const bs_thread_payload &payload = ntb.s.bs_payload(); ubld.MOV(retype(payload.global_arg_ptr, BRW_TYPE_Q), &ntb.resource_insts[def->index]); break; } case nir_intrinsic_load_reloc_const_intel: { uint32_t id = nir_intrinsic_param_idx(intrin); brw_reg dst = ubld.vgrf(BRW_TYPE_D); ntb.resource_insts[def->index] = ubld.emit(SHADER_OPCODE_MOV_RELOC_IMM, dst, brw_imm_ud(id), brw_imm_ud(0)); break; } case nir_intrinsic_load_ubo_uniform_block_intel: case nir_intrinsic_load_ssbo_uniform_block_intel: { enum brw_reg_type type = brw_type_with_size(BRW_TYPE_D, intrin->def.bit_size); brw_reg src_data = retype(ntb.ssa_values[def->index], type); unsigned n_components = ntb.s.alloc.sizes[src_data.nr] / (bld.dispatch_width() / 8); brw_reg dst_data = ubld.vgrf(type, n_components); ntb.resource_insts[def->index] = ubld.MOV(dst_data, src_data); for (unsigned i = 1; i < n_components; i++) { ubld.MOV(offset(dst_data, ubld, i), offset(src_data, bld, i)); } break; } default: break; } break; } default: break; } if (ntb.resource_insts[def->index] == NULL) { #if 0 if (a64) { fprintf(stderr, "Tried remat :\n"); for (unsigned i = 0; i < resources.array.size(); i++) { fprintf(stderr, " "); nir_print_instr(resources.array[i]->parent_instr, stderr); fprintf(stderr, "\n"); } fprintf(stderr, "failed at! : "); nir_print_instr(instr, stderr); fprintf(stderr, "\n"); } #endif return brw_reg(); } } assert(ntb.resource_insts[resource_def->index] != NULL); return component(ntb.resource_insts[resource_def->index]->dst, 0); } static brw_reg get_nir_image_intrinsic_image(nir_to_brw_state &ntb, const brw::fs_builder &bld, nir_intrinsic_instr *instr) { if (is_resource_src(instr->src[0])) { brw_reg surf_index = get_resource_nir_src(ntb, instr->src[0]); if (surf_index.file != BAD_FILE) return surf_index; } brw_reg image = retype(get_nir_src_imm(ntb, instr->src[0]), BRW_TYPE_UD); brw_reg surf_index = image; return bld.emit_uniformize(surf_index); } static brw_reg get_nir_buffer_intrinsic_index(nir_to_brw_state &ntb, const brw::fs_builder &bld, nir_intrinsic_instr *instr, bool *no_mask_handle = NULL) { /* SSBO stores are weird in that their index is in src[1] */ const bool is_store = instr->intrinsic == nir_intrinsic_store_ssbo || instr->intrinsic == nir_intrinsic_store_ssbo_block_intel; nir_src src = is_store ? instr->src[1] : instr->src[0]; if (no_mask_handle) *no_mask_handle = false; if (nir_src_is_const(src)) { if (no_mask_handle) *no_mask_handle = true; return brw_imm_ud(nir_src_as_uint(src)); } else if (is_resource_src(src)) { brw_reg surf_index = get_resource_nir_src(ntb, src); if (surf_index.file != BAD_FILE) { if (no_mask_handle) *no_mask_handle = true; return surf_index; } } return bld.emit_uniformize(get_nir_src(ntb, src)); } /** * The offsets we get from NIR act as if each SIMD channel has it's own blob * of contiguous space. However, if we actually place each SIMD channel in * it's own space, we end up with terrible cache performance because each SIMD * channel accesses a different cache line even when they're all accessing the * same byte offset. To deal with this problem, we swizzle the address using * a simple algorithm which ensures that any time a SIMD message reads or * writes the same address, it's all in the same cache line. We have to keep * the bottom two bits fixed so that we can read/write up to a dword at a time * and the individual element is contiguous. We do this by splitting the * address as follows: * * 31 4-6 2 0 * +-------------------------------+------------+----------+ * | Hi address bits | chan index | addr low | * +-------------------------------+------------+----------+ * * In other words, the bottom two address bits stay, and the top 30 get * shifted up so that we can stick the SIMD channel index in the middle. This * way, we can access 8, 16, or 32-bit elements and, when accessing a 32-bit * at the same logical offset, the scratch read/write instruction acts on * continuous elements and we get good cache locality. */ static brw_reg swizzle_nir_scratch_addr(nir_to_brw_state &ntb, const brw::fs_builder &bld, const nir_src &nir_addr_src, bool in_dwords) { fs_visitor &s = ntb.s; const brw_reg chan_index = bld.LOAD_SUBGROUP_INVOCATION(); const unsigned chan_index_bits = ffs(s.dispatch_width) - 1; if (nir_src_is_const(nir_addr_src)) { unsigned nir_addr = nir_src_as_uint(nir_addr_src); if (in_dwords) { /* In this case, we know the address is aligned to a DWORD and we want * the final address in DWORDs. */ return bld.OR(chan_index, brw_imm_ud(nir_addr << (chan_index_bits - 2))); } else { /* This case is substantially more annoying because we have to pay * attention to those pesky two bottom bits. */ unsigned addr_hi = (nir_addr & ~0x3u) << chan_index_bits; unsigned addr_lo = (nir_addr & 0x3u); return bld.OR(bld.SHL(chan_index, brw_imm_ud(2)), brw_imm_ud(addr_lo | addr_hi)); } } const brw_reg nir_addr = retype(get_nir_src(ntb, nir_addr_src), BRW_TYPE_UD); if (in_dwords) { /* In this case, we know the address is aligned to a DWORD and we want * the final address in DWORDs. */ return bld.OR(bld.SHL(nir_addr, brw_imm_ud(chan_index_bits - 2)), chan_index); } else { /* This case substantially more annoying because we have to pay * attention to those pesky two bottom bits. */ brw_reg chan_addr = bld.SHL(chan_index, brw_imm_ud(2)); brw_reg addr_bits = bld.OR(bld.AND(nir_addr, brw_imm_ud(0x3u)), bld.SHL(bld.AND(nir_addr, brw_imm_ud(~0x3u)), brw_imm_ud(chan_index_bits))); return bld.OR(addr_bits, chan_addr); } } static unsigned choose_oword_block_size_dwords(const struct intel_device_info *devinfo, unsigned dwords) { unsigned block; if (devinfo->has_lsc && dwords >= 64) { block = 64; } else if (dwords >= 32) { block = 32; } else if (dwords >= 16) { block = 16; } else { block = 8; } assert(block <= dwords); return block; } static brw_reg increment_a64_address(const fs_builder &_bld, brw_reg address, uint32_t v, bool use_no_mask) { const fs_builder bld = use_no_mask ? _bld.exec_all().group(8, 0) : _bld; if (bld.shader->devinfo->has_64bit_int) { struct brw_reg imm = brw_imm_reg(address.type); imm.u64 = v; return bld.ADD(address, imm); } else { brw_reg dst = bld.vgrf(BRW_TYPE_UQ); brw_reg dst_low = subscript(dst, BRW_TYPE_UD, 0); brw_reg dst_high = subscript(dst, BRW_TYPE_UD, 1); brw_reg src_low = subscript(address, BRW_TYPE_UD, 0); brw_reg src_high = subscript(address, BRW_TYPE_UD, 1); /* Add low and if that overflows, add carry to high. */ bld.ADD(dst_low, src_low, brw_imm_ud(v))->conditional_mod = BRW_CONDITIONAL_O; bld.ADD(dst_high, src_high, brw_imm_ud(0x1))->predicate = BRW_PREDICATE_NORMAL; return dst_low; } } static brw_reg emit_fence(const fs_builder &bld, enum opcode opcode, uint8_t sfid, uint32_t desc, bool commit_enable, uint8_t bti) { assert(opcode == SHADER_OPCODE_INTERLOCK || opcode == SHADER_OPCODE_MEMORY_FENCE); brw_reg dst = bld.vgrf(BRW_TYPE_UD); fs_inst *fence = bld.emit(opcode, dst, brw_vec8_grf(0, 0), brw_imm_ud(commit_enable), brw_imm_ud(bti)); fence->sfid = sfid; fence->desc = desc; return dst; } static uint32_t lsc_fence_descriptor_for_intrinsic(const struct intel_device_info *devinfo, nir_intrinsic_instr *instr) { assert(devinfo->has_lsc); enum lsc_fence_scope scope = LSC_FENCE_LOCAL; enum lsc_flush_type flush_type = LSC_FLUSH_TYPE_NONE; if (nir_intrinsic_has_memory_scope(instr)) { switch (nir_intrinsic_memory_scope(instr)) { case SCOPE_DEVICE: case SCOPE_QUEUE_FAMILY: scope = LSC_FENCE_TILE; flush_type = LSC_FLUSH_TYPE_EVICT; break; case SCOPE_WORKGROUP: scope = LSC_FENCE_THREADGROUP; break; case SCOPE_SHADER_CALL: case SCOPE_INVOCATION: case SCOPE_SUBGROUP: case SCOPE_NONE: break; } } else { /* No scope defined. */ scope = LSC_FENCE_TILE; flush_type = LSC_FLUSH_TYPE_EVICT; } return lsc_fence_msg_desc(devinfo, scope, flush_type, true); } /** * Create a MOV to read the timestamp register. */ static brw_reg get_timestamp(const fs_builder &bld) { fs_visitor &s = *bld.shader; brw_reg ts = brw_reg(retype(brw_vec4_reg(ARF, BRW_ARF_TIMESTAMP, 0), BRW_TYPE_UD)); brw_reg dst = brw_vgrf(s.alloc.allocate(1), BRW_TYPE_UD); /* We want to read the 3 fields we care about even if it's not enabled in * the dispatch. */ bld.group(4, 0).exec_all().MOV(dst, ts); return dst; } static unsigned component_from_intrinsic(nir_intrinsic_instr *instr) { if (nir_intrinsic_has_component(instr)) return nir_intrinsic_component(instr); else return 0; } static void adjust_handle_and_offset(const fs_builder &bld, brw_reg &urb_handle, unsigned &urb_global_offset) { /* Make sure that URB global offset is below 2048 (2^11), because * that's the maximum possible value encoded in Message Descriptor. */ unsigned adjustment = (urb_global_offset >> 11) << 11; if (adjustment) { fs_builder ubld8 = bld.group(8, 0).exec_all(); /* Allocate new register to not overwrite the shared URB handle. */ urb_handle = ubld8.ADD(urb_handle, brw_imm_ud(adjustment)); urb_global_offset -= adjustment; } } static void emit_urb_direct_vec4_write(const fs_builder &bld, unsigned urb_global_offset, const brw_reg &src, brw_reg urb_handle, unsigned dst_comp_offset, unsigned comps, unsigned mask) { for (unsigned q = 0; q < bld.dispatch_width() / 8; q++) { fs_builder bld8 = bld.group(8, q); brw_reg payload_srcs[8]; unsigned length = 0; for (unsigned i = 0; i < dst_comp_offset; i++) payload_srcs[length++] = reg_undef; for (unsigned c = 0; c < comps; c++) payload_srcs[length++] = quarter(offset(src, bld, c), q); brw_reg srcs[URB_LOGICAL_NUM_SRCS]; srcs[URB_LOGICAL_SRC_HANDLE] = urb_handle; srcs[URB_LOGICAL_SRC_CHANNEL_MASK] = brw_imm_ud(mask << 16); srcs[URB_LOGICAL_SRC_DATA] = brw_vgrf(bld.shader->alloc.allocate(length), BRW_TYPE_F); srcs[URB_LOGICAL_SRC_COMPONENTS] = brw_imm_ud(length); bld8.LOAD_PAYLOAD(srcs[URB_LOGICAL_SRC_DATA], payload_srcs, length, 0); fs_inst *inst = bld8.emit(SHADER_OPCODE_URB_WRITE_LOGICAL, reg_undef, srcs, ARRAY_SIZE(srcs)); inst->offset = urb_global_offset; assert(inst->offset < 2048); } } static void emit_urb_direct_writes(const fs_builder &bld, nir_intrinsic_instr *instr, const brw_reg &src, brw_reg urb_handle) { assert(nir_src_bit_size(instr->src[0]) == 32); nir_src *offset_nir_src = nir_get_io_offset_src(instr); assert(nir_src_is_const(*offset_nir_src)); const unsigned comps = nir_src_num_components(instr->src[0]); assert(comps <= 4); const unsigned offset_in_dwords = nir_intrinsic_base(instr) + nir_src_as_uint(*offset_nir_src) + component_from_intrinsic(instr); /* URB writes are vec4 aligned but the intrinsic offsets are in dwords. * We can write up to 8 dwords, so single vec4 write is enough. */ const unsigned comp_shift = offset_in_dwords % 4; const unsigned mask = nir_intrinsic_write_mask(instr) << comp_shift; unsigned urb_global_offset = offset_in_dwords / 4; adjust_handle_and_offset(bld, urb_handle, urb_global_offset); emit_urb_direct_vec4_write(bld, urb_global_offset, src, urb_handle, comp_shift, comps, mask); } static void emit_urb_direct_vec4_write_xe2(const fs_builder &bld, unsigned offset_in_bytes, const brw_reg &src, brw_reg urb_handle, unsigned comps, unsigned mask) { const struct intel_device_info *devinfo = bld.shader->devinfo; const unsigned runit = reg_unit(devinfo); const unsigned write_size = 8 * runit; if (offset_in_bytes > 0) { fs_builder bldall = bld.group(write_size, 0).exec_all(); urb_handle = bldall.ADD(urb_handle, brw_imm_ud(offset_in_bytes)); } for (unsigned q = 0; q < bld.dispatch_width() / write_size; q++) { fs_builder hbld = bld.group(write_size, q); assert(comps <= 4); brw_reg payload_srcs[4]; for (unsigned c = 0; c < comps; c++) payload_srcs[c] = horiz_offset(offset(src, bld, c), write_size * q); brw_reg srcs[URB_LOGICAL_NUM_SRCS]; srcs[URB_LOGICAL_SRC_HANDLE] = urb_handle; srcs[URB_LOGICAL_SRC_CHANNEL_MASK] = brw_imm_ud(mask << 16); int nr = bld.shader->alloc.allocate(comps * runit); srcs[URB_LOGICAL_SRC_DATA] = brw_vgrf(nr, BRW_TYPE_F); srcs[URB_LOGICAL_SRC_COMPONENTS] = brw_imm_ud(comps); hbld.LOAD_PAYLOAD(srcs[URB_LOGICAL_SRC_DATA], payload_srcs, comps, 0); hbld.emit(SHADER_OPCODE_URB_WRITE_LOGICAL, reg_undef, srcs, ARRAY_SIZE(srcs)); } } static void emit_urb_direct_writes_xe2(const fs_builder &bld, nir_intrinsic_instr *instr, const brw_reg &src, brw_reg urb_handle) { assert(nir_src_bit_size(instr->src[0]) == 32); nir_src *offset_nir_src = nir_get_io_offset_src(instr); assert(nir_src_is_const(*offset_nir_src)); const unsigned comps = nir_src_num_components(instr->src[0]); assert(comps <= 4); const unsigned offset_in_dwords = nir_intrinsic_base(instr) + nir_src_as_uint(*offset_nir_src) + component_from_intrinsic(instr); const unsigned mask = nir_intrinsic_write_mask(instr); emit_urb_direct_vec4_write_xe2(bld, offset_in_dwords * 4, src, urb_handle, comps, mask); } static void emit_urb_indirect_vec4_write(const fs_builder &bld, const brw_reg &offset_src, unsigned base, const brw_reg &src, brw_reg urb_handle, unsigned dst_comp_offset, unsigned comps, unsigned mask) { for (unsigned q = 0; q < bld.dispatch_width() / 8; q++) { fs_builder bld8 = bld.group(8, q); /* offset is always positive, so signedness doesn't matter */ assert(offset_src.type == BRW_TYPE_D || offset_src.type == BRW_TYPE_UD); brw_reg qtr = bld8.MOV(quarter(retype(offset_src, BRW_TYPE_UD), q)); brw_reg off = bld8.SHR(bld8.ADD(qtr, brw_imm_ud(base)), brw_imm_ud(2)); brw_reg payload_srcs[8]; unsigned length = 0; for (unsigned i = 0; i < dst_comp_offset; i++) payload_srcs[length++] = reg_undef; for (unsigned c = 0; c < comps; c++) payload_srcs[length++] = quarter(offset(src, bld, c), q); brw_reg srcs[URB_LOGICAL_NUM_SRCS]; srcs[URB_LOGICAL_SRC_HANDLE] = urb_handle; srcs[URB_LOGICAL_SRC_PER_SLOT_OFFSETS] = off; srcs[URB_LOGICAL_SRC_CHANNEL_MASK] = brw_imm_ud(mask << 16); srcs[URB_LOGICAL_SRC_DATA] = brw_vgrf(bld.shader->alloc.allocate(length), BRW_TYPE_F); srcs[URB_LOGICAL_SRC_COMPONENTS] = brw_imm_ud(length); bld8.LOAD_PAYLOAD(srcs[URB_LOGICAL_SRC_DATA], payload_srcs, length, 0); fs_inst *inst = bld8.emit(SHADER_OPCODE_URB_WRITE_LOGICAL, reg_undef, srcs, ARRAY_SIZE(srcs)); inst->offset = 0; } } static void emit_urb_indirect_writes_mod(const fs_builder &bld, nir_intrinsic_instr *instr, const brw_reg &src, const brw_reg &offset_src, brw_reg urb_handle, unsigned mod) { assert(nir_src_bit_size(instr->src[0]) == 32); const unsigned comps = nir_src_num_components(instr->src[0]); assert(comps <= 4); const unsigned base_in_dwords = nir_intrinsic_base(instr) + component_from_intrinsic(instr); const unsigned comp_shift = mod; const unsigned mask = nir_intrinsic_write_mask(instr) << comp_shift; emit_urb_indirect_vec4_write(bld, offset_src, base_in_dwords, src, urb_handle, comp_shift, comps, mask); } static void emit_urb_indirect_writes_xe2(const fs_builder &bld, nir_intrinsic_instr *instr, const brw_reg &src, const brw_reg &offset_src, brw_reg urb_handle) { assert(nir_src_bit_size(instr->src[0]) == 32); const struct intel_device_info *devinfo = bld.shader->devinfo; const unsigned runit = reg_unit(devinfo); const unsigned write_size = 8 * runit; const unsigned comps = nir_src_num_components(instr->src[0]); assert(comps <= 4); const unsigned base_in_dwords = nir_intrinsic_base(instr) + component_from_intrinsic(instr); if (base_in_dwords > 0) { fs_builder bldall = bld.group(write_size, 0).exec_all(); urb_handle = bldall.ADD(urb_handle, brw_imm_ud(base_in_dwords * 4)); } const unsigned mask = nir_intrinsic_write_mask(instr); for (unsigned q = 0; q < bld.dispatch_width() / write_size; q++) { fs_builder wbld = bld.group(write_size, q); brw_reg payload_srcs[4]; for (unsigned c = 0; c < comps; c++) payload_srcs[c] = horiz_offset(offset(src, bld, c), write_size * q); brw_reg addr = wbld.ADD(wbld.SHL(retype(horiz_offset(offset_src, write_size * q), BRW_TYPE_UD), brw_imm_ud(2)), urb_handle); brw_reg srcs[URB_LOGICAL_NUM_SRCS]; srcs[URB_LOGICAL_SRC_HANDLE] = addr; srcs[URB_LOGICAL_SRC_CHANNEL_MASK] = brw_imm_ud(mask << 16); int nr = bld.shader->alloc.allocate(comps * runit); srcs[URB_LOGICAL_SRC_DATA] = brw_vgrf(nr, BRW_TYPE_F); srcs[URB_LOGICAL_SRC_COMPONENTS] = brw_imm_ud(comps); wbld.LOAD_PAYLOAD(srcs[URB_LOGICAL_SRC_DATA], payload_srcs, comps, 0); wbld.emit(SHADER_OPCODE_URB_WRITE_LOGICAL, reg_undef, srcs, ARRAY_SIZE(srcs)); } } static void emit_urb_indirect_writes(const fs_builder &bld, nir_intrinsic_instr *instr, const brw_reg &src, const brw_reg &offset_src, brw_reg urb_handle) { assert(nir_src_bit_size(instr->src[0]) == 32); const unsigned comps = nir_src_num_components(instr->src[0]); assert(comps <= 4); const unsigned base_in_dwords = nir_intrinsic_base(instr) + component_from_intrinsic(instr); /* Use URB write message that allow different offsets per-slot. The offset * is in units of vec4s (128 bits), so we use a write for each component, * replicating it in the sources and applying the appropriate mask based on * the dword offset. */ for (unsigned c = 0; c < comps; c++) { if (((1 << c) & nir_intrinsic_write_mask(instr)) == 0) continue; brw_reg src_comp = offset(src, bld, c); for (unsigned q = 0; q < bld.dispatch_width() / 8; q++) { fs_builder bld8 = bld.group(8, q); /* offset is always positive, so signedness doesn't matter */ assert(offset_src.type == BRW_TYPE_D || offset_src.type == BRW_TYPE_UD); brw_reg off = bld8.ADD(quarter(retype(offset_src, BRW_TYPE_UD), q), brw_imm_ud(c + base_in_dwords)); brw_reg m = bld8.AND(off, brw_imm_ud(0x3)); brw_reg t = bld8.SHL(bld8.MOV(brw_imm_ud(1)), m); brw_reg mask = bld8.SHL(t, brw_imm_ud(16)); brw_reg final_offset = bld8.SHR(off, brw_imm_ud(2)); brw_reg payload_srcs[4]; unsigned length = 0; for (unsigned j = 0; j < 4; j++) payload_srcs[length++] = quarter(src_comp, q); brw_reg srcs[URB_LOGICAL_NUM_SRCS]; srcs[URB_LOGICAL_SRC_HANDLE] = urb_handle; srcs[URB_LOGICAL_SRC_PER_SLOT_OFFSETS] = final_offset; srcs[URB_LOGICAL_SRC_CHANNEL_MASK] = mask; srcs[URB_LOGICAL_SRC_DATA] = brw_vgrf(bld.shader->alloc.allocate(length), BRW_TYPE_F); srcs[URB_LOGICAL_SRC_COMPONENTS] = brw_imm_ud(length); bld8.LOAD_PAYLOAD(srcs[URB_LOGICAL_SRC_DATA], payload_srcs, length, 0); fs_inst *inst = bld8.emit(SHADER_OPCODE_URB_WRITE_LOGICAL, reg_undef, srcs, ARRAY_SIZE(srcs)); inst->offset = 0; } } } static void emit_urb_direct_reads(const fs_builder &bld, nir_intrinsic_instr *instr, const brw_reg &dest, brw_reg urb_handle) { assert(instr->def.bit_size == 32); unsigned comps = instr->def.num_components; if (comps == 0) return; nir_src *offset_nir_src = nir_get_io_offset_src(instr); assert(nir_src_is_const(*offset_nir_src)); const unsigned offset_in_dwords = nir_intrinsic_base(instr) + nir_src_as_uint(*offset_nir_src) + component_from_intrinsic(instr); unsigned urb_global_offset = offset_in_dwords / 4; adjust_handle_and_offset(bld, urb_handle, urb_global_offset); const unsigned comp_offset = offset_in_dwords % 4; const unsigned num_regs = comp_offset + comps; fs_builder ubld8 = bld.group(8, 0).exec_all(); brw_reg data = ubld8.vgrf(BRW_TYPE_UD, num_regs); brw_reg srcs[URB_LOGICAL_NUM_SRCS]; srcs[URB_LOGICAL_SRC_HANDLE] = urb_handle; fs_inst *inst = ubld8.emit(SHADER_OPCODE_URB_READ_LOGICAL, data, srcs, ARRAY_SIZE(srcs)); inst->offset = urb_global_offset; assert(inst->offset < 2048); inst->size_written = num_regs * REG_SIZE; for (unsigned c = 0; c < comps; c++) { brw_reg dest_comp = offset(dest, bld, c); brw_reg data_comp = horiz_stride(offset(data, ubld8, comp_offset + c), 0); bld.MOV(retype(dest_comp, BRW_TYPE_UD), data_comp); } } static void emit_urb_direct_reads_xe2(const fs_builder &bld, nir_intrinsic_instr *instr, const brw_reg &dest, brw_reg urb_handle) { assert(instr->def.bit_size == 32); unsigned comps = instr->def.num_components; if (comps == 0) return; nir_src *offset_nir_src = nir_get_io_offset_src(instr); assert(nir_src_is_const(*offset_nir_src)); fs_builder ubld16 = bld.group(16, 0).exec_all(); const unsigned offset_in_dwords = nir_intrinsic_base(instr) + nir_src_as_uint(*offset_nir_src) + component_from_intrinsic(instr); if (offset_in_dwords > 0) urb_handle = ubld16.ADD(urb_handle, brw_imm_ud(offset_in_dwords * 4)); brw_reg data = ubld16.vgrf(BRW_TYPE_UD, comps); brw_reg srcs[URB_LOGICAL_NUM_SRCS]; srcs[URB_LOGICAL_SRC_HANDLE] = urb_handle; fs_inst *inst = ubld16.emit(SHADER_OPCODE_URB_READ_LOGICAL, data, srcs, ARRAY_SIZE(srcs)); inst->size_written = 2 * comps * REG_SIZE; for (unsigned c = 0; c < comps; c++) { brw_reg dest_comp = offset(dest, bld, c); brw_reg data_comp = horiz_stride(offset(data, ubld16, c), 0); bld.MOV(retype(dest_comp, BRW_TYPE_UD), data_comp); } } static void emit_urb_indirect_reads(const fs_builder &bld, nir_intrinsic_instr *instr, const brw_reg &dest, const brw_reg &offset_src, brw_reg urb_handle) { assert(instr->def.bit_size == 32); unsigned comps = instr->def.num_components; if (comps == 0) return; brw_reg seq_ud; { fs_builder ubld8 = bld.group(8, 0).exec_all(); seq_ud = ubld8.vgrf(BRW_TYPE_UD, 1); brw_reg seq_uw = ubld8.vgrf(BRW_TYPE_UW, 1); ubld8.MOV(seq_uw, brw_reg(brw_imm_v(0x76543210))); ubld8.MOV(seq_ud, seq_uw); seq_ud = ubld8.SHL(seq_ud, brw_imm_ud(2)); } const unsigned base_in_dwords = nir_intrinsic_base(instr) + component_from_intrinsic(instr); for (unsigned c = 0; c < comps; c++) { for (unsigned q = 0; q < bld.dispatch_width() / 8; q++) { fs_builder bld8 = bld.group(8, q); /* offset is always positive, so signedness doesn't matter */ assert(offset_src.type == BRW_TYPE_D || offset_src.type == BRW_TYPE_UD); brw_reg off = bld8.ADD(bld8.MOV(quarter(retype(offset_src, BRW_TYPE_UD), q)), brw_imm_ud(base_in_dwords + c)); STATIC_ASSERT(IS_POT(REG_SIZE) && REG_SIZE > 1); brw_reg comp; comp = bld8.AND(off, brw_imm_ud(0x3)); comp = bld8.SHL(comp, brw_imm_ud(ffs(REG_SIZE) - 1)); comp = bld8.ADD(comp, seq_ud); off = bld8.SHR(off, brw_imm_ud(2)); brw_reg srcs[URB_LOGICAL_NUM_SRCS]; srcs[URB_LOGICAL_SRC_HANDLE] = urb_handle; srcs[URB_LOGICAL_SRC_PER_SLOT_OFFSETS] = off; brw_reg data = bld8.vgrf(BRW_TYPE_UD, 4); fs_inst *inst = bld8.emit(SHADER_OPCODE_URB_READ_LOGICAL, data, srcs, ARRAY_SIZE(srcs)); inst->offset = 0; inst->size_written = 4 * REG_SIZE; brw_reg dest_comp = offset(dest, bld, c); bld8.emit(SHADER_OPCODE_MOV_INDIRECT, retype(quarter(dest_comp, q), BRW_TYPE_UD), data, comp, brw_imm_ud(4 * REG_SIZE)); } } } static void emit_urb_indirect_reads_xe2(const fs_builder &bld, nir_intrinsic_instr *instr, const brw_reg &dest, const brw_reg &offset_src, brw_reg urb_handle) { assert(instr->def.bit_size == 32); unsigned comps = instr->def.num_components; if (comps == 0) return; fs_builder ubld16 = bld.group(16, 0).exec_all(); const unsigned offset_in_dwords = nir_intrinsic_base(instr) + component_from_intrinsic(instr); if (offset_in_dwords > 0) urb_handle = ubld16.ADD(urb_handle, brw_imm_ud(offset_in_dwords * 4)); brw_reg data = ubld16.vgrf(BRW_TYPE_UD, comps); for (unsigned q = 0; q < bld.dispatch_width() / 16; q++) { fs_builder wbld = bld.group(16, q); brw_reg addr = wbld.SHL(retype(horiz_offset(offset_src, 16 * q), BRW_TYPE_UD), brw_imm_ud(2)); brw_reg srcs[URB_LOGICAL_NUM_SRCS]; srcs[URB_LOGICAL_SRC_HANDLE] = wbld.ADD(addr, urb_handle); fs_inst *inst = wbld.emit(SHADER_OPCODE_URB_READ_LOGICAL, data, srcs, ARRAY_SIZE(srcs)); inst->size_written = 2 * comps * REG_SIZE; for (unsigned c = 0; c < comps; c++) { brw_reg dest_comp = horiz_offset(offset(dest, bld, c), 16 * q); brw_reg data_comp = offset(data, wbld, c); wbld.MOV(retype(dest_comp, BRW_TYPE_UD), data_comp); } } } static void emit_task_mesh_store(nir_to_brw_state &ntb, const fs_builder &bld, nir_intrinsic_instr *instr, const brw_reg &urb_handle) { brw_reg src = get_nir_src(ntb, instr->src[0]); nir_src *offset_nir_src = nir_get_io_offset_src(instr); if (nir_src_is_const(*offset_nir_src)) { if (bld.shader->devinfo->ver >= 20) emit_urb_direct_writes_xe2(bld, instr, src, urb_handle); else emit_urb_direct_writes(bld, instr, src, urb_handle); } else { if (bld.shader->devinfo->ver >= 20) { emit_urb_indirect_writes_xe2(bld, instr, src, get_nir_src(ntb, *offset_nir_src), urb_handle); return; } bool use_mod = false; unsigned mod; /* Try to calculate the value of (offset + base) % 4. If we can do * this, then we can do indirect writes using only 1 URB write. */ use_mod = nir_mod_analysis(nir_get_scalar(offset_nir_src->ssa, 0), nir_type_uint, 4, &mod); if (use_mod) { mod += nir_intrinsic_base(instr) + component_from_intrinsic(instr); mod %= 4; } if (use_mod) { emit_urb_indirect_writes_mod(bld, instr, src, get_nir_src(ntb, *offset_nir_src), urb_handle, mod); } else { emit_urb_indirect_writes(bld, instr, src, get_nir_src(ntb, *offset_nir_src), urb_handle); } } } static void emit_task_mesh_load(nir_to_brw_state &ntb, const fs_builder &bld, nir_intrinsic_instr *instr, const brw_reg &urb_handle) { brw_reg dest = get_nir_def(ntb, instr->def); nir_src *offset_nir_src = nir_get_io_offset_src(instr); /* TODO(mesh): for per_vertex and per_primitive, if we could keep around * the non-array-index offset, we could use to decide if we can perform * a single large aligned read instead one per component. */ if (nir_src_is_const(*offset_nir_src)) { if (bld.shader->devinfo->ver >= 20) emit_urb_direct_reads_xe2(bld, instr, dest, urb_handle); else emit_urb_direct_reads(bld, instr, dest, urb_handle); } else { if (bld.shader->devinfo->ver >= 20) emit_urb_indirect_reads_xe2(bld, instr, dest, get_nir_src(ntb, *offset_nir_src), urb_handle); else emit_urb_indirect_reads(bld, instr, dest, get_nir_src(ntb, *offset_nir_src), urb_handle); } } static void fs_nir_emit_task_mesh_intrinsic(nir_to_brw_state &ntb, const fs_builder &bld, nir_intrinsic_instr *instr) { fs_visitor &s = ntb.s; assert(s.stage == MESA_SHADER_MESH || s.stage == MESA_SHADER_TASK); const task_mesh_thread_payload &payload = s.task_mesh_payload(); brw_reg dest; if (nir_intrinsic_infos[instr->intrinsic].has_dest) dest = get_nir_def(ntb, instr->def); switch (instr->intrinsic) { case nir_intrinsic_load_mesh_inline_data_intel: { brw_reg data = offset(payload.inline_parameter, 1, nir_intrinsic_align_offset(instr)); bld.MOV(dest, retype(data, dest.type)); break; } case nir_intrinsic_load_draw_id: dest = retype(dest, BRW_TYPE_UD); bld.MOV(dest, payload.extended_parameter_0); break; case nir_intrinsic_load_local_invocation_id: unreachable("local invocation id should have been lowered earlier"); break; case nir_intrinsic_load_local_invocation_index: dest = retype(dest, BRW_TYPE_UD); bld.MOV(dest, payload.local_index); break; case nir_intrinsic_load_num_workgroups: dest = retype(dest, BRW_TYPE_UD); bld.MOV(offset(dest, bld, 0), brw_uw1_grf(0, 13)); /* g0.6 >> 16 */ bld.MOV(offset(dest, bld, 1), brw_uw1_grf(0, 8)); /* g0.4 & 0xffff */ bld.MOV(offset(dest, bld, 2), brw_uw1_grf(0, 9)); /* g0.4 >> 16 */ break; case nir_intrinsic_load_workgroup_index: dest = retype(dest, BRW_TYPE_UD); bld.MOV(dest, retype(brw_vec1_grf(0, 1), BRW_TYPE_UD)); break; default: fs_nir_emit_cs_intrinsic(ntb, instr); break; } } static void fs_nir_emit_task_intrinsic(nir_to_brw_state &ntb, nir_intrinsic_instr *instr) { const fs_builder &bld = ntb.bld; fs_visitor &s = ntb.s; assert(s.stage == MESA_SHADER_TASK); const task_mesh_thread_payload &payload = s.task_mesh_payload(); switch (instr->intrinsic) { case nir_intrinsic_store_output: case nir_intrinsic_store_task_payload: emit_task_mesh_store(ntb, bld, instr, payload.urb_output); break; case nir_intrinsic_load_output: case nir_intrinsic_load_task_payload: emit_task_mesh_load(ntb, bld, instr, payload.urb_output); break; default: fs_nir_emit_task_mesh_intrinsic(ntb, bld, instr); break; } } static void fs_nir_emit_mesh_intrinsic(nir_to_brw_state &ntb, nir_intrinsic_instr *instr) { const fs_builder &bld = ntb.bld; fs_visitor &s = ntb.s; assert(s.stage == MESA_SHADER_MESH); const task_mesh_thread_payload &payload = s.task_mesh_payload(); switch (instr->intrinsic) { case nir_intrinsic_store_per_primitive_output: case nir_intrinsic_store_per_vertex_output: case nir_intrinsic_store_output: emit_task_mesh_store(ntb, bld, instr, payload.urb_output); break; case nir_intrinsic_load_per_vertex_output: case nir_intrinsic_load_per_primitive_output: case nir_intrinsic_load_output: emit_task_mesh_load(ntb, bld, instr, payload.urb_output); break; case nir_intrinsic_load_task_payload: emit_task_mesh_load(ntb, bld, instr, payload.task_urb_input); break; default: fs_nir_emit_task_mesh_intrinsic(ntb, bld, instr); break; } } static void fs_nir_emit_intrinsic(nir_to_brw_state &ntb, const fs_builder &bld, nir_intrinsic_instr *instr) { const intel_device_info *devinfo = ntb.devinfo; fs_visitor &s = ntb.s; /* We handle this as a special case */ if (instr->intrinsic == nir_intrinsic_decl_reg) { assert(nir_intrinsic_num_array_elems(instr) == 0); unsigned bit_size = nir_intrinsic_bit_size(instr); unsigned num_components = nir_intrinsic_num_components(instr); const brw_reg_type reg_type = brw_type_with_size(bit_size == 8 ? BRW_TYPE_D : BRW_TYPE_F, bit_size); /* Re-use the destination's slot in the table for the register */ ntb.ssa_values[instr->def.index] = bld.vgrf(reg_type, num_components); return; } brw_reg dest; if (nir_intrinsic_infos[instr->intrinsic].has_dest) dest = get_nir_def(ntb, instr->def); switch (instr->intrinsic) { case nir_intrinsic_resource_intel: ntb.ssa_bind_infos[instr->def.index].valid = true; ntb.ssa_bind_infos[instr->def.index].bindless = (nir_intrinsic_resource_access_intel(instr) & nir_resource_intel_bindless) != 0; ntb.ssa_bind_infos[instr->def.index].block = nir_intrinsic_resource_block_intel(instr); ntb.ssa_bind_infos[instr->def.index].set = nir_intrinsic_desc_set(instr); ntb.ssa_bind_infos[instr->def.index].binding = nir_intrinsic_binding(instr); if (nir_intrinsic_resource_access_intel(instr) & nir_resource_intel_non_uniform) { ntb.uniform_values[instr->def.index] = brw_reg(); } else { ntb.uniform_values[instr->def.index] = try_rebuild_source(ntb, bld, instr->src[1].ssa); } ntb.ssa_values[instr->def.index] = get_nir_src(ntb, instr->src[1]); break; case nir_intrinsic_load_reg: case nir_intrinsic_store_reg: /* Nothing to do with these. */ break; case nir_intrinsic_load_global_constant_uniform_block_intel: ntb.uniform_values[instr->src[0].ssa->index] = try_rebuild_source(ntb, bld, instr->src[0].ssa, true); FALLTHROUGH; case nir_intrinsic_load_ssbo_uniform_block_intel: case nir_intrinsic_load_shared_uniform_block_intel: case nir_intrinsic_load_global_block_intel: case nir_intrinsic_store_global_block_intel: case nir_intrinsic_load_shared_block_intel: case nir_intrinsic_store_shared_block_intel: case nir_intrinsic_load_ssbo_block_intel: case nir_intrinsic_store_ssbo_block_intel: case nir_intrinsic_image_load: case nir_intrinsic_image_store: case nir_intrinsic_image_atomic: case nir_intrinsic_image_atomic_swap: case nir_intrinsic_bindless_image_load: case nir_intrinsic_bindless_image_store: case nir_intrinsic_bindless_image_atomic: case nir_intrinsic_bindless_image_atomic_swap: case nir_intrinsic_load_shared: case nir_intrinsic_store_shared: case nir_intrinsic_shared_atomic: case nir_intrinsic_shared_atomic_swap: case nir_intrinsic_load_ssbo: case nir_intrinsic_store_ssbo: case nir_intrinsic_ssbo_atomic: case nir_intrinsic_ssbo_atomic_swap: case nir_intrinsic_load_global: case nir_intrinsic_load_global_constant: case nir_intrinsic_store_global: case nir_intrinsic_global_atomic: case nir_intrinsic_global_atomic_swap: case nir_intrinsic_load_scratch: case nir_intrinsic_store_scratch: fs_nir_emit_memory_access(ntb, bld, instr); break; case nir_intrinsic_image_size: case nir_intrinsic_bindless_image_size: { /* Cube image sizes should have previously been lowered to a 2D array */ assert(nir_intrinsic_image_dim(instr) != GLSL_SAMPLER_DIM_CUBE); /* Unlike the [un]typed load and store opcodes, the TXS that this turns * into will handle the binding table index for us in the geneerator. * Incidentally, this means that we can handle bindless with exactly the * same code. */ brw_reg image = retype(get_nir_src_imm(ntb, instr->src[0]), BRW_TYPE_UD); image = bld.emit_uniformize(image); assert(nir_src_as_uint(instr->src[1]) == 0); brw_reg srcs[TEX_LOGICAL_NUM_SRCS]; if (instr->intrinsic == nir_intrinsic_image_size) srcs[TEX_LOGICAL_SRC_SURFACE] = image; else srcs[TEX_LOGICAL_SRC_SURFACE_HANDLE] = image; srcs[TEX_LOGICAL_SRC_SAMPLER] = brw_imm_d(0); srcs[TEX_LOGICAL_SRC_COORD_COMPONENTS] = brw_imm_d(0); srcs[TEX_LOGICAL_SRC_GRAD_COMPONENTS] = brw_imm_d(0); srcs[TEX_LOGICAL_SRC_RESIDENCY] = brw_imm_d(0); /* Since the image size is always uniform, we can just emit a SIMD8 * query instruction and splat the result out. */ const fs_builder ubld = bld.exec_all().group(8 * reg_unit(devinfo), 0); brw_reg tmp = ubld.vgrf(BRW_TYPE_UD, 4); fs_inst *inst = ubld.emit(SHADER_OPCODE_IMAGE_SIZE_LOGICAL, tmp, srcs, ARRAY_SIZE(srcs)); inst->size_written = 4 * REG_SIZE * reg_unit(devinfo); for (unsigned c = 0; c < instr->def.num_components; ++c) { bld.MOV(offset(retype(dest, tmp.type), bld, c), component(offset(tmp, ubld, c), 0)); } break; } case nir_intrinsic_barrier: case nir_intrinsic_begin_invocation_interlock: case nir_intrinsic_end_invocation_interlock: { bool ugm_fence, slm_fence, tgm_fence, urb_fence; enum opcode opcode = BRW_OPCODE_NOP; /* Handling interlock intrinsics here will allow the logic for IVB * render cache (see below) to be reused. */ switch (instr->intrinsic) { case nir_intrinsic_barrier: { /* Note we only care about the memory part of the * barrier. The execution part will be taken care * of by the stage specific intrinsic handler functions. */ nir_variable_mode modes = nir_intrinsic_memory_modes(instr); ugm_fence = modes & (nir_var_mem_ssbo | nir_var_mem_global); slm_fence = modes & nir_var_mem_shared; tgm_fence = modes & nir_var_image; urb_fence = modes & (nir_var_shader_out | nir_var_mem_task_payload); if (nir_intrinsic_memory_scope(instr) != SCOPE_NONE) opcode = SHADER_OPCODE_MEMORY_FENCE; break; } case nir_intrinsic_begin_invocation_interlock: /* For beginInvocationInterlockARB(), we will generate a memory fence * but with a different opcode so that generator can pick SENDC * instead of SEND. */ assert(s.stage == MESA_SHADER_FRAGMENT); ugm_fence = tgm_fence = true; slm_fence = urb_fence = false; opcode = SHADER_OPCODE_INTERLOCK; break; case nir_intrinsic_end_invocation_interlock: /* For endInvocationInterlockARB(), we need to insert a memory fence which * stalls in the shader until the memory transactions prior to that * fence are complete. This ensures that the shader does not end before * any writes from its critical section have landed. Otherwise, you can * end up with a case where the next invocation on that pixel properly * stalls for previous FS invocation on its pixel to complete but * doesn't actually wait for the dataport memory transactions from that * thread to land before submitting its own. */ assert(s.stage == MESA_SHADER_FRAGMENT); ugm_fence = tgm_fence = true; slm_fence = urb_fence = false; opcode = SHADER_OPCODE_MEMORY_FENCE; break; default: unreachable("invalid intrinsic"); } if (opcode == BRW_OPCODE_NOP) break; if (s.nir->info.shared_size > 0) { assert(gl_shader_stage_uses_workgroup(s.stage)); } else { slm_fence = false; } /* If the workgroup fits in a single HW thread, the messages for SLM are * processed in-order and the shader itself is already synchronized so * the memory fence is not necessary. * * TODO: Check if applies for many HW threads sharing same Data Port. */ if (!s.nir->info.workgroup_size_variable && slm_fence && brw_workgroup_size(s) <= s.dispatch_width) slm_fence = false; switch (s.stage) { case MESA_SHADER_TESS_CTRL: case MESA_SHADER_TASK: case MESA_SHADER_MESH: break; default: urb_fence = false; break; } unsigned fence_regs_count = 0; brw_reg fence_regs[4] = {}; const fs_builder ubld = bld.group(8, 0); /* A memory barrier with acquire semantics requires us to * guarantee that memory operations of the specified storage * class sequenced-after the barrier aren't reordered before the * barrier, nor before any previous atomic operation * sequenced-before the barrier which may be synchronizing this * acquire barrier with a prior release sequence. * * In order to guarantee the latter we must make sure that any * such previous operation has completed execution before * invalidating the relevant caches, since otherwise some cache * could be polluted by a concurrent thread after its * invalidation but before the previous atomic completes, which * could lead to a violation of the expected memory ordering if * a subsequent memory read hits the polluted cacheline, which * would return a stale value read from memory before the * completion of the atomic sequenced-before the barrier. * * This ordering inversion can be avoided trivially if the * operations we need to order are all handled by a single * in-order cache, since the flush implied by the memory fence * occurs after any pending operations have completed, however * that doesn't help us when dealing with multiple caches * processing requests out of order, in which case we need to * explicitly stall the EU until any pending memory operations * have executed. * * Note that that might be somewhat heavy handed in some cases. * In particular when this memory fence was inserted by * spirv_to_nir() lowering an atomic with acquire semantics into * an atomic+barrier sequence we could do a better job by * synchronizing with respect to that one atomic *only*, but * that would require additional information not currently * available to the backend. * * XXX - Use an alternative workaround on IVB and ICL, since * SYNC.ALLWR is only available on Gfx12+. */ if (devinfo->ver >= 12 && (!nir_intrinsic_has_memory_scope(instr) || (nir_intrinsic_memory_semantics(instr) & NIR_MEMORY_ACQUIRE))) { ubld.exec_all().group(1, 0).SYNC(TGL_SYNC_ALLWR); } if (devinfo->has_lsc) { assert(devinfo->verx10 >= 125); uint32_t desc = lsc_fence_descriptor_for_intrinsic(devinfo, instr); if (ugm_fence) { fence_regs[fence_regs_count++] = emit_fence(ubld, opcode, GFX12_SFID_UGM, desc, true /* commit_enable */, 0 /* bti; ignored for LSC */); } if (tgm_fence) { fence_regs[fence_regs_count++] = emit_fence(ubld, opcode, GFX12_SFID_TGM, desc, true /* commit_enable */, 0 /* bti; ignored for LSC */); } if (slm_fence) { assert(opcode == SHADER_OPCODE_MEMORY_FENCE); if (intel_needs_workaround(devinfo, 14014063774)) { /* Wa_14014063774 * * Before SLM fence compiler needs to insert SYNC.ALLWR in order * to avoid the SLM data race. */ ubld.exec_all().group(1, 0).SYNC(TGL_SYNC_ALLWR); } fence_regs[fence_regs_count++] = emit_fence(ubld, opcode, GFX12_SFID_SLM, desc, true /* commit_enable */, 0 /* BTI; ignored for LSC */); } if (urb_fence) { assert(opcode == SHADER_OPCODE_MEMORY_FENCE); fence_regs[fence_regs_count++] = emit_fence(ubld, opcode, BRW_SFID_URB, desc, true /* commit_enable */, 0 /* BTI; ignored for LSC */); } } else if (devinfo->ver >= 11) { if (tgm_fence || ugm_fence || urb_fence) { fence_regs[fence_regs_count++] = emit_fence(ubld, opcode, GFX7_SFID_DATAPORT_DATA_CACHE, 0, true /* commit_enable HSD ES # 1404612949 */, 0 /* BTI = 0 means data cache */); } if (slm_fence) { assert(opcode == SHADER_OPCODE_MEMORY_FENCE); fence_regs[fence_regs_count++] = emit_fence(ubld, opcode, GFX7_SFID_DATAPORT_DATA_CACHE, 0, true /* commit_enable HSD ES # 1404612949 */, GFX7_BTI_SLM); } } else { /* Simulation also complains on Gfx9 if we do not enable commit. */ const bool commit_enable = instr->intrinsic == nir_intrinsic_end_invocation_interlock || devinfo->ver == 9; if (tgm_fence || ugm_fence || slm_fence || urb_fence) { fence_regs[fence_regs_count++] = emit_fence(ubld, opcode, GFX7_SFID_DATAPORT_DATA_CACHE, 0, commit_enable, 0 /* BTI */); } } assert(fence_regs_count <= ARRAY_SIZE(fence_regs)); /* Be conservative in Gen11+ and always stall in a fence. Since * there are two different fences, and shader might want to * synchronize between them. * * TODO: Use scope and visibility information for the barriers from NIR * to make a better decision on whether we need to stall. */ bool force_stall = devinfo->ver >= 11; /* There are four cases where we want to insert a stall: * * 1. If we're a nir_intrinsic_end_invocation_interlock. This is * required to ensure that the shader EOT doesn't happen until * after the fence returns. Otherwise, we might end up with the * next shader invocation for that pixel not respecting our fence * because it may happen on a different HW thread. * * 2. If we have multiple fences. This is required to ensure that * they all complete and nothing gets weirdly out-of-order. * * 3. If we have no fences. In this case, we need at least a * scheduling barrier to keep the compiler from moving things * around in an invalid way. * * 4. On Gen11+ and platforms with LSC, we have multiple fence types, * without further information about the fence, we need to force a * stall. */ if (instr->intrinsic == nir_intrinsic_end_invocation_interlock || fence_regs_count != 1 || devinfo->has_lsc || force_stall) { ubld.exec_all().group(1, 0).emit( FS_OPCODE_SCHEDULING_FENCE, ubld.null_reg_ud(), fence_regs, fence_regs_count); } break; } case nir_intrinsic_shader_clock: { /* We cannot do anything if there is an event, so ignore it for now */ const brw_reg shader_clock = get_timestamp(bld); const brw_reg srcs[] = { component(shader_clock, 0), component(shader_clock, 1) }; bld.LOAD_PAYLOAD(dest, srcs, ARRAY_SIZE(srcs), 0); break; } case nir_intrinsic_load_reloc_const_intel: { uint32_t id = nir_intrinsic_param_idx(instr); uint32_t base = nir_intrinsic_base(instr); /* Emit the reloc in the smallest SIMD size to limit register usage. */ const fs_builder ubld = bld.exec_all().group(1, 0); brw_reg small_dest = ubld.vgrf(dest.type); ubld.UNDEF(small_dest); ubld.exec_all().group(1, 0).emit(SHADER_OPCODE_MOV_RELOC_IMM, small_dest, brw_imm_ud(id), brw_imm_ud(base)); /* Copy propagation will get rid of this MOV. */ bld.MOV(dest, component(small_dest, 0)); break; } case nir_intrinsic_load_uniform: { /* Offsets are in bytes but they should always aligned to * the type size */ unsigned base_offset = nir_intrinsic_base(instr); assert(base_offset % 4 == 0 || base_offset % brw_type_size_bytes(dest.type) == 0); brw_reg src = brw_uniform_reg(base_offset / 4, dest.type); if (nir_src_is_const(instr->src[0])) { unsigned load_offset = nir_src_as_uint(instr->src[0]); assert(load_offset % brw_type_size_bytes(dest.type) == 0); /* The base offset can only handle 32-bit units, so for 16-bit * data take the modulo of the offset with 4 bytes and add it to * the offset to read from within the source register. */ src.offset = load_offset + base_offset % 4; for (unsigned j = 0; j < instr->num_components; j++) { bld.MOV(offset(dest, bld, j), offset(src, bld, j)); } } else { brw_reg indirect = retype(get_nir_src(ntb, instr->src[0]), BRW_TYPE_UD); /* We need to pass a size to the MOV_INDIRECT but we don't want it to * go past the end of the uniform. In order to keep the n'th * component from running past, we subtract off the size of all but * one component of the vector. */ assert(nir_intrinsic_range(instr) >= instr->num_components * brw_type_size_bytes(dest.type)); unsigned read_size = nir_intrinsic_range(instr) - (instr->num_components - 1) * brw_type_size_bytes(dest.type); bool supports_64bit_indirects = !intel_device_info_is_9lp(devinfo); if (brw_type_size_bytes(dest.type) != 8 || supports_64bit_indirects) { for (unsigned j = 0; j < instr->num_components; j++) { bld.emit(SHADER_OPCODE_MOV_INDIRECT, offset(dest, bld, j), offset(src, bld, j), indirect, brw_imm_ud(read_size)); } } else { const unsigned num_mov_indirects = brw_type_size_bytes(dest.type) / brw_type_size_bytes(BRW_TYPE_UD); /* We read a little bit less per MOV INDIRECT, as they are now * 32-bits ones instead of 64-bit. Fix read_size then. */ const unsigned read_size_32bit = read_size - (num_mov_indirects - 1) * brw_type_size_bytes(BRW_TYPE_UD); for (unsigned j = 0; j < instr->num_components; j++) { for (unsigned i = 0; i < num_mov_indirects; i++) { bld.emit(SHADER_OPCODE_MOV_INDIRECT, subscript(offset(dest, bld, j), BRW_TYPE_UD, i), subscript(offset(src, bld, j), BRW_TYPE_UD, i), indirect, brw_imm_ud(read_size_32bit)); } } } } break; } case nir_intrinsic_load_ubo: case nir_intrinsic_load_ubo_uniform_block_intel: { brw_reg surface, surface_handle; bool no_mask_handle = false; if (get_nir_src_bindless(ntb, instr->src[0])) surface_handle = get_nir_buffer_intrinsic_index(ntb, bld, instr, &no_mask_handle); else surface = get_nir_buffer_intrinsic_index(ntb, bld, instr, &no_mask_handle); if (!nir_src_is_const(instr->src[1])) { s.prog_data->has_ubo_pull = true; if (instr->intrinsic == nir_intrinsic_load_ubo) { /* load_ubo with non-uniform offset */ brw_reg base_offset = retype(get_nir_src(ntb, instr->src[1]), BRW_TYPE_UD); const unsigned comps_per_load = brw_type_size_bytes(dest.type) == 8 ? 2 : 4; for (int i = 0; i < instr->num_components; i += comps_per_load) { const unsigned remaining = instr->num_components - i; bld.VARYING_PULL_CONSTANT_LOAD(offset(dest, bld, i), surface, surface_handle, base_offset, i * brw_type_size_bytes(dest.type), instr->def.bit_size / 8, MIN2(remaining, comps_per_load)); } } else { /* load_ubo_uniform_block_intel with non-constant offset */ fs_nir_emit_memory_access(ntb, bld, instr); } } else { /* Even if we are loading doubles, a pull constant load will load * a 32-bit vec4, so should only reserve vgrf space for that. If we * need to load a full dvec4 we will have to emit 2 loads. This is * similar to demote_pull_constants(), except that in that case we * see individual accesses to each component of the vector and then * we let CSE deal with duplicate loads. Here we see a vector access * and we have to split it if necessary. */ const unsigned type_size = brw_type_size_bytes(dest.type); const unsigned load_offset = nir_src_as_uint(instr->src[1]); const unsigned ubo_block = brw_nir_ubo_surface_index_get_push_block(instr->src[0]); const unsigned offset_256b = load_offset / 32; const unsigned end_256b = DIV_ROUND_UP(load_offset + type_size * instr->num_components, 32); /* See if we've selected this as a push constant candidate */ brw_reg push_reg; for (int i = 0; i < 4; i++) { const struct brw_ubo_range *range = &s.prog_data->ubo_ranges[i]; if (range->block == ubo_block && offset_256b >= range->start && end_256b <= range->start + range->length) { push_reg = brw_uniform_reg(UBO_START + i, dest.type); push_reg.offset = load_offset - 32 * range->start; break; } } if (push_reg.file != BAD_FILE) { for (unsigned i = 0; i < instr->num_components; i++) { bld.MOV(offset(dest, bld, i), byte_offset(push_reg, i * type_size)); } break; } s.prog_data->has_ubo_pull = true; const unsigned block_sz = 64; /* Fetch one cacheline at a time. */ const fs_builder ubld = bld.exec_all().group(block_sz / 4, 0); for (unsigned c = 0; c < instr->num_components;) { const unsigned base = load_offset + c * type_size; /* Number of usable components in the next block-aligned load. */ const unsigned count = MIN2(instr->num_components - c, (block_sz - base % block_sz) / type_size); const brw_reg packed_consts = ubld.vgrf(BRW_TYPE_UD); brw_reg srcs[PULL_UNIFORM_CONSTANT_SRCS]; srcs[PULL_UNIFORM_CONSTANT_SRC_SURFACE] = surface; srcs[PULL_UNIFORM_CONSTANT_SRC_SURFACE_HANDLE] = surface_handle; srcs[PULL_UNIFORM_CONSTANT_SRC_OFFSET] = brw_imm_ud(base & ~(block_sz - 1)); srcs[PULL_UNIFORM_CONSTANT_SRC_SIZE] = brw_imm_ud(block_sz); ubld.emit(FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD, packed_consts, srcs, PULL_UNIFORM_CONSTANT_SRCS); const brw_reg consts = retype(byte_offset(packed_consts, base & (block_sz - 1)), dest.type); for (unsigned d = 0; d < count; d++) bld.MOV(offset(dest, bld, c + d), component(consts, d)); c += count; } } break; } case nir_intrinsic_store_output: { assert(nir_src_bit_size(instr->src[0]) == 32); brw_reg src = get_nir_src(ntb, instr->src[0]); unsigned store_offset = nir_src_as_uint(instr->src[1]); unsigned num_components = instr->num_components; unsigned first_component = nir_intrinsic_component(instr); brw_reg new_dest = retype(offset(s.outputs[instr->const_index[0]], bld, 4 * store_offset), src.type); brw_combine_with_vec(bld, offset(new_dest, bld, first_component), src, num_components); break; } case nir_intrinsic_get_ssbo_size: { assert(nir_src_num_components(instr->src[0]) == 1); /* A resinfo's sampler message is used to get the buffer size. The * SIMD8's writeback message consists of four registers and SIMD16's * writeback message consists of 8 destination registers (two per each * component). Because we are only interested on the first channel of * the first returned component, where resinfo returns the buffer size * for SURFTYPE_BUFFER, we can just use the SIMD8 variant regardless of * the dispatch width. */ const fs_builder ubld = bld.exec_all().group(8 * reg_unit(devinfo), 0); brw_reg ret_payload = ubld.vgrf(BRW_TYPE_UD, 4); /* Set LOD = 0 */ brw_reg src_payload = ubld.MOV(brw_imm_ud(0)); brw_reg srcs[GET_BUFFER_SIZE_SRCS]; srcs[get_nir_src_bindless(ntb, instr->src[0]) ? GET_BUFFER_SIZE_SRC_SURFACE_HANDLE : GET_BUFFER_SIZE_SRC_SURFACE] = get_nir_buffer_intrinsic_index(ntb, bld, instr); srcs[GET_BUFFER_SIZE_SRC_LOD] = src_payload; fs_inst *inst = ubld.emit(SHADER_OPCODE_GET_BUFFER_SIZE, ret_payload, srcs, GET_BUFFER_SIZE_SRCS); inst->header_size = 0; inst->mlen = reg_unit(devinfo); inst->size_written = 4 * REG_SIZE * reg_unit(devinfo); /* SKL PRM, vol07, 3D Media GPGPU Engine, Bounds Checking and Faulting: * * "Out-of-bounds checking is always performed at a DWord granularity. If * any part of the DWord is out-of-bounds then the whole DWord is * considered out-of-bounds." * * This implies that types with size smaller than 4-bytes need to be * padded if they don't complete the last dword of the buffer. But as we * need to maintain the original size we need to reverse the padding * calculation to return the correct size to know the number of elements * of an unsized array. As we stored in the last two bits of the surface * size the needed padding for the buffer, we calculate here the * original buffer_size reversing the surface_size calculation: * * surface_size = isl_align(buffer_size, 4) + * (isl_align(buffer_size) - buffer_size) * * buffer_size = surface_size & ~3 - surface_size & 3 */ brw_reg size_padding = ubld.AND(ret_payload, brw_imm_ud(3)); brw_reg size_aligned4 = ubld.AND(ret_payload, brw_imm_ud(~3)); brw_reg buffer_size = ubld.ADD(size_aligned4, negate(size_padding)); bld.MOV(retype(dest, ret_payload.type), component(buffer_size, 0)); break; } case nir_intrinsic_load_subgroup_size: /* This should only happen for fragment shaders because every other case * is lowered in NIR so we can optimize on it. */ assert(s.stage == MESA_SHADER_FRAGMENT); bld.MOV(retype(dest, BRW_TYPE_D), brw_imm_d(s.dispatch_width)); break; case nir_intrinsic_load_subgroup_invocation: bld.MOV(retype(dest, BRW_TYPE_UD), bld.LOAD_SUBGROUP_INVOCATION()); break; case nir_intrinsic_load_subgroup_eq_mask: case nir_intrinsic_load_subgroup_ge_mask: case nir_intrinsic_load_subgroup_gt_mask: case nir_intrinsic_load_subgroup_le_mask: case nir_intrinsic_load_subgroup_lt_mask: unreachable("not reached"); case nir_intrinsic_ddx_fine: bld.emit(FS_OPCODE_DDX_FINE, retype(dest, BRW_TYPE_F), retype(get_nir_src(ntb, instr->src[0]), BRW_TYPE_F)); break; case nir_intrinsic_ddx: case nir_intrinsic_ddx_coarse: bld.emit(FS_OPCODE_DDX_COARSE, retype(dest, BRW_TYPE_F), retype(get_nir_src(ntb, instr->src[0]), BRW_TYPE_F)); break; case nir_intrinsic_ddy_fine: bld.emit(FS_OPCODE_DDY_FINE, retype(dest, BRW_TYPE_F), retype(get_nir_src(ntb, instr->src[0]), BRW_TYPE_F)); break; case nir_intrinsic_ddy: case nir_intrinsic_ddy_coarse: bld.emit(FS_OPCODE_DDY_COARSE, retype(dest, BRW_TYPE_F), retype(get_nir_src(ntb, instr->src[0]), BRW_TYPE_F)); break; case nir_intrinsic_quad_vote_any: case nir_intrinsic_quad_vote_all: { struct brw_reg flag = brw_flag_reg(0, 0); if (s.dispatch_width == 32) flag.type = BRW_TYPE_UD; brw_reg cond = get_nir_src(ntb, instr->src[0]); /* Before Xe2, we can use specialized predicates. */ if (devinfo->ver < 20) { const bool any = instr->intrinsic == nir_intrinsic_quad_vote_any; /* The any/all predicates do not consider channel enables. To prevent * dead channels from affecting the result, we initialize the flag with * with the identity value for the logical operation. */ const unsigned identity = any ? 0 : 0xFFFFFFFF; bld.exec_all().group(1, 0).MOV(flag, retype(brw_imm_ud(identity), flag.type)); bld.CMP(bld.null_reg_ud(), cond, brw_imm_ud(0u), BRW_CONDITIONAL_NZ); bld.exec_all().MOV(retype(dest, BRW_TYPE_UD), brw_imm_ud(0)); const enum brw_predicate pred = any ? BRW_PREDICATE_ALIGN1_ANY4H : BRW_PREDICATE_ALIGN1_ALL4H; fs_inst *mov = bld.MOV(retype(dest, BRW_TYPE_D), brw_imm_d(-1)); set_predicate(pred, mov); break; } /* This code is going to manipulate the results of flag mask, so clear it to * avoid any residual value from disabled channels. */ bld.exec_all().group(1, 0).MOV(flag, retype(brw_imm_ud(0), flag.type)); /* Mask of invocations where condition is true, note that mask is * replicated to each invocation. */ bld.CMP(bld.null_reg_ud(), cond, brw_imm_ud(0u), BRW_CONDITIONAL_NZ); brw_reg cond_mask = bld.vgrf(BRW_TYPE_UD); bld.MOV(cond_mask, flag); /* Mask of invocations in the quad, each invocation will get * all the bits set for their quad, i.e. invocations 0-3 will have * 0b...1111, invocations 4-7 will have 0b...11110000 and so on. */ brw_reg invoc_ud = bld.vgrf(BRW_TYPE_UD); bld.MOV(invoc_ud, bld.LOAD_SUBGROUP_INVOCATION()); brw_reg quad_mask = bld.SHL(brw_imm_ud(0xF), bld.AND(invoc_ud, brw_imm_ud(0xFFFFFFFC))); /* An invocation will have bits set for each quad that passes the * condition. This is uniform among each quad. */ brw_reg tmp = bld.AND(cond_mask, quad_mask); if (instr->intrinsic == nir_intrinsic_quad_vote_any) { bld.CMP(retype(dest, BRW_TYPE_UD), tmp, brw_imm_ud(0), BRW_CONDITIONAL_NZ); } else { assert(instr->intrinsic == nir_intrinsic_quad_vote_all); /* Filter out quad_mask to include only active channels. */ brw_reg active = bld.vgrf(BRW_TYPE_UD); bld.exec_all().emit(SHADER_OPCODE_LOAD_LIVE_CHANNELS, active); bld.MOV(active, brw_reg(component(active, 0))); bld.AND(quad_mask, quad_mask, active); bld.CMP(retype(dest, BRW_TYPE_UD), tmp, quad_mask, BRW_CONDITIONAL_Z); } break; } case nir_intrinsic_vote_any: { const fs_builder ubld1 = bld.exec_all().group(1, 0); /* The any/all predicates do not consider channel enables. To prevent * dead channels from affecting the result, we initialize the flag with * with the identity value for the logical operation. */ if (s.dispatch_width == 32) { /* For SIMD32, we use a UD type so we fill both f0.0 and f0.1. */ ubld1.MOV(retype(brw_flag_reg(0, 0), BRW_TYPE_UD), brw_imm_ud(0)); } else { ubld1.MOV(brw_flag_reg(0, 0), brw_imm_uw(0)); } bld.CMP(bld.null_reg_d(), get_nir_src(ntb, instr->src[0]), brw_imm_d(0), BRW_CONDITIONAL_NZ); /* For some reason, the any/all predicates don't work properly with * SIMD32. In particular, it appears that a SEL with a QtrCtrl of 2H * doesn't read the correct subset of the flag register and you end up * getting garbage in the second half. Work around this by using a pair * of 1-wide MOVs and scattering the result. */ const fs_builder ubld = devinfo->ver >= 20 ? bld.exec_all() : ubld1; brw_reg res1 = ubld.MOV(brw_imm_d(0)); set_predicate(devinfo->ver >= 20 ? XE2_PREDICATE_ANY : s.dispatch_width == 8 ? BRW_PREDICATE_ALIGN1_ANY8H : s.dispatch_width == 16 ? BRW_PREDICATE_ALIGN1_ANY16H : BRW_PREDICATE_ALIGN1_ANY32H, ubld.MOV(res1, brw_imm_d(-1))); bld.MOV(retype(dest, BRW_TYPE_D), component(res1, 0)); break; } case nir_intrinsic_vote_all: { const fs_builder ubld1 = bld.exec_all().group(1, 0); /* The any/all predicates do not consider channel enables. To prevent * dead channels from affecting the result, we initialize the flag with * with the identity value for the logical operation. */ if (s.dispatch_width == 32) { /* For SIMD32, we use a UD type so we fill both f0.0 and f0.1. */ ubld1.MOV(retype(brw_flag_reg(0, 0), BRW_TYPE_UD), brw_imm_ud(0xffffffff)); } else { ubld1.MOV(brw_flag_reg(0, 0), brw_imm_uw(0xffff)); } bld.CMP(bld.null_reg_d(), get_nir_src(ntb, instr->src[0]), brw_imm_d(0), BRW_CONDITIONAL_NZ); /* For some reason, the any/all predicates don't work properly with * SIMD32. In particular, it appears that a SEL with a QtrCtrl of 2H * doesn't read the correct subset of the flag register and you end up * getting garbage in the second half. Work around this by using a pair * of 1-wide MOVs and scattering the result. */ const fs_builder ubld = devinfo->ver >= 20 ? bld.exec_all() : ubld1; brw_reg res1 = ubld.MOV(brw_imm_d(0)); set_predicate(devinfo->ver >= 20 ? XE2_PREDICATE_ALL : s.dispatch_width == 8 ? BRW_PREDICATE_ALIGN1_ALL8H : s.dispatch_width == 16 ? BRW_PREDICATE_ALIGN1_ALL16H : BRW_PREDICATE_ALIGN1_ALL32H, ubld.MOV(res1, brw_imm_d(-1))); bld.MOV(retype(dest, BRW_TYPE_D), component(res1, 0)); break; } case nir_intrinsic_vote_feq: case nir_intrinsic_vote_ieq: { brw_reg value = get_nir_src(ntb, instr->src[0]); if (instr->intrinsic == nir_intrinsic_vote_feq) { const unsigned bit_size = nir_src_bit_size(instr->src[0]); value.type = bit_size == 8 ? BRW_TYPE_B : brw_type_with_size(BRW_TYPE_F, bit_size); } brw_reg uniformized = bld.emit_uniformize(value); const fs_builder ubld1 = bld.exec_all().group(1, 0); /* The any/all predicates do not consider channel enables. To prevent * dead channels from affecting the result, we initialize the flag with * with the identity value for the logical operation. */ if (s.dispatch_width == 32) { /* For SIMD32, we use a UD type so we fill both f0.0 and f0.1. */ ubld1.MOV(retype(brw_flag_reg(0, 0), BRW_TYPE_UD), brw_imm_ud(0xffffffff)); } else { ubld1.MOV(brw_flag_reg(0, 0), brw_imm_uw(0xffff)); } bld.CMP(bld.null_reg_d(), value, uniformized, BRW_CONDITIONAL_Z); /* For some reason, the any/all predicates don't work properly with * SIMD32. In particular, it appears that a SEL with a QtrCtrl of 2H * doesn't read the correct subset of the flag register and you end up * getting garbage in the second half. Work around this by using a pair * of 1-wide MOVs and scattering the result. */ const fs_builder ubld = devinfo->ver >= 20 ? bld.exec_all() : ubld1; brw_reg res1 = ubld.MOV(brw_imm_d(0)); set_predicate(devinfo->ver >= 20 ? XE2_PREDICATE_ALL : s.dispatch_width == 8 ? BRW_PREDICATE_ALIGN1_ALL8H : s.dispatch_width == 16 ? BRW_PREDICATE_ALIGN1_ALL16H : BRW_PREDICATE_ALIGN1_ALL32H, ubld.MOV(res1, brw_imm_d(-1))); bld.MOV(retype(dest, BRW_TYPE_D), component(res1, 0)); break; } case nir_intrinsic_ballot: { if (instr->def.bit_size > 32) { dest.type = BRW_TYPE_UQ; } else { dest.type = BRW_TYPE_UD; } /* Implement a fast-path for ballot(true). */ if (nir_src_is_const(instr->src[0]) && nir_src_as_bool(instr->src[0])) { brw_reg tmp = bld.vgrf(BRW_TYPE_UD); bld.exec_all().emit(SHADER_OPCODE_LOAD_LIVE_CHANNELS, tmp); bld.MOV(dest, brw_reg(component(tmp, 0))); break; } const brw_reg value = retype(get_nir_src(ntb, instr->src[0]), BRW_TYPE_UD); struct brw_reg flag = brw_flag_reg(0, 0); if (s.dispatch_width == 32) flag.type = BRW_TYPE_UD; bld.exec_all().group(1, 0).MOV(flag, retype(brw_imm_ud(0u), flag.type)); bld.CMP(bld.null_reg_ud(), value, brw_imm_ud(0u), BRW_CONDITIONAL_NZ); bld.MOV(dest, flag); break; } case nir_intrinsic_read_invocation: { const brw_reg value = get_nir_src(ntb, instr->src[0]); const brw_reg invocation = get_nir_src_imm(ntb, instr->src[1]); if (invocation.file == IMM) { unsigned i = invocation.ud & (bld.dispatch_width() - 1); bld.MOV(retype(dest, value.type), component(value, i)); break; } brw_reg tmp = bld.vgrf(value.type); /* When for some reason the subgroup_size picked by NIR is larger than * the dispatch size picked by the backend (this could happen in RT, * FS), bound the invocation to the dispatch size. */ brw_reg bound_invocation = retype(invocation, BRW_TYPE_UD); if (s.api_subgroup_size == 0 || bld.dispatch_width() < s.api_subgroup_size) { bound_invocation = bld.AND(bound_invocation, brw_imm_ud(s.dispatch_width - 1)); } bld.exec_all().emit(SHADER_OPCODE_BROADCAST, tmp, value, bld.emit_uniformize(bound_invocation)); bld.MOV(retype(dest, value.type), brw_reg(component(tmp, 0))); break; } case nir_intrinsic_read_first_invocation: { const brw_reg value = get_nir_src(ntb, instr->src[0]); bld.MOV(retype(dest, value.type), bld.emit_uniformize(value)); break; } case nir_intrinsic_shuffle: { const brw_reg value = get_nir_src(ntb, instr->src[0]); const brw_reg index = get_nir_src(ntb, instr->src[1]); bld.emit(SHADER_OPCODE_SHUFFLE, retype(dest, value.type), value, index); break; } case nir_intrinsic_first_invocation: { brw_reg tmp = bld.vgrf(BRW_TYPE_UD); bld.exec_all().emit(SHADER_OPCODE_FIND_LIVE_CHANNEL, tmp); bld.MOV(retype(dest, BRW_TYPE_UD), brw_reg(component(tmp, 0))); break; } case nir_intrinsic_last_invocation: { brw_reg tmp = bld.vgrf(BRW_TYPE_UD); bld.exec_all().emit(SHADER_OPCODE_FIND_LAST_LIVE_CHANNEL, tmp); bld.MOV(retype(dest, BRW_TYPE_UD), brw_reg(component(tmp, 0))); break; } case nir_intrinsic_quad_broadcast: { const brw_reg value = get_nir_src(ntb, instr->src[0]); const unsigned index = nir_src_as_uint(instr->src[1]); bld.emit(SHADER_OPCODE_CLUSTER_BROADCAST, retype(dest, value.type), value, brw_imm_ud(index), brw_imm_ud(4)); break; } case nir_intrinsic_quad_swap_horizontal: { const brw_reg value = get_nir_src(ntb, instr->src[0]); const brw_reg tmp = bld.vgrf(value.type); const fs_builder ubld = bld.exec_all().group(s.dispatch_width / 2, 0); const brw_reg src_left = horiz_stride(value, 2); const brw_reg src_right = horiz_stride(horiz_offset(value, 1), 2); const brw_reg tmp_left = horiz_stride(tmp, 2); const brw_reg tmp_right = horiz_stride(horiz_offset(tmp, 1), 2); ubld.MOV(tmp_left, src_right); ubld.MOV(tmp_right, src_left); bld.MOV(retype(dest, value.type), tmp); break; } case nir_intrinsic_quad_swap_vertical: { const brw_reg value = get_nir_src(ntb, instr->src[0]); if (nir_src_bit_size(instr->src[0]) == 32) { /* For 32-bit, we can use a SIMD4x2 instruction to do this easily */ const brw_reg tmp = bld.vgrf(value.type); const fs_builder ubld = bld.exec_all(); ubld.emit(SHADER_OPCODE_QUAD_SWIZZLE, tmp, value, brw_imm_ud(BRW_SWIZZLE4(2,3,0,1))); bld.MOV(retype(dest, value.type), tmp); } else { /* For larger data types, we have to either emit dispatch_width many * MOVs or else fall back to doing indirects. */ brw_reg idx = bld.vgrf(BRW_TYPE_W); bld.XOR(idx, bld.LOAD_SUBGROUP_INVOCATION(), brw_imm_w(0x2)); bld.emit(SHADER_OPCODE_SHUFFLE, retype(dest, value.type), value, idx); } break; } case nir_intrinsic_quad_swap_diagonal: { const brw_reg value = get_nir_src(ntb, instr->src[0]); if (nir_src_bit_size(instr->src[0]) == 32) { /* For 32-bit, we can use a SIMD4x2 instruction to do this easily */ const brw_reg tmp = bld.vgrf(value.type); const fs_builder ubld = bld.exec_all(); ubld.emit(SHADER_OPCODE_QUAD_SWIZZLE, tmp, value, brw_imm_ud(BRW_SWIZZLE4(3,2,1,0))); bld.MOV(retype(dest, value.type), tmp); } else { /* For larger data types, we have to either emit dispatch_width many * MOVs or else fall back to doing indirects. */ brw_reg idx = bld.vgrf(BRW_TYPE_W); bld.XOR(idx, bld.LOAD_SUBGROUP_INVOCATION(), brw_imm_w(0x3)); bld.emit(SHADER_OPCODE_SHUFFLE, retype(dest, value.type), value, idx); } break; } case nir_intrinsic_reduce: { brw_reg src = get_nir_src(ntb, instr->src[0]); nir_op redop = (nir_op)nir_intrinsic_reduction_op(instr); unsigned cluster_size = nir_intrinsic_cluster_size(instr); if (cluster_size == 0 || cluster_size > s.dispatch_width) cluster_size = s.dispatch_width; /* Figure out the source type */ src.type = brw_type_for_nir_type(devinfo, (nir_alu_type)(nir_op_infos[redop].input_types[0] | nir_src_bit_size(instr->src[0]))); brw_reg identity = brw_nir_reduction_op_identity(bld, redop, src.type); opcode brw_op = brw_op_for_nir_reduction_op(redop); brw_conditional_mod cond_mod = brw_cond_mod_for_nir_reduction_op(redop); /* Set up a register for all of our scratching around and initialize it * to reduction operation's identity value. */ brw_reg scan = bld.vgrf(src.type); bld.exec_all().emit(SHADER_OPCODE_SEL_EXEC, scan, src, identity); bld.emit_scan(brw_op, scan, cluster_size, cond_mod); dest.type = src.type; if (cluster_size * brw_type_size_bytes(src.type) >= REG_SIZE * 2) { /* In this case, CLUSTER_BROADCAST instruction isn't needed because * the distance between clusters is at least 2 GRFs. In this case, * we don't need the weird striding of the CLUSTER_BROADCAST * instruction and can just do regular MOVs. */ assert((cluster_size * brw_type_size_bytes(src.type)) % (REG_SIZE * 2) == 0); const unsigned groups = (s.dispatch_width * brw_type_size_bytes(src.type)) / (REG_SIZE * 2); const unsigned group_size = s.dispatch_width / groups; for (unsigned i = 0; i < groups; i++) { const unsigned cluster = (i * group_size) / cluster_size; const unsigned comp = cluster * cluster_size + (cluster_size - 1); bld.group(group_size, i).MOV(horiz_offset(dest, i * group_size), component(scan, comp)); } } else { bld.emit(SHADER_OPCODE_CLUSTER_BROADCAST, dest, scan, brw_imm_ud(cluster_size - 1), brw_imm_ud(cluster_size)); } break; } case nir_intrinsic_inclusive_scan: case nir_intrinsic_exclusive_scan: { brw_reg src = get_nir_src(ntb, instr->src[0]); nir_op redop = (nir_op)nir_intrinsic_reduction_op(instr); /* Figure out the source type */ src.type = brw_type_for_nir_type(devinfo, (nir_alu_type)(nir_op_infos[redop].input_types[0] | nir_src_bit_size(instr->src[0]))); brw_reg identity = brw_nir_reduction_op_identity(bld, redop, src.type); opcode brw_op = brw_op_for_nir_reduction_op(redop); brw_conditional_mod cond_mod = brw_cond_mod_for_nir_reduction_op(redop); /* Set up a register for all of our scratching around and initialize it * to reduction operation's identity value. */ brw_reg scan = bld.vgrf(src.type); const fs_builder allbld = bld.exec_all(); allbld.emit(SHADER_OPCODE_SEL_EXEC, scan, src, identity); if (instr->intrinsic == nir_intrinsic_exclusive_scan) { /* Exclusive scan is a bit harder because we have to do an annoying * shift of the contents before we can begin. To make things worse, * we can't do this with a normal stride; we have to use indirects. */ brw_reg shifted = bld.vgrf(src.type); brw_reg idx = bld.vgrf(BRW_TYPE_W); allbld.ADD(idx, bld.LOAD_SUBGROUP_INVOCATION(), brw_imm_w(-1)); allbld.emit(SHADER_OPCODE_SHUFFLE, shifted, scan, idx); allbld.group(1, 0).MOV(horiz_offset(shifted, 0), identity); scan = shifted; } bld.emit_scan(brw_op, scan, s.dispatch_width, cond_mod); bld.MOV(retype(dest, src.type), scan); break; } case nir_intrinsic_load_topology_id_intel: { /* These move around basically every hardware generation, so don't * do any unbounded checks and fail if the platform hasn't explicitly * been enabled here. */ assert(devinfo->ver >= 12 && devinfo->ver <= 20); /* Here is what the layout of SR0 looks like on Gfx12 * https://gfxspecs.intel.com/Predator/Home/Index/47256 * [13:11] : Slice ID. * [10:9] : Dual-SubSlice ID * [8] : SubSlice ID * [7] : EUID[2] (aka EU Row ID) * [6] : Reserved * [5:4] : EUID[1:0] * [2:0] : Thread ID * * Xe2: Engine 3D and GPGPU Programs, EU Overview, Registers and * Register Regions, ARF Registers, State Register, * https://gfxspecs.intel.com/Predator/Home/Index/56623 * [15:11] : Slice ID. * [9:8] : SubSlice ID * [6:4] : EUID * [2:0] : Thread ID */ brw_reg raw_id = bld.vgrf(BRW_TYPE_UD); bld.UNDEF(raw_id); bld.emit(SHADER_OPCODE_READ_ARCH_REG, raw_id, retype(brw_sr0_reg(0), BRW_TYPE_UD)); switch (nir_intrinsic_base(instr)) { case BRW_TOPOLOGY_ID_DSS: if (devinfo->ver >= 20) { /* Xe2+: 3D and GPGPU Programs, Shared Functions, Ray Tracing: * https://gfxspecs.intel.com/Predator/Home/Index/56936 * * Note: DSSID in all formulas below is a logical identifier of an * XeCore (a value that goes from 0 to (number_of_slices * * number_of_XeCores_per_slice -1). SW can get this value from * either: * * - Message Control Register LogicalSSID field (only in shaders * eligible for Mid-Thread Preemption). * - Calculated based of State Register with the following formula: * DSSID = StateRegister.SliceID * GT_ARCH_SS_PER_SLICE + * StateRRegister.SubSliceID where GT_SS_PER_SLICE is an * architectural parameter defined per product SKU. * * We are using the state register to calculate the DSSID. */ brw_reg slice_id = bld.SHR(bld.AND(raw_id, brw_imm_ud(INTEL_MASK(15, 11))), brw_imm_ud(11)); /* Assert that max subslices covers at least 2 bits that we use for * subslices. */ unsigned slice_stride = devinfo->max_subslices_per_slice; assert(slice_stride >= (1 << 2)); brw_reg subslice_id = bld.SHR(bld.AND(raw_id, brw_imm_ud(INTEL_MASK(9, 8))), brw_imm_ud(8)); bld.ADD(retype(dest, BRW_TYPE_UD), bld.MUL(slice_id, brw_imm_ud(slice_stride)), subslice_id); } else { /* Get rid of anything below dualsubslice */ bld.SHR(retype(dest, BRW_TYPE_UD), bld.AND(raw_id, brw_imm_ud(0x3fff)), brw_imm_ud(9)); } break; case BRW_TOPOLOGY_ID_EU_THREAD_SIMD: { s.limit_dispatch_width(16, "Topology helper for Ray queries, " "not supported in SIMD32 mode."); brw_reg dst = retype(dest, BRW_TYPE_UD); brw_reg eu; if (devinfo->ver >= 20) { /* Xe2+: Graphics Engine, 3D and GPGPU Programs, Shared Functions * Ray Tracing, * https://gfxspecs.intel.com/Predator/Home/Index/56936 * * SyncStackID = (EUID[2:0] << 8) | (ThreadID[2:0] << 4) | * SIMDLaneID[3:0]; * * This section just deals with the EUID part. * * The 3bit EU[2:0] we need to build for ray query memory addresses * computations is a bit odd : * * EU[2:0] = raw_id[6:4] (identified as EUID[2:0]) */ eu = bld.SHL(bld.AND(raw_id, brw_imm_ud(INTEL_MASK(6, 4))), brw_imm_ud(4)); } else { /* EU[3:0] << 7 * * The 4bit EU[3:0] we need to build for ray query memory addresses * computations is a bit odd : * * EU[1:0] = raw_id[5:4] (identified as EUID[1:0]) * EU[2] = raw_id[8] (identified as SubSlice ID) * EU[3] = raw_id[7] (identified as EUID[2] or Row ID) */ brw_reg raw5_4 = bld.AND(raw_id, brw_imm_ud(INTEL_MASK(5, 4))); brw_reg raw7 = bld.AND(raw_id, brw_imm_ud(INTEL_MASK(7, 7))); brw_reg raw8 = bld.AND(raw_id, brw_imm_ud(INTEL_MASK(8, 8))); eu = bld.OR(bld.SHL(raw5_4, brw_imm_ud(3)), bld.OR(bld.SHL(raw7, brw_imm_ud(3)), bld.SHL(raw8, brw_imm_ud(1)))); } /* ThreadID[2:0] << 4 (ThreadID comes from raw_id[2:0]) */ brw_reg tid = bld.SHL(bld.AND(raw_id, brw_imm_ud(INTEL_MASK(2, 0))), brw_imm_ud(4)); /* LaneID[0:3] << 0 (Use subgroup invocation) */ assert(bld.dispatch_width() <= 16); /* Limit to 4 bits */ bld.ADD(dst, bld.OR(eu, tid), bld.LOAD_SUBGROUP_INVOCATION()); break; } default: unreachable("Invalid topology id type"); } break; } case nir_intrinsic_load_btd_stack_id_intel: if (s.stage == MESA_SHADER_COMPUTE) { assert(brw_cs_prog_data(s.prog_data)->uses_btd_stack_ids); } else { assert(brw_shader_stage_is_bindless(s.stage)); } /* Stack IDs are always in R1 regardless of whether we're coming from a * bindless shader or a regular compute shader. */ bld.MOV(retype(dest, BRW_TYPE_UD), retype(brw_vec8_grf(1 * reg_unit(devinfo), 0), BRW_TYPE_UW)); break; case nir_intrinsic_btd_spawn_intel: if (s.stage == MESA_SHADER_COMPUTE) { assert(brw_cs_prog_data(s.prog_data)->uses_btd_stack_ids); } else { assert(brw_shader_stage_is_bindless(s.stage)); } /* Make sure all the pointers to resume shaders have landed where other * threads can see them. */ emit_rt_lsc_fence(bld, LSC_FENCE_LOCAL, LSC_FLUSH_TYPE_NONE); bld.emit(SHADER_OPCODE_BTD_SPAWN_LOGICAL, bld.null_reg_ud(), bld.emit_uniformize(get_nir_src(ntb, instr->src[0])), get_nir_src(ntb, instr->src[1])); break; case nir_intrinsic_btd_retire_intel: if (s.stage == MESA_SHADER_COMPUTE) { assert(brw_cs_prog_data(s.prog_data)->uses_btd_stack_ids); } else { assert(brw_shader_stage_is_bindless(s.stage)); } /* Make sure all the pointers to resume shaders have landed where other * threads can see them. */ emit_rt_lsc_fence(bld, LSC_FENCE_LOCAL, LSC_FLUSH_TYPE_NONE); bld.emit(SHADER_OPCODE_BTD_RETIRE_LOGICAL); break; case nir_intrinsic_trace_ray_intel: { const bool synchronous = nir_intrinsic_synchronous(instr); assert(brw_shader_stage_is_bindless(s.stage) || synchronous); /* Make sure all the previous RT structure writes are visible to the RT * fixed function within the DSS, as well as stack pointers to resume * shaders. */ emit_rt_lsc_fence(bld, LSC_FENCE_LOCAL, LSC_FLUSH_TYPE_NONE); brw_reg srcs[RT_LOGICAL_NUM_SRCS]; brw_reg globals = get_nir_src(ntb, instr->src[0]); srcs[RT_LOGICAL_SRC_GLOBALS] = bld.emit_uniformize(globals); srcs[RT_LOGICAL_SRC_BVH_LEVEL] = get_nir_src(ntb, instr->src[1]); srcs[RT_LOGICAL_SRC_TRACE_RAY_CONTROL] = get_nir_src(ntb, instr->src[2]); srcs[RT_LOGICAL_SRC_SYNCHRONOUS] = brw_imm_ud(synchronous); /* Bspec 57508: Structure_SIMD16TraceRayMessage:: RayQuery Enable * * "When this bit is set in the header, Trace Ray Message behaves like * a Ray Query. This message requires a write-back message indicating * RayQuery for all valid Rays (SIMD lanes) have completed." */ brw_reg dst = (devinfo->ver >= 20 && synchronous) ? bld.vgrf(BRW_TYPE_UD) : bld.null_reg_ud(); bld.emit(RT_OPCODE_TRACE_RAY_LOGICAL, dst, srcs, RT_LOGICAL_NUM_SRCS); /* There is no actual value to use in the destination register of the * synchronous trace instruction. All of the communication with the HW * unit happens through memory reads/writes. So to ensure that the * operation has completed before we go read the results in memory, we * need a barrier followed by an invalidate before accessing memory. */ if (synchronous) { bld.SYNC(TGL_SYNC_ALLWR); emit_rt_lsc_fence(bld, LSC_FENCE_LOCAL, LSC_FLUSH_TYPE_INVALIDATE); } break; } default: #ifndef NDEBUG assert(instr->intrinsic < nir_num_intrinsics); fprintf(stderr, "intrinsic: %s\n", nir_intrinsic_infos[instr->intrinsic].name); #endif unreachable("unknown intrinsic"); } } static enum lsc_data_size lsc_bits_to_data_size(unsigned bit_size) { switch (bit_size / 8) { case 1: return LSC_DATA_SIZE_D8U32; case 2: return LSC_DATA_SIZE_D16U32; case 4: return LSC_DATA_SIZE_D32; case 8: return LSC_DATA_SIZE_D64; default: unreachable("Unsupported data size."); } } static void fs_nir_emit_memory_access(nir_to_brw_state &ntb, const fs_builder &bld, nir_intrinsic_instr *instr) { const intel_device_info *devinfo = ntb.devinfo; fs_visitor &s = ntb.s; brw_reg srcs[MEMORY_LOGICAL_NUM_SRCS]; /* Start with some default values for most cases */ enum lsc_opcode op = lsc_op_for_nir_intrinsic(instr); const bool is_store = !nir_intrinsic_infos[instr->intrinsic].has_dest; const bool is_atomic = lsc_opcode_is_atomic(op); const bool is_load = !is_store && !is_atomic; const bool include_helpers = nir_intrinsic_has_access(instr) && (nir_intrinsic_access(instr) & ACCESS_INCLUDE_HELPERS); const unsigned align = nir_intrinsic_has_align(instr) ? nir_intrinsic_align(instr) : 0; bool no_mask_handle = false; int data_src = -1; srcs[MEMORY_LOGICAL_OPCODE] = brw_imm_ud(op); /* BINDING_TYPE, BINDING, and ADDRESS are handled in the switch */ srcs[MEMORY_LOGICAL_COORD_COMPONENTS] = brw_imm_ud(1); srcs[MEMORY_LOGICAL_ALIGNMENT] = brw_imm_ud(align); /* DATA_SIZE and CHANNELS are handled below the switch */ srcs[MEMORY_LOGICAL_FLAGS] = brw_imm_ud(include_helpers ? MEMORY_FLAG_INCLUDE_HELPERS : 0); /* DATA0 and DATA1 are handled below */ switch (instr->intrinsic) { case nir_intrinsic_bindless_image_load: case nir_intrinsic_bindless_image_store: case nir_intrinsic_bindless_image_atomic: case nir_intrinsic_bindless_image_atomic_swap: srcs[MEMORY_LOGICAL_BINDING_TYPE] = brw_imm_ud(LSC_ADDR_SURFTYPE_BSS); FALLTHROUGH; case nir_intrinsic_image_load: case nir_intrinsic_image_store: case nir_intrinsic_image_atomic: case nir_intrinsic_image_atomic_swap: srcs[MEMORY_LOGICAL_MODE] = brw_imm_ud(MEMORY_MODE_TYPED); srcs[MEMORY_LOGICAL_BINDING] = get_nir_image_intrinsic_image(ntb, bld, instr); if (srcs[MEMORY_LOGICAL_BINDING_TYPE].file == BAD_FILE) srcs[MEMORY_LOGICAL_BINDING_TYPE] = brw_imm_ud(LSC_ADDR_SURFTYPE_BTI); srcs[MEMORY_LOGICAL_ADDRESS] = get_nir_src(ntb, instr->src[1]); srcs[MEMORY_LOGICAL_COORD_COMPONENTS] = brw_imm_ud(nir_image_intrinsic_coord_components(instr)); data_src = 3; break; case nir_intrinsic_load_ubo_uniform_block_intel: case nir_intrinsic_load_ssbo: case nir_intrinsic_store_ssbo: case nir_intrinsic_ssbo_atomic: case nir_intrinsic_ssbo_atomic_swap: case nir_intrinsic_load_ssbo_block_intel: case nir_intrinsic_store_ssbo_block_intel: case nir_intrinsic_load_ssbo_uniform_block_intel: srcs[MEMORY_LOGICAL_MODE] = brw_imm_ud(MEMORY_MODE_UNTYPED); srcs[MEMORY_LOGICAL_BINDING_TYPE] = brw_imm_ud(get_nir_src_bindless(ntb, instr->src[is_store ? 1 : 0]) ? LSC_ADDR_SURFTYPE_BSS : LSC_ADDR_SURFTYPE_BTI); srcs[MEMORY_LOGICAL_BINDING] = get_nir_buffer_intrinsic_index(ntb, bld, instr, &no_mask_handle); srcs[MEMORY_LOGICAL_ADDRESS] = get_nir_src(ntb, instr->src[is_store ? 2 : 1]); data_src = is_atomic ? 2 : 0; break; case nir_intrinsic_load_shared: case nir_intrinsic_store_shared: case nir_intrinsic_shared_atomic: case nir_intrinsic_shared_atomic_swap: case nir_intrinsic_load_shared_block_intel: case nir_intrinsic_store_shared_block_intel: case nir_intrinsic_load_shared_uniform_block_intel: { srcs[MEMORY_LOGICAL_MODE] = brw_imm_ud(MEMORY_MODE_SHARED_LOCAL); srcs[MEMORY_LOGICAL_BINDING_TYPE] = brw_imm_ud(LSC_ADDR_SURFTYPE_FLAT); const nir_src &nir_src = instr->src[is_store ? 1 : 0]; srcs[MEMORY_LOGICAL_ADDRESS] = nir_src_is_const(nir_src) ? brw_imm_ud(nir_intrinsic_base(instr) + nir_src_as_uint(nir_src)) : bld.ADD(retype(get_nir_src(ntb, nir_src), BRW_TYPE_UD), brw_imm_ud(nir_intrinsic_base(instr))); data_src = is_atomic ? 1 : 0; no_mask_handle = true; break; } case nir_intrinsic_load_scratch: case nir_intrinsic_store_scratch: { srcs[MEMORY_LOGICAL_MODE] = brw_imm_ud(MEMORY_MODE_SCRATCH); const nir_src &addr = instr->src[is_store ? 1 : 0]; if (devinfo->verx10 >= 125) { srcs[MEMORY_LOGICAL_BINDING_TYPE] = brw_imm_ud(LSC_ADDR_SURFTYPE_SS); const fs_builder ubld = bld.exec_all().group(1, 0); brw_reg bind = component(ubld.vgrf(BRW_TYPE_UD), 0); ubld.AND(bind, retype(brw_vec1_grf(0, 5), BRW_TYPE_UD), brw_imm_ud(INTEL_MASK(31, 10))); if (devinfo->ver >= 20) bind = component(ubld.SHR(bind, brw_imm_ud(4)), 0); srcs[MEMORY_LOGICAL_BINDING] = bind; srcs[MEMORY_LOGICAL_ADDRESS] = swizzle_nir_scratch_addr(ntb, bld, addr, false); } else { unsigned bit_size = is_store ? nir_src_bit_size(instr->src[0]) : instr->def.bit_size; bool dword_aligned = align >= 4 && bit_size == 32; srcs[MEMORY_LOGICAL_BINDING_TYPE] = brw_imm_ud(LSC_ADDR_SURFTYPE_FLAT); srcs[MEMORY_LOGICAL_ADDRESS] = swizzle_nir_scratch_addr(ntb, bld, addr, dword_aligned); } if (is_store) s.shader_stats.spill_count += DIV_ROUND_UP(s.dispatch_width, 16); else s.shader_stats.fill_count += DIV_ROUND_UP(s.dispatch_width, 16); data_src = 0; break; } case nir_intrinsic_load_global_constant_uniform_block_intel: no_mask_handle = ntb.uniform_values[instr->src[0].ssa->index].file != BAD_FILE; FALLTHROUGH; case nir_intrinsic_load_global: case nir_intrinsic_load_global_constant: case nir_intrinsic_store_global: case nir_intrinsic_global_atomic: case nir_intrinsic_global_atomic_swap: case nir_intrinsic_load_global_block_intel: case nir_intrinsic_store_global_block_intel: srcs[MEMORY_LOGICAL_MODE] = brw_imm_ud(MEMORY_MODE_UNTYPED); srcs[MEMORY_LOGICAL_BINDING_TYPE] = brw_imm_ud(LSC_ADDR_SURFTYPE_FLAT); srcs[MEMORY_LOGICAL_ADDRESS] = get_nir_src(ntb, instr->src[is_store ? 1 : 0]); data_src = is_atomic ? 1 : 0; break; default: unreachable("unknown memory intrinsic"); } unsigned components = is_store ? instr->src[data_src].ssa->num_components : instr->def.num_components; if (components == 0) components = instr->num_components; srcs[MEMORY_LOGICAL_COMPONENTS] = brw_imm_ud(components); const unsigned nir_bit_size = is_store ? instr->src[data_src].ssa->bit_size : instr->def.bit_size; enum lsc_data_size data_size = lsc_bits_to_data_size(nir_bit_size); uint32_t data_bit_size = lsc_data_size_bytes(data_size) * 8; srcs[MEMORY_LOGICAL_DATA_SIZE] = brw_imm_ud(data_size); const brw_reg_type data_type = brw_type_with_size(BRW_TYPE_UD, data_bit_size); const brw_reg_type nir_data_type = brw_type_with_size(BRW_TYPE_UD, nir_bit_size); assert(data_bit_size >= nir_bit_size); if (!is_load) { for (unsigned i = 0; i < lsc_op_num_data_values(op); i++) { brw_reg nir_src = retype(get_nir_src(ntb, instr->src[data_src + i]), nir_data_type); if (data_bit_size > nir_bit_size) { /* Expand e.g. D16 to D16U32 */ srcs[MEMORY_LOGICAL_DATA0 + i] = bld.vgrf(data_type, components); for (unsigned c = 0; c < components; c++) { bld.MOV(offset(srcs[MEMORY_LOGICAL_DATA0 + i], bld, c), offset(nir_src, bld, c)); } } else { srcs[MEMORY_LOGICAL_DATA0 + i] = nir_src; } } } brw_reg dest, nir_dest; if (!is_store) { nir_dest = retype(get_nir_def(ntb, instr->def), nir_data_type); dest = data_bit_size > nir_bit_size ? bld.vgrf(data_type, components) : nir_dest; } enum opcode opcode = is_load ? SHADER_OPCODE_MEMORY_LOAD_LOGICAL : is_store ? SHADER_OPCODE_MEMORY_STORE_LOGICAL : SHADER_OPCODE_MEMORY_ATOMIC_LOGICAL; const bool convergent_block_load = instr->intrinsic == nir_intrinsic_load_ubo_uniform_block_intel || instr->intrinsic == nir_intrinsic_load_ssbo_uniform_block_intel || instr->intrinsic == nir_intrinsic_load_shared_uniform_block_intel || instr->intrinsic == nir_intrinsic_load_global_constant_uniform_block_intel; const bool block = convergent_block_load || instr->intrinsic == nir_intrinsic_load_global_block_intel || instr->intrinsic == nir_intrinsic_load_shared_block_intel || instr->intrinsic == nir_intrinsic_load_ssbo_block_intel || instr->intrinsic == nir_intrinsic_store_global_block_intel || instr->intrinsic == nir_intrinsic_store_shared_block_intel || instr->intrinsic == nir_intrinsic_store_ssbo_block_intel; fs_inst *inst; if (!block) { inst = bld.emit(opcode, dest, srcs, MEMORY_LOGICAL_NUM_SRCS); inst->size_written *= components; if (dest.file != BAD_FILE && data_bit_size > nir_bit_size) { /* Shrink e.g. D16U32 result back to D16 */ for (unsigned i = 0; i < components; i++) { bld.MOV(offset(nir_dest, bld, i), subscript(offset(dest, bld, i), nir_dest.type, 0)); } } } else { assert(nir_bit_size == 32); srcs[MEMORY_LOGICAL_FLAGS] = brw_imm_ud(MEMORY_FLAG_TRANSPOSE | srcs[MEMORY_LOGICAL_FLAGS].ud); srcs[MEMORY_LOGICAL_ADDRESS] = instr->intrinsic == nir_intrinsic_load_global_constant_uniform_block_intel && ntb.uniform_values[instr->src[0].ssa->index].file != BAD_FILE ? ntb.uniform_values[instr->src[0].ssa->index] : bld.emit_uniformize(srcs[MEMORY_LOGICAL_ADDRESS]); const fs_builder ubld = bld.exec_all().group(1, 0); unsigned total, done; if (convergent_block_load) { total = ALIGN(components, REG_SIZE * reg_unit(devinfo) / 4); dest = ubld.vgrf(BRW_TYPE_UD, total); } else { total = components * bld.dispatch_width(); dest = nir_dest; } brw_reg src = srcs[MEMORY_LOGICAL_DATA0]; unsigned block_comps = components; for (done = 0; done < total; done += block_comps) { block_comps = choose_oword_block_size_dwords(devinfo, total - done); const unsigned block_bytes = block_comps * (nir_bit_size / 8); srcs[MEMORY_LOGICAL_COMPONENTS] = brw_imm_ud(block_comps); brw_reg dst_offset = is_store ? brw_reg() : retype(byte_offset(dest, done * 4), BRW_TYPE_UD); if (is_store) { srcs[MEMORY_LOGICAL_DATA0] = retype(byte_offset(src, done * 4), BRW_TYPE_UD); } inst = ubld.emit(opcode, dst_offset, srcs, MEMORY_LOGICAL_NUM_SRCS); inst->has_no_mask_send_params = no_mask_handle; if (is_load) inst->size_written = block_bytes; if (brw_type_size_bits(srcs[MEMORY_LOGICAL_ADDRESS].type) == 64) { increment_a64_address(ubld, srcs[MEMORY_LOGICAL_ADDRESS], block_bytes, no_mask_handle); } else { srcs[MEMORY_LOGICAL_ADDRESS] = ubld.ADD(retype(srcs[MEMORY_LOGICAL_ADDRESS], BRW_TYPE_UD), brw_imm_ud(block_bytes)); } } assert(done == total); if (convergent_block_load) { for (unsigned c = 0; c < components; c++) { bld.MOV(retype(offset(nir_dest, bld, c), BRW_TYPE_UD), component(dest, c)); } } } } static void fs_nir_emit_texture(nir_to_brw_state &ntb, nir_tex_instr *instr) { const intel_device_info *devinfo = ntb.devinfo; const fs_builder &bld = ntb.bld; brw_reg srcs[TEX_LOGICAL_NUM_SRCS]; /* SKL PRMs: Volume 7: 3D-Media-GPGPU: * * "The Pixel Null Mask field, when enabled via the Pixel Null Mask * Enable will be incorect for sample_c when applied to a surface with * 64-bit per texel format such as R16G16BA16_UNORM. Pixel Null mask * Enable may incorrectly report pixels as referencing a Null surface." * * We'll take care of this in NIR. */ assert(!instr->is_sparse || srcs[TEX_LOGICAL_SRC_SHADOW_C].file == BAD_FILE); srcs[TEX_LOGICAL_SRC_RESIDENCY] = brw_imm_ud(instr->is_sparse); int lod_components = 0; /* The hardware requires a LOD for buffer textures */ if (instr->sampler_dim == GLSL_SAMPLER_DIM_BUF) srcs[TEX_LOGICAL_SRC_LOD] = brw_imm_d(0); ASSERTED bool got_lod = false; ASSERTED bool got_bias = false; bool pack_lod_bias_and_offset = false; uint32_t header_bits = 0; for (unsigned i = 0; i < instr->num_srcs; i++) { nir_src nir_src = instr->src[i].src; brw_reg src = get_nir_src(ntb, nir_src); switch (instr->src[i].src_type) { case nir_tex_src_bias: assert(!got_lod); got_bias = true; srcs[TEX_LOGICAL_SRC_LOD] = retype(get_nir_src_imm(ntb, instr->src[i].src), BRW_TYPE_F); break; case nir_tex_src_comparator: srcs[TEX_LOGICAL_SRC_SHADOW_C] = retype(src, BRW_TYPE_F); break; case nir_tex_src_coord: switch (instr->op) { case nir_texop_txf: case nir_texop_txf_ms: case nir_texop_txf_ms_mcs_intel: case nir_texop_samples_identical: srcs[TEX_LOGICAL_SRC_COORDINATE] = retype(src, BRW_TYPE_D); break; default: srcs[TEX_LOGICAL_SRC_COORDINATE] = retype(src, BRW_TYPE_F); break; } break; case nir_tex_src_ddx: srcs[TEX_LOGICAL_SRC_LOD] = retype(src, BRW_TYPE_F); lod_components = nir_tex_instr_src_size(instr, i); break; case nir_tex_src_ddy: srcs[TEX_LOGICAL_SRC_LOD2] = retype(src, BRW_TYPE_F); break; case nir_tex_src_lod: assert(!got_bias); got_lod = true; switch (instr->op) { case nir_texop_txs: srcs[TEX_LOGICAL_SRC_LOD] = retype(get_nir_src_imm(ntb, instr->src[i].src), BRW_TYPE_UD); break; case nir_texop_txf: srcs[TEX_LOGICAL_SRC_LOD] = retype(get_nir_src_imm(ntb, instr->src[i].src), BRW_TYPE_D); break; default: srcs[TEX_LOGICAL_SRC_LOD] = retype(get_nir_src_imm(ntb, instr->src[i].src), BRW_TYPE_F); break; } break; case nir_tex_src_min_lod: srcs[TEX_LOGICAL_SRC_MIN_LOD] = retype(get_nir_src_imm(ntb, instr->src[i].src), BRW_TYPE_F); break; case nir_tex_src_ms_index: srcs[TEX_LOGICAL_SRC_SAMPLE_INDEX] = retype(src, BRW_TYPE_UD); break; case nir_tex_src_offset: { uint32_t offset_bits = 0; if (brw_texture_offset(instr, i, &offset_bits)) { header_bits |= offset_bits; } else { /* On gfx12.5+, if the offsets are not both constant and in the * {-8,7} range, nir_lower_tex() will have already lowered the * source offset. So we should never reach this point. */ assert(devinfo->verx10 < 125); srcs[TEX_LOGICAL_SRC_TG4_OFFSET] = retype(src, BRW_TYPE_D); } break; } case nir_tex_src_projector: unreachable("should be lowered"); case nir_tex_src_texture_offset: { assert(srcs[TEX_LOGICAL_SRC_SURFACE].file == BAD_FILE); /* Emit code to evaluate the actual indexing expression */ if (instr->texture_index == 0 && is_resource_src(nir_src)) srcs[TEX_LOGICAL_SRC_SURFACE] = get_resource_nir_src(ntb, nir_src); if (srcs[TEX_LOGICAL_SRC_SURFACE].file == BAD_FILE) { srcs[TEX_LOGICAL_SRC_SURFACE] = bld.emit_uniformize(bld.ADD(retype(src, BRW_TYPE_UD), brw_imm_ud(instr->texture_index))); } assert(srcs[TEX_LOGICAL_SRC_SURFACE].file != BAD_FILE); break; } case nir_tex_src_sampler_offset: { /* Emit code to evaluate the actual indexing expression */ if (instr->sampler_index == 0 && is_resource_src(nir_src)) srcs[TEX_LOGICAL_SRC_SAMPLER] = get_resource_nir_src(ntb, nir_src); if (srcs[TEX_LOGICAL_SRC_SAMPLER].file == BAD_FILE) { srcs[TEX_LOGICAL_SRC_SAMPLER] = bld.emit_uniformize(bld.ADD(retype(src, BRW_TYPE_UD), brw_imm_ud(instr->sampler_index))); } break; } case nir_tex_src_texture_handle: assert(nir_tex_instr_src_index(instr, nir_tex_src_texture_offset) == -1); srcs[TEX_LOGICAL_SRC_SURFACE] = brw_reg(); if (is_resource_src(nir_src)) srcs[TEX_LOGICAL_SRC_SURFACE_HANDLE] = get_resource_nir_src(ntb, nir_src); if (srcs[TEX_LOGICAL_SRC_SURFACE_HANDLE].file == BAD_FILE) srcs[TEX_LOGICAL_SRC_SURFACE_HANDLE] = bld.emit_uniformize(src); break; case nir_tex_src_sampler_handle: assert(nir_tex_instr_src_index(instr, nir_tex_src_sampler_offset) == -1); srcs[TEX_LOGICAL_SRC_SAMPLER] = brw_reg(); if (is_resource_src(nir_src)) srcs[TEX_LOGICAL_SRC_SAMPLER_HANDLE] = get_resource_nir_src(ntb, nir_src); if (srcs[TEX_LOGICAL_SRC_SAMPLER_HANDLE].file == BAD_FILE) srcs[TEX_LOGICAL_SRC_SAMPLER_HANDLE] = bld.emit_uniformize(src); break; case nir_tex_src_ms_mcs_intel: assert(instr->op == nir_texop_txf_ms); srcs[TEX_LOGICAL_SRC_MCS] = retype(src, BRW_TYPE_D); break; /* If this parameter is present, we are packing offset U, V and LOD/Bias * into a single (32-bit) value. */ case nir_tex_src_backend2: assert(instr->op == nir_texop_tg4); pack_lod_bias_and_offset = true; srcs[TEX_LOGICAL_SRC_LOD] = retype(get_nir_src_imm(ntb, instr->src[i].src), BRW_TYPE_F); break; /* If this parameter is present, we are packing either the explicit LOD * or LOD bias and the array index into a single (32-bit) value when * 32-bit texture coordinates are used. */ case nir_tex_src_backend1: assert(!got_lod && !got_bias); got_lod = true; assert(instr->op == nir_texop_txl || instr->op == nir_texop_txb); srcs[TEX_LOGICAL_SRC_LOD] = retype(get_nir_src_imm(ntb, instr->src[i].src), BRW_TYPE_F); break; default: unreachable("unknown texture source"); } } /* If the surface or sampler were not specified through sources, use the * instruction index. */ if (srcs[TEX_LOGICAL_SRC_SURFACE].file == BAD_FILE && srcs[TEX_LOGICAL_SRC_SURFACE_HANDLE].file == BAD_FILE) srcs[TEX_LOGICAL_SRC_SURFACE] = brw_imm_ud(instr->texture_index); if (srcs[TEX_LOGICAL_SRC_SAMPLER].file == BAD_FILE && srcs[TEX_LOGICAL_SRC_SAMPLER_HANDLE].file == BAD_FILE) srcs[TEX_LOGICAL_SRC_SAMPLER] = brw_imm_ud(instr->sampler_index); if (srcs[TEX_LOGICAL_SRC_MCS].file == BAD_FILE && (instr->op == nir_texop_txf_ms || instr->op == nir_texop_samples_identical)) { srcs[TEX_LOGICAL_SRC_MCS] = emit_mcs_fetch(ntb, srcs[TEX_LOGICAL_SRC_COORDINATE], instr->coord_components, srcs[TEX_LOGICAL_SRC_SURFACE], srcs[TEX_LOGICAL_SRC_SURFACE_HANDLE]); } srcs[TEX_LOGICAL_SRC_COORD_COMPONENTS] = brw_imm_d(instr->coord_components); srcs[TEX_LOGICAL_SRC_GRAD_COMPONENTS] = brw_imm_d(lod_components); enum opcode opcode; switch (instr->op) { case nir_texop_tex: opcode = SHADER_OPCODE_TEX_LOGICAL; break; case nir_texop_txb: opcode = FS_OPCODE_TXB_LOGICAL; break; case nir_texop_txl: opcode = SHADER_OPCODE_TXL_LOGICAL; break; case nir_texop_txd: opcode = SHADER_OPCODE_TXD_LOGICAL; break; case nir_texop_txf: opcode = SHADER_OPCODE_TXF_LOGICAL; break; case nir_texop_txf_ms: /* On Gfx12HP there is only CMS_W available. From the Bspec: Shared * Functions - 3D Sampler - Messages - Message Format: * * ld2dms REMOVEDBY(GEN:HAS:1406788836) */ if (devinfo->verx10 >= 125) opcode = SHADER_OPCODE_TXF_CMS_W_GFX12_LOGICAL; else opcode = SHADER_OPCODE_TXF_CMS_W_LOGICAL; break; case nir_texop_txf_ms_mcs_intel: opcode = SHADER_OPCODE_TXF_MCS_LOGICAL; break; case nir_texop_query_levels: case nir_texop_txs: opcode = SHADER_OPCODE_TXS_LOGICAL; break; case nir_texop_lod: opcode = SHADER_OPCODE_LOD_LOGICAL; break; case nir_texop_tg4: { if (srcs[TEX_LOGICAL_SRC_TG4_OFFSET].file != BAD_FILE) { opcode = SHADER_OPCODE_TG4_OFFSET_LOGICAL; } else { opcode = SHADER_OPCODE_TG4_LOGICAL; if (devinfo->ver >= 20) { /* If SPV_AMD_texture_gather_bias_lod extension is enabled, all * texture gather functions (ie. the ones which do not take the * extra bias argument and the ones that do) fetch texels from * implicit LOD in fragment shader stage. In all other shader * stages, base level is used instead. */ if (instr->is_gather_implicit_lod) opcode = SHADER_OPCODE_TG4_IMPLICIT_LOD_LOGICAL; if (got_bias) opcode = SHADER_OPCODE_TG4_BIAS_LOGICAL; if (got_lod) opcode = SHADER_OPCODE_TG4_EXPLICIT_LOD_LOGICAL; if (pack_lod_bias_and_offset) { if (got_lod) opcode = SHADER_OPCODE_TG4_OFFSET_LOD_LOGICAL; if (got_bias) opcode = SHADER_OPCODE_TG4_OFFSET_BIAS_LOGICAL; } } } break; } case nir_texop_texture_samples: opcode = SHADER_OPCODE_SAMPLEINFO_LOGICAL; break; case nir_texop_samples_identical: { brw_reg dst = retype(get_nir_def(ntb, instr->def), BRW_TYPE_D); /* If mcs is an immediate value, it means there is no MCS. In that case * just return false. */ if (srcs[TEX_LOGICAL_SRC_MCS].file == IMM) { bld.MOV(dst, brw_imm_ud(0u)); } else { brw_reg tmp = bld.OR(srcs[TEX_LOGICAL_SRC_MCS], offset(srcs[TEX_LOGICAL_SRC_MCS], bld, 1)); bld.CMP(dst, tmp, brw_imm_ud(0u), BRW_CONDITIONAL_EQ); } return; } default: unreachable("unknown texture opcode"); } if (instr->op == nir_texop_tg4) { header_bits |= instr->component << 16; } brw_reg nir_def_reg = get_nir_def(ntb, instr->def); bool is_simd8_16bit = nir_alu_type_get_type_size(instr->dest_type) == 16 && bld.dispatch_width() == 8; brw_reg dst = bld.vgrf(brw_type_for_nir_type(devinfo, instr->dest_type), (is_simd8_16bit ? 8 : 4) + instr->is_sparse); fs_inst *inst = bld.emit(opcode, dst, srcs, ARRAY_SIZE(srcs)); inst->offset = header_bits; const unsigned dest_size = nir_tex_instr_dest_size(instr); unsigned read_size = dest_size; if (instr->op != nir_texop_tg4 && instr->op != nir_texop_query_levels) { unsigned write_mask = nir_def_components_read(&instr->def); assert(write_mask != 0); /* dead code should have been eliminated */ if (instr->is_sparse) { read_size = util_last_bit(write_mask) - 1; inst->size_written = (is_simd8_16bit ? 2 : 1) * read_size * inst->dst.component_size(inst->exec_size) + (reg_unit(devinfo) * REG_SIZE); } else { read_size = util_last_bit(write_mask); inst->size_written = (is_simd8_16bit ? 2 : 1) * read_size * inst->dst.component_size(inst->exec_size); } } else { inst->size_written = (is_simd8_16bit ? 2 : 1) * 4 * inst->dst.component_size(inst->exec_size) + (instr->is_sparse ? (reg_unit(devinfo) * REG_SIZE) : 0); } if (srcs[TEX_LOGICAL_SRC_SHADOW_C].file != BAD_FILE) inst->shadow_compare = true; /* Wa_14012688258: * * Don't trim zeros at the end of payload for sample operations * in cube and cube arrays. */ if (instr->sampler_dim == GLSL_SAMPLER_DIM_CUBE && intel_needs_workaround(devinfo, 14012688258)) { /* Compiler should send U,V,R parameters even if V,R are 0. */ if (srcs[TEX_LOGICAL_SRC_COORDINATE].file != BAD_FILE) assert(instr->coord_components >= 3u); /* See opt_zero_samples(). */ inst->keep_payload_trailing_zeros = true; } if (instr->op != nir_texop_query_levels && !instr->is_sparse && !is_simd8_16bit) { /* In most cases we can write directly to the result. */ inst->dst = nir_def_reg; } else { /* In other cases, we have to reorganize the sampler message's results * a bit to match the NIR intrinsic's expectations. */ brw_reg nir_dest[5]; for (unsigned i = 0; i < read_size; i++) nir_dest[i] = offset(dst, bld, (is_simd8_16bit ? 2 : 1) * i); for (unsigned i = read_size; i < dest_size; i++) nir_dest[i].type = dst.type; if (instr->op == nir_texop_query_levels) { /* # levels is in .w */ if (devinfo->ver == 9) { /** * Wa_1940217: * * When a surface of type SURFTYPE_NULL is accessed by resinfo, the * MIPCount returned is undefined instead of 0. */ fs_inst *mov = bld.MOV(bld.null_reg_d(), dst); mov->conditional_mod = BRW_CONDITIONAL_NZ; nir_dest[0] = bld.vgrf(BRW_TYPE_D); fs_inst *sel = bld.SEL(nir_dest[0], offset(dst, bld, 3), brw_imm_d(0)); sel->predicate = BRW_PREDICATE_NORMAL; } else { nir_dest[0] = offset(dst, bld, 3); } } /* The residency bits are only in the first component. */ if (instr->is_sparse) { nir_dest[dest_size - 1] = component(offset(dst, bld, dest_size - 1), 0); } bld.LOAD_PAYLOAD(nir_def_reg, nir_dest, dest_size, 0); } } static void fs_nir_emit_jump(nir_to_brw_state &ntb, nir_jump_instr *instr) { switch (instr->type) { case nir_jump_break: ntb.bld.emit(BRW_OPCODE_BREAK); break; case nir_jump_continue: ntb.bld.emit(BRW_OPCODE_CONTINUE); break; case nir_jump_halt: ntb.bld.emit(BRW_OPCODE_HALT); break; case nir_jump_return: default: unreachable("unknown jump"); } } /* * This helper takes a source register and un/shuffles it into the destination * register. * * If source type size is smaller than destination type size the operation * needed is a component shuffle. The opposite case would be an unshuffle. If * source/destination type size is equal a shuffle is done that would be * equivalent to a simple MOV. * * For example, if source is a 16-bit type and destination is 32-bit. A 3 * components .xyz 16-bit vector on SIMD8 would be. * * |x1|x2|x3|x4|x5|x6|x7|x8|y1|y2|y3|y4|y5|y6|y7|y8| * |z1|z2|z3|z4|z5|z6|z7|z8| | | | | | | | | * * This helper will return the following 2 32-bit components with the 16-bit * values shuffled: * * |x1 y1|x2 y2|x3 y3|x4 y4|x5 y5|x6 y6|x7 y7|x8 y8| * |z1 |z2 |z3 |z4 |z5 |z6 |z7 |z8 | * * For unshuffle, the example would be the opposite, a 64-bit type source * and a 32-bit destination. A 2 component .xy 64-bit vector on SIMD8 * would be: * * | x1l x1h | x2l x2h | x3l x3h | x4l x4h | * | x5l x5h | x6l x6h | x7l x7h | x8l x8h | * | y1l y1h | y2l y2h | y3l y3h | y4l y4h | * | y5l y5h | y6l y6h | y7l y7h | y8l y8h | * * The returned result would be the following 4 32-bit components unshuffled: * * | x1l | x2l | x3l | x4l | x5l | x6l | x7l | x8l | * | x1h | x2h | x3h | x4h | x5h | x6h | x7h | x8h | * | y1l | y2l | y3l | y4l | y5l | y6l | y7l | y8l | * | y1h | y2h | y3h | y4h | y5h | y6h | y7h | y8h | * * - Source and destination register must not be overlapped. * - components units are measured in terms of the smaller type between * source and destination because we are un/shuffling the smaller * components from/into the bigger ones. * - first_component parameter allows skipping source components. */ void shuffle_src_to_dst(const fs_builder &bld, const brw_reg &dst, const brw_reg &src, uint32_t first_component, uint32_t components) { if (brw_type_size_bytes(src.type) == brw_type_size_bytes(dst.type)) { assert(!regions_overlap(dst, brw_type_size_bytes(dst.type) * bld.dispatch_width() * components, offset(src, bld, first_component), brw_type_size_bytes(src.type) * bld.dispatch_width() * components)); for (unsigned i = 0; i < components; i++) { bld.MOV(retype(offset(dst, bld, i), src.type), offset(src, bld, i + first_component)); } } else if (brw_type_size_bytes(src.type) < brw_type_size_bytes(dst.type)) { /* Source is shuffled into destination */ unsigned size_ratio = brw_type_size_bytes(dst.type) / brw_type_size_bytes(src.type); assert(!regions_overlap(dst, brw_type_size_bytes(dst.type) * bld.dispatch_width() * DIV_ROUND_UP(components, size_ratio), offset(src, bld, first_component), brw_type_size_bytes(src.type) * bld.dispatch_width() * components)); brw_reg_type shuffle_type = brw_type_with_size(BRW_TYPE_D, brw_type_size_bits(src.type)); for (unsigned i = 0; i < components; i++) { brw_reg shuffle_component_i = subscript(offset(dst, bld, i / size_ratio), shuffle_type, i % size_ratio); bld.MOV(shuffle_component_i, retype(offset(src, bld, i + first_component), shuffle_type)); } } else { /* Source is unshuffled into destination */ unsigned size_ratio = brw_type_size_bytes(src.type) / brw_type_size_bytes(dst.type); assert(!regions_overlap(dst, brw_type_size_bytes(dst.type) * bld.dispatch_width() * components, offset(src, bld, first_component / size_ratio), brw_type_size_bytes(src.type) * bld.dispatch_width() * DIV_ROUND_UP(components + (first_component % size_ratio), size_ratio))); brw_reg_type shuffle_type = brw_type_with_size(BRW_TYPE_D, brw_type_size_bits(dst.type)); for (unsigned i = 0; i < components; i++) { brw_reg shuffle_component_i = subscript(offset(src, bld, (first_component + i) / size_ratio), shuffle_type, (first_component + i) % size_ratio); bld.MOV(retype(offset(dst, bld, i), shuffle_type), shuffle_component_i); } } } void shuffle_from_32bit_read(const fs_builder &bld, const brw_reg &dst, const brw_reg &src, uint32_t first_component, uint32_t components) { assert(brw_type_size_bytes(src.type) == 4); /* This function takes components in units of the destination type while * shuffle_src_to_dst takes components in units of the smallest type */ if (brw_type_size_bytes(dst.type) > 4) { assert(brw_type_size_bytes(dst.type) == 8); first_component *= 2; components *= 2; } shuffle_src_to_dst(bld, dst, src, first_component, components); } static void fs_nir_emit_instr(nir_to_brw_state &ntb, nir_instr *instr) { #ifndef NDEBUG if (unlikely(ntb.annotate)) { /* Use shader mem_ctx since annotations outlive the NIR conversion. */ ntb.bld = ntb.bld.annotate(nir_instr_as_str(instr, ntb.s.mem_ctx)); } #endif switch (instr->type) { case nir_instr_type_alu: fs_nir_emit_alu(ntb, nir_instr_as_alu(instr), true); break; case nir_instr_type_deref: unreachable("All derefs should've been lowered"); break; case nir_instr_type_intrinsic: switch (ntb.s.stage) { case MESA_SHADER_VERTEX: fs_nir_emit_vs_intrinsic(ntb, nir_instr_as_intrinsic(instr)); break; case MESA_SHADER_TESS_CTRL: fs_nir_emit_tcs_intrinsic(ntb, nir_instr_as_intrinsic(instr)); break; case MESA_SHADER_TESS_EVAL: fs_nir_emit_tes_intrinsic(ntb, nir_instr_as_intrinsic(instr)); break; case MESA_SHADER_GEOMETRY: fs_nir_emit_gs_intrinsic(ntb, nir_instr_as_intrinsic(instr)); break; case MESA_SHADER_FRAGMENT: fs_nir_emit_fs_intrinsic(ntb, nir_instr_as_intrinsic(instr)); break; case MESA_SHADER_COMPUTE: case MESA_SHADER_KERNEL: fs_nir_emit_cs_intrinsic(ntb, nir_instr_as_intrinsic(instr)); break; case MESA_SHADER_RAYGEN: case MESA_SHADER_ANY_HIT: case MESA_SHADER_CLOSEST_HIT: case MESA_SHADER_MISS: case MESA_SHADER_INTERSECTION: case MESA_SHADER_CALLABLE: fs_nir_emit_bs_intrinsic(ntb, nir_instr_as_intrinsic(instr)); break; case MESA_SHADER_TASK: fs_nir_emit_task_intrinsic(ntb, nir_instr_as_intrinsic(instr)); break; case MESA_SHADER_MESH: fs_nir_emit_mesh_intrinsic(ntb, nir_instr_as_intrinsic(instr)); break; default: unreachable("unsupported shader stage"); } break; case nir_instr_type_tex: fs_nir_emit_texture(ntb, nir_instr_as_tex(instr)); break; case nir_instr_type_load_const: fs_nir_emit_load_const(ntb, nir_instr_as_load_const(instr)); break; case nir_instr_type_undef: /* We create a new VGRF for undefs on every use (by handling * them in get_nir_src()), rather than for each definition. * This helps register coalescing eliminate MOVs from undef. */ break; case nir_instr_type_jump: fs_nir_emit_jump(ntb, nir_instr_as_jump(instr)); break; default: unreachable("unknown instruction type"); } } static unsigned brw_rnd_mode_from_nir(unsigned mode, unsigned *mask) { unsigned brw_mode = 0; *mask = 0; if ((FLOAT_CONTROLS_ROUNDING_MODE_RTZ_FP16 | FLOAT_CONTROLS_ROUNDING_MODE_RTZ_FP32 | FLOAT_CONTROLS_ROUNDING_MODE_RTZ_FP64) & mode) { brw_mode |= BRW_RND_MODE_RTZ << BRW_CR0_RND_MODE_SHIFT; *mask |= BRW_CR0_RND_MODE_MASK; } if ((FLOAT_CONTROLS_ROUNDING_MODE_RTE_FP16 | FLOAT_CONTROLS_ROUNDING_MODE_RTE_FP32 | FLOAT_CONTROLS_ROUNDING_MODE_RTE_FP64) & mode) { brw_mode |= BRW_RND_MODE_RTNE << BRW_CR0_RND_MODE_SHIFT; *mask |= BRW_CR0_RND_MODE_MASK; } if (mode & FLOAT_CONTROLS_DENORM_PRESERVE_FP16) { brw_mode |= BRW_CR0_FP16_DENORM_PRESERVE; *mask |= BRW_CR0_FP16_DENORM_PRESERVE; } if (mode & FLOAT_CONTROLS_DENORM_PRESERVE_FP32) { brw_mode |= BRW_CR0_FP32_DENORM_PRESERVE; *mask |= BRW_CR0_FP32_DENORM_PRESERVE; } if (mode & FLOAT_CONTROLS_DENORM_PRESERVE_FP64) { brw_mode |= BRW_CR0_FP64_DENORM_PRESERVE; *mask |= BRW_CR0_FP64_DENORM_PRESERVE; } if (mode & FLOAT_CONTROLS_DENORM_FLUSH_TO_ZERO_FP16) *mask |= BRW_CR0_FP16_DENORM_PRESERVE; if (mode & FLOAT_CONTROLS_DENORM_FLUSH_TO_ZERO_FP32) *mask |= BRW_CR0_FP32_DENORM_PRESERVE; if (mode & FLOAT_CONTROLS_DENORM_FLUSH_TO_ZERO_FP64) *mask |= BRW_CR0_FP64_DENORM_PRESERVE; if (mode == FLOAT_CONTROLS_DEFAULT_FLOAT_CONTROL_MODE) *mask |= BRW_CR0_FP_MODE_MASK; if (*mask != 0) assert((*mask & brw_mode) == brw_mode); return brw_mode; } static void emit_shader_float_controls_execution_mode(nir_to_brw_state &ntb) { const fs_builder &bld = ntb.bld; fs_visitor &s = ntb.s; unsigned execution_mode = s.nir->info.float_controls_execution_mode; if (execution_mode == FLOAT_CONTROLS_DEFAULT_FLOAT_CONTROL_MODE) return; fs_builder ubld = bld.exec_all().group(1, 0); fs_builder abld = ubld.annotate("shader floats control execution mode"); unsigned mask, mode = brw_rnd_mode_from_nir(execution_mode, &mask); if (mask == 0) return; abld.emit(SHADER_OPCODE_FLOAT_CONTROL_MODE, bld.null_reg_ud(), brw_imm_d(mode), brw_imm_d(mask)); } /** * Test the dispatch mask packing assumptions of * brw_stage_has_packed_dispatch(). Call this from e.g. the top of * nir_to_brw() to cause a GPU hang if any shader invocation is * executed with an unexpected dispatch mask. */ static UNUSED void brw_fs_test_dispatch_packing(const fs_builder &bld) { const fs_visitor *shader = bld.shader; const gl_shader_stage stage = shader->stage; const bool uses_vmask = stage == MESA_SHADER_FRAGMENT && brw_wm_prog_data(shader->prog_data)->uses_vmask; if (brw_stage_has_packed_dispatch(shader->devinfo, stage, shader->max_polygons, shader->prog_data)) { const fs_builder ubld = bld.exec_all().group(1, 0); const brw_reg tmp = component(bld.vgrf(BRW_TYPE_UD), 0); const brw_reg mask = uses_vmask ? brw_vmask_reg() : brw_dmask_reg(); ubld.ADD(tmp, mask, brw_imm_ud(1)); ubld.AND(tmp, mask, tmp); /* This will loop forever if the dispatch mask doesn't have the expected * form '2^n-1', in which case tmp will be non-zero. */ bld.emit(BRW_OPCODE_DO); bld.CMP(bld.null_reg_ud(), tmp, brw_imm_ud(0), BRW_CONDITIONAL_NZ); set_predicate(BRW_PREDICATE_NORMAL, bld.emit(BRW_OPCODE_WHILE)); } } void nir_to_brw(fs_visitor *s) { nir_to_brw_state ntb = { .s = *s, .nir = s->nir, .devinfo = s->devinfo, .mem_ctx = ralloc_context(NULL), .bld = fs_builder(s).at_end(), }; if (INTEL_DEBUG(DEBUG_ANNOTATION)) ntb.annotate = true; if (ENABLE_FS_TEST_DISPATCH_PACKING) brw_fs_test_dispatch_packing(ntb.bld); for (unsigned i = 0; i < s->nir->printf_info_count; i++) { brw_stage_prog_data_add_printf(s->prog_data, s->mem_ctx, &s->nir->printf_info[i]); } emit_shader_float_controls_execution_mode(ntb); /* emit the arrays used for inputs and outputs - load/store intrinsics will * be converted to reads/writes of these arrays */ fs_nir_setup_outputs(ntb); fs_nir_setup_uniforms(ntb.s); fs_nir_emit_system_values(ntb); ntb.s.last_scratch = ALIGN(ntb.nir->scratch_size, 4) * ntb.s.dispatch_width; fs_nir_emit_impl(ntb, nir_shader_get_entrypoint((nir_shader *)ntb.nir)); ntb.bld.emit(SHADER_OPCODE_HALT_TARGET); ralloc_free(ntb.mem_ctx); }