/* Copyright (C) Intel Corp. 2006. All Rights Reserved. Intel funded Tungsten Graphics to develop this 3D driver. Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice (including the next paragraph) shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE COPYRIGHT OWNER(S) AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. **********************************************************************/ /* * Authors: * Keith Whitwell */ #ifndef BRW_EU_DEFINES_H #define BRW_EU_DEFINES_H #include #include #include "util/macros.h" #include "dev/intel_device_info.h" /* The following hunk, up-to "Execution Unit" is used by both the * intel/compiler and i965 codebase. */ #define INTEL_MASK(high, low) (((1u<<((high)-(low)+1))-1)<<(low)) /* Using the GNU statement expression extension */ #define SET_FIELD(value, field) \ ({ \ uint32_t fieldval = (uint32_t)(value) << field ## _SHIFT; \ assert((fieldval & ~ field ## _MASK) == 0); \ fieldval & field ## _MASK; \ }) #define SET_BITS(value, high, low) \ ({ \ const uint32_t fieldval = (uint32_t)(value) << (low); \ assert((fieldval & ~INTEL_MASK(high, low)) == 0); \ fieldval & INTEL_MASK(high, low); \ }) #define GET_BITS(data, high, low) ((data & INTEL_MASK((high), (low))) >> (low)) #define GET_FIELD(word, field) (((word) & field ## _MASK) >> field ## _SHIFT) # define GFX7_GS_CONTROL_DATA_FORMAT_GSCTL_CUT 0 # define GFX7_GS_CONTROL_DATA_FORMAT_GSCTL_SID 1 /* Execution Unit (EU) defines */ #define BRW_ALIGN_1 0 #define BRW_ALIGN_16 1 #define BRW_ADDRESS_DIRECT 0 #define BRW_ADDRESS_REGISTER_INDIRECT_REGISTER 1 #define BRW_CHANNEL_X 0 #define BRW_CHANNEL_Y 1 #define BRW_CHANNEL_Z 2 #define BRW_CHANNEL_W 3 enum brw_compression { BRW_COMPRESSION_NONE = 0, BRW_COMPRESSION_2NDHALF = 1, BRW_COMPRESSION_COMPRESSED = 2, }; #define GFX6_COMPRESSION_1Q 0 #define GFX6_COMPRESSION_2Q 1 #define GFX6_COMPRESSION_3Q 2 #define GFX6_COMPRESSION_4Q 3 #define GFX6_COMPRESSION_1H 0 #define GFX6_COMPRESSION_2H 2 enum ENUM_PACKED brw_conditional_mod { BRW_CONDITIONAL_NONE = 0, BRW_CONDITIONAL_Z = 1, BRW_CONDITIONAL_NZ = 2, BRW_CONDITIONAL_EQ = 1, /* Z */ BRW_CONDITIONAL_NEQ = 2, /* NZ */ BRW_CONDITIONAL_G = 3, BRW_CONDITIONAL_GE = 4, BRW_CONDITIONAL_L = 5, BRW_CONDITIONAL_LE = 6, BRW_CONDITIONAL_R = 7, /* Gen <= 5 */ BRW_CONDITIONAL_O = 8, BRW_CONDITIONAL_U = 9, }; #define BRW_DEBUG_NONE 0 #define BRW_DEBUG_BREAKPOINT 1 enum ENUM_PACKED brw_execution_size { BRW_EXECUTE_1 = 0, BRW_EXECUTE_2 = 1, BRW_EXECUTE_4 = 2, BRW_EXECUTE_8 = 3, BRW_EXECUTE_16 = 4, BRW_EXECUTE_32 = 5, }; enum ENUM_PACKED brw_horizontal_stride { BRW_HORIZONTAL_STRIDE_0 = 0, BRW_HORIZONTAL_STRIDE_1 = 1, BRW_HORIZONTAL_STRIDE_2 = 2, BRW_HORIZONTAL_STRIDE_4 = 3, }; enum ENUM_PACKED gfx10_align1_3src_src_horizontal_stride { BRW_ALIGN1_3SRC_SRC_HORIZONTAL_STRIDE_0 = 0, BRW_ALIGN1_3SRC_SRC_HORIZONTAL_STRIDE_1 = 1, BRW_ALIGN1_3SRC_SRC_HORIZONTAL_STRIDE_2 = 2, BRW_ALIGN1_3SRC_SRC_HORIZONTAL_STRIDE_4 = 3, }; enum ENUM_PACKED gfx10_align1_3src_dst_horizontal_stride { BRW_ALIGN1_3SRC_DST_HORIZONTAL_STRIDE_1 = 0, BRW_ALIGN1_3SRC_DST_HORIZONTAL_STRIDE_2 = 1, }; #define BRW_INSTRUCTION_NORMAL 0 #define BRW_INSTRUCTION_SATURATE 1 #define BRW_MASK_ENABLE 0 #define BRW_MASK_DISABLE 1 /** @{ * * Gfx6 has replaced "mask enable/disable" with WECtrl, which is * effectively the same but much simpler to think about. Now, there * are two contributors ANDed together to whether channels are * executed: The predication on the instruction, and the channel write * enable. */ /** * This is the default value. It means that a channel's write enable is set * if the per-channel IP is pointing at this instruction. */ #define BRW_WE_NORMAL 0 /** * This is used like BRW_MASK_DISABLE, and causes all channels to have * their write enable set. Note that predication still contributes to * whether the channel actually gets written. */ #define BRW_WE_ALL 1 /** @} */ enum opcode { /* These are the actual hardware instructions. */ BRW_OPCODE_ILLEGAL, BRW_OPCODE_SYNC, BRW_OPCODE_MOV, BRW_OPCODE_SEL, BRW_OPCODE_MOVI, BRW_OPCODE_NOT, BRW_OPCODE_AND, BRW_OPCODE_OR, BRW_OPCODE_XOR, BRW_OPCODE_SHR, BRW_OPCODE_SHL, BRW_OPCODE_SMOV, BRW_OPCODE_ASR, BRW_OPCODE_ROR, /**< Gfx11+ */ BRW_OPCODE_ROL, /**< Gfx11+ */ BRW_OPCODE_CMP, BRW_OPCODE_CMPN, BRW_OPCODE_CSEL, BRW_OPCODE_BFREV, BRW_OPCODE_BFE, BRW_OPCODE_BFI1, BRW_OPCODE_BFI2, BRW_OPCODE_JMPI, BRW_OPCODE_BRD, BRW_OPCODE_IF, BRW_OPCODE_BRC, BRW_OPCODE_ELSE, BRW_OPCODE_ENDIF, BRW_OPCODE_DO, /**< Used as pseudo opcode, will be moved later. */ BRW_OPCODE_WHILE, BRW_OPCODE_BREAK, BRW_OPCODE_CONTINUE, BRW_OPCODE_HALT, BRW_OPCODE_CALLA, BRW_OPCODE_CALL, BRW_OPCODE_RET, BRW_OPCODE_GOTO, BRW_OPCODE_WAIT, BRW_OPCODE_SEND, BRW_OPCODE_SENDC, BRW_OPCODE_SENDS, BRW_OPCODE_SENDSC, BRW_OPCODE_MATH, BRW_OPCODE_ADD, BRW_OPCODE_MUL, BRW_OPCODE_AVG, BRW_OPCODE_FRC, BRW_OPCODE_RNDU, BRW_OPCODE_RNDD, BRW_OPCODE_RNDE, BRW_OPCODE_RNDZ, BRW_OPCODE_MAC, BRW_OPCODE_MACH, BRW_OPCODE_LZD, BRW_OPCODE_FBH, BRW_OPCODE_FBL, BRW_OPCODE_CBIT, BRW_OPCODE_ADDC, BRW_OPCODE_SUBB, BRW_OPCODE_ADD3, /* Gen12+ only */ BRW_OPCODE_DP4, BRW_OPCODE_DPH, BRW_OPCODE_DP3, BRW_OPCODE_DP2, BRW_OPCODE_DP4A, /**< Gfx12+ */ BRW_OPCODE_LINE, BRW_OPCODE_DPAS, /**< Gfx12.5+ */ BRW_OPCODE_PLN, /**< Up until Gfx9 */ BRW_OPCODE_MAD, BRW_OPCODE_LRP, BRW_OPCODE_MADM, BRW_OPCODE_NOP, NUM_BRW_OPCODES, /** * The position/ordering of the arguments are defined * by the enum fb_write_logical_srcs. */ FS_OPCODE_FB_WRITE_LOGICAL = NUM_BRW_OPCODES, FS_OPCODE_FB_READ_LOGICAL, SHADER_OPCODE_RCP, SHADER_OPCODE_RSQ, SHADER_OPCODE_SQRT, SHADER_OPCODE_EXP2, SHADER_OPCODE_LOG2, SHADER_OPCODE_POW, SHADER_OPCODE_INT_QUOTIENT, SHADER_OPCODE_INT_REMAINDER, SHADER_OPCODE_SIN, SHADER_OPCODE_COS, /** * A generic "send" opcode. The first two sources are the message * descriptor and extended message descriptor respectively. The third * and optional fourth sources are the message payload */ SHADER_OPCODE_SEND, /** * An "undefined" write which does nothing but indicates to liveness that * we don't care about any values in the register which predate this * instruction. Used to prevent partial writes from causing issues with * live ranges. */ SHADER_OPCODE_UNDEF, /** * Texture sampling opcodes. * * LOGICAL opcodes are eventually translated to SHADER_OPCODE_SEND but * take parameters as individual sources. See enum tex_logical_srcs. */ SHADER_OPCODE_TEX_LOGICAL, SHADER_OPCODE_TXD_LOGICAL, SHADER_OPCODE_TXF_LOGICAL, SHADER_OPCODE_TXL_LOGICAL, SHADER_OPCODE_TXS_LOGICAL, FS_OPCODE_TXB_LOGICAL, SHADER_OPCODE_TXF_CMS_W_LOGICAL, SHADER_OPCODE_TXF_CMS_W_GFX12_LOGICAL, SHADER_OPCODE_TXF_MCS_LOGICAL, SHADER_OPCODE_LOD_LOGICAL, SHADER_OPCODE_TG4_LOGICAL, SHADER_OPCODE_TG4_IMPLICIT_LOD_LOGICAL, SHADER_OPCODE_TG4_EXPLICIT_LOD_LOGICAL, SHADER_OPCODE_TG4_BIAS_LOGICAL, SHADER_OPCODE_TG4_OFFSET_LOGICAL, SHADER_OPCODE_TG4_OFFSET_LOD_LOGICAL, SHADER_OPCODE_TG4_OFFSET_BIAS_LOGICAL, SHADER_OPCODE_SAMPLEINFO_LOGICAL, SHADER_OPCODE_IMAGE_SIZE_LOGICAL, /** * Combines multiple sources of size 1 into a larger virtual GRF. * For example, parameters for a send-from-GRF message. Or, updating * channels of a size 4 VGRF used to store vec4s such as texturing results. * * This will be lowered into MOVs from each source to consecutive offsets * of the destination VGRF. * * src[0] may be BAD_FILE. If so, the lowering pass skips emitting the MOV, * but still reserves the first channel of the destination VGRF. This can be * used to reserve space for, say, a message header set up by the generators. */ SHADER_OPCODE_LOAD_PAYLOAD, /** * Packs a number of sources into a single value. Unlike LOAD_PAYLOAD, this * acts intra-channel, obtaining the final value for each channel by * combining the sources values for the same channel, the first source * occupying the lowest bits and the last source occupying the highest * bits. */ FS_OPCODE_PACK, SHADER_OPCODE_RND_MODE, SHADER_OPCODE_FLOAT_CONTROL_MODE, /** * Memory fence messages. * * Source 0: Must be register g0, used as header. * Source 1: Immediate bool to indicate whether control is returned to the * thread only after the fence has been honored. * Source 2: Immediate byte indicating which memory to fence. Zero means * global memory; GFX7_BTI_SLM means SLM (for Gfx11+ only). * * Vec4 backend only uses Source 0. */ SHADER_OPCODE_MEMORY_FENCE, /** * Scheduling-only fence. * * Sources can be used to force a stall until the registers in those are * available. This might generate MOVs or SYNC_NOPs (Gfx12+). */ FS_OPCODE_SCHEDULING_FENCE, SHADER_OPCODE_SCRATCH_HEADER, /** * Gfx8+ SIMD8 URB messages. */ SHADER_OPCODE_URB_READ_LOGICAL, SHADER_OPCODE_URB_WRITE_LOGICAL, /** * Return the index of the first enabled live channel and assign it to * to the first component of the destination. Frequently used as input * for the BROADCAST pseudo-opcode. */ SHADER_OPCODE_FIND_LIVE_CHANNEL, /** * Return the index of the last enabled live channel and assign it to * the first component of the destination. */ SHADER_OPCODE_FIND_LAST_LIVE_CHANNEL, /** * Return the current execution mask and assign it to the first component * of the destination. * * \sa opcode::FS_OPCODE_LOAD_LIVE_CHANNELS */ SHADER_OPCODE_LOAD_LIVE_CHANNELS, /** * Return the current execution mask in the specified flag subregister. * Can be CSE'ed more easily than a plain MOV from the ce0 ARF register. */ FS_OPCODE_LOAD_LIVE_CHANNELS, /** * Pick the channel from its first source register given by the index * specified as second source. Useful for variable indexing of surfaces. * * Note that because the result of this instruction is by definition * uniform and it can always be splatted to multiple channels using a * scalar regioning mode, only the first channel of the destination region * is guaranteed to be updated, which implies that BROADCAST instructions * should usually be marked force_writemask_all. */ SHADER_OPCODE_BROADCAST, /* Pick the channel from its first source register given by the index * specified as second source. * * This is similar to the BROADCAST instruction except that it takes a * dynamic index and potentially puts a different value in each output * channel. */ SHADER_OPCODE_SHUFFLE, /* Select between src0 and src1 based on channel enables. * * This instruction copies src0 into the enabled channels of the * destination and copies src1 into the disabled channels. */ SHADER_OPCODE_SEL_EXEC, /* This turns into an align16 mov from src0 to dst with a swizzle * provided as an immediate in src1. */ SHADER_OPCODE_QUAD_SWIZZLE, /* Take every Nth element in src0 and broadcast it to the group of N * channels in which it lives in the destination. The offset within the * cluster is given by src1 and the cluster size is given by src2. */ SHADER_OPCODE_CLUSTER_BROADCAST, SHADER_OPCODE_GET_BUFFER_SIZE, SHADER_OPCODE_INTERLOCK, /** Target for a HALT * * All HALT instructions in a shader must target the same jump point and * that point is denoted by a HALT_TARGET instruction. */ SHADER_OPCODE_HALT_TARGET, FS_OPCODE_DDX_COARSE, FS_OPCODE_DDX_FINE, /** * Compute dFdy(), dFdyCoarse(), or dFdyFine(). */ FS_OPCODE_DDY_COARSE, FS_OPCODE_DDY_FINE, FS_OPCODE_PIXEL_X, FS_OPCODE_PIXEL_Y, FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD, FS_OPCODE_VARYING_PULL_CONSTANT_LOAD_LOGICAL, FS_OPCODE_PACK_HALF_2x16_SPLIT, FS_OPCODE_INTERPOLATE_AT_SAMPLE, FS_OPCODE_INTERPOLATE_AT_SHARED_OFFSET, FS_OPCODE_INTERPOLATE_AT_PER_SLOT_OFFSET, /** * GLSL barrier() */ SHADER_OPCODE_BARRIER, /** * Calculate the high 32-bits of a 32x32 multiply. */ SHADER_OPCODE_MULH, /** Signed subtraction with saturation. */ SHADER_OPCODE_ISUB_SAT, /** Unsigned subtraction with saturation. */ SHADER_OPCODE_USUB_SAT, /** * A MOV that uses VxH indirect addressing. * * Source 0: A register to start from (HW_REG). * Source 1: An indirect offset (in bytes, UD GRF). * Source 2: The length of the region that could be accessed (in bytes, * UD immediate). */ SHADER_OPCODE_MOV_INDIRECT, /** Fills out a relocatable immediate */ SHADER_OPCODE_MOV_RELOC_IMM, SHADER_OPCODE_BTD_SPAWN_LOGICAL, SHADER_OPCODE_BTD_RETIRE_LOGICAL, SHADER_OPCODE_READ_ARCH_REG, SHADER_OPCODE_LOAD_SUBGROUP_INVOCATION, RT_OPCODE_TRACE_RAY_LOGICAL, SHADER_OPCODE_MEMORY_LOAD_LOGICAL, SHADER_OPCODE_MEMORY_STORE_LOGICAL, SHADER_OPCODE_MEMORY_ATOMIC_LOGICAL, }; enum fb_write_logical_srcs { FB_WRITE_LOGICAL_SRC_COLOR0, /* REQUIRED */ FB_WRITE_LOGICAL_SRC_COLOR1, /* for dual source blend messages */ FB_WRITE_LOGICAL_SRC_SRC0_ALPHA, FB_WRITE_LOGICAL_SRC_SRC_DEPTH, /* gl_FragDepth */ FB_WRITE_LOGICAL_SRC_DST_DEPTH, /* GFX4-5: passthrough from thread */ FB_WRITE_LOGICAL_SRC_SRC_STENCIL, /* gl_FragStencilRefARB */ FB_WRITE_LOGICAL_SRC_OMASK, /* Sample Mask (gl_SampleMask) */ FB_WRITE_LOGICAL_SRC_COMPONENTS, /* REQUIRED */ FB_WRITE_LOGICAL_NUM_SRCS }; enum tex_logical_srcs { /** Texture coordinates */ TEX_LOGICAL_SRC_COORDINATE, /** Shadow comparator */ TEX_LOGICAL_SRC_SHADOW_C, /** dPdx if the operation takes explicit derivatives, otherwise LOD value */ TEX_LOGICAL_SRC_LOD, /** dPdy if the operation takes explicit derivatives */ TEX_LOGICAL_SRC_LOD2, /** Min LOD */ TEX_LOGICAL_SRC_MIN_LOD, /** Sample index */ TEX_LOGICAL_SRC_SAMPLE_INDEX, /** MCS data */ TEX_LOGICAL_SRC_MCS, /** REQUIRED: Texture surface index */ TEX_LOGICAL_SRC_SURFACE, /** Texture sampler index */ TEX_LOGICAL_SRC_SAMPLER, /** Texture surface bindless handle */ TEX_LOGICAL_SRC_SURFACE_HANDLE, /** Texture sampler bindless handle */ TEX_LOGICAL_SRC_SAMPLER_HANDLE, /** Texel offset for gathers */ TEX_LOGICAL_SRC_TG4_OFFSET, /** REQUIRED: Number of coordinate components (as UD immediate) */ TEX_LOGICAL_SRC_COORD_COMPONENTS, /** REQUIRED: Number of derivative components (as UD immediate) */ TEX_LOGICAL_SRC_GRAD_COMPONENTS, /** REQUIRED: request residency (as UD immediate) */ TEX_LOGICAL_SRC_RESIDENCY, TEX_LOGICAL_NUM_SRCS, }; enum pull_uniform_constant_srcs { /** Surface binding table index */ PULL_UNIFORM_CONSTANT_SRC_SURFACE, /** Surface bindless handle */ PULL_UNIFORM_CONSTANT_SRC_SURFACE_HANDLE, /** Surface offset */ PULL_UNIFORM_CONSTANT_SRC_OFFSET, /** Pull size */ PULL_UNIFORM_CONSTANT_SRC_SIZE, PULL_UNIFORM_CONSTANT_SRCS, }; enum pull_varying_constant_srcs { /** Surface binding table index */ PULL_VARYING_CONSTANT_SRC_SURFACE, /** Surface bindless handle */ PULL_VARYING_CONSTANT_SRC_SURFACE_HANDLE, /** Surface offset */ PULL_VARYING_CONSTANT_SRC_OFFSET, /** Pull alignment */ PULL_VARYING_CONSTANT_SRC_ALIGNMENT, PULL_VARYING_CONSTANT_SRCS, }; enum get_buffer_size_srcs { /** Surface binding table index */ GET_BUFFER_SIZE_SRC_SURFACE, /** Surface bindless handle */ GET_BUFFER_SIZE_SRC_SURFACE_HANDLE, /** LOD */ GET_BUFFER_SIZE_SRC_LOD, GET_BUFFER_SIZE_SRCS }; enum memory_logical_mode { MEMORY_MODE_TYPED, MEMORY_MODE_UNTYPED, MEMORY_MODE_SHARED_LOCAL, MEMORY_MODE_SCRATCH, }; enum memory_logical_srcs { /** enum lsc_opcode (as UD immediate) */ MEMORY_LOGICAL_OPCODE, /** enum memory_logical_mode (as UD immediate) */ MEMORY_LOGICAL_MODE, /** enum lsc_addr_surface_type (as UD immediate) */ MEMORY_LOGICAL_BINDING_TYPE, /** * Where to find the surface state. Depends on BINDING_TYPE above: * * - SS: pointer to surface state (relative to surface base address) * - BSS: pointer to surface state (relative to bindless surface base) * - BTI: binding table index * - FLAT: This should should be BAD_FILE */ MEMORY_LOGICAL_BINDING, /** Coordinate/address/offset for where to access memory */ MEMORY_LOGICAL_ADDRESS, /** Dimensionality of the "address" source (as UD immediate) */ MEMORY_LOGICAL_COORD_COMPONENTS, /** Required alignment of address in bytes; 0 for natural alignment */ MEMORY_LOGICAL_ALIGNMENT, /** Bit-size in the form of enum lsc_data_size (as UD immediate) */ MEMORY_LOGICAL_DATA_SIZE, /** Number of vector components (as UD immediate) */ MEMORY_LOGICAL_COMPONENTS, /** memory_flags bitfield (as UD immediate) */ MEMORY_LOGICAL_FLAGS, /** Data to write for stores or the first operand for atomics */ MEMORY_LOGICAL_DATA0, /** Second operand for two-source atomics */ MEMORY_LOGICAL_DATA1, MEMORY_LOGICAL_NUM_SRCS }; enum memory_flags { /** Whether this is a transposed (i.e. block) memory access */ MEMORY_FLAG_TRANSPOSE = 1 << 0, /** Whether this operation should fire for helper invocations */ MEMORY_FLAG_INCLUDE_HELPERS = 1 << 1, }; enum rt_logical_srcs { /** Address of the globals */ RT_LOGICAL_SRC_GLOBALS, /** Level at which the tracing should start */ RT_LOGICAL_SRC_BVH_LEVEL, /** Type of tracing operation */ RT_LOGICAL_SRC_TRACE_RAY_CONTROL, /** Synchronous tracing (ray query) */ RT_LOGICAL_SRC_SYNCHRONOUS, RT_LOGICAL_NUM_SRCS }; enum urb_logical_srcs { URB_LOGICAL_SRC_HANDLE, /** Offset in bytes on Xe2+ or OWords on older platforms */ URB_LOGICAL_SRC_PER_SLOT_OFFSETS, URB_LOGICAL_SRC_CHANNEL_MASK, /** Data to be written. BAD_FILE for reads. */ URB_LOGICAL_SRC_DATA, URB_LOGICAL_SRC_COMPONENTS, URB_LOGICAL_NUM_SRCS }; enum interpolator_logical_srcs { /** Interpolation offset */ INTERP_SRC_OFFSET, /** Message data */ INTERP_SRC_MSG_DESC, /** Flag register for dynamic mode */ INTERP_SRC_DYNAMIC_MODE, INTERP_NUM_SRCS }; enum ENUM_PACKED brw_predicate { BRW_PREDICATE_NONE = 0, BRW_PREDICATE_NORMAL = 1, BRW_PREDICATE_ALIGN1_ANYV = 2, BRW_PREDICATE_ALIGN1_ALLV = 3, BRW_PREDICATE_ALIGN1_ANY2H = 4, BRW_PREDICATE_ALIGN1_ALL2H = 5, BRW_PREDICATE_ALIGN1_ANY4H = 6, BRW_PREDICATE_ALIGN1_ALL4H = 7, BRW_PREDICATE_ALIGN1_ANY8H = 8, BRW_PREDICATE_ALIGN1_ALL8H = 9, BRW_PREDICATE_ALIGN1_ANY16H = 10, BRW_PREDICATE_ALIGN1_ALL16H = 11, BRW_PREDICATE_ALIGN1_ANY32H = 12, BRW_PREDICATE_ALIGN1_ALL32H = 13, BRW_PREDICATE_ALIGN16_REPLICATE_X = 2, BRW_PREDICATE_ALIGN16_REPLICATE_Y = 3, BRW_PREDICATE_ALIGN16_REPLICATE_Z = 4, BRW_PREDICATE_ALIGN16_REPLICATE_W = 5, BRW_PREDICATE_ALIGN16_ANY4H = 6, BRW_PREDICATE_ALIGN16_ALL4H = 7, XE2_PREDICATE_ANY = 2, XE2_PREDICATE_ALL = 3 }; enum ENUM_PACKED brw_reg_file { BAD_FILE = 0, ARF, FIXED_GRF, IMM, VGRF, ATTR, UNIFORM, /* prog_data->params[reg] */ }; /* CNL adds Align1 support for 3-src instructions. Bit 35 of the instruction * word is "Execution Datatype" which controls whether the instruction operates * on float or integer types. The register arguments have fields that offer * more fine control their respective types. */ enum ENUM_PACKED gfx10_align1_3src_exec_type { BRW_ALIGN1_3SRC_EXEC_TYPE_INT = 0, BRW_ALIGN1_3SRC_EXEC_TYPE_FLOAT = 1, }; #define BRW_ARF_NULL 0x00 #define BRW_ARF_ADDRESS 0x10 #define BRW_ARF_ACCUMULATOR 0x20 #define BRW_ARF_FLAG 0x30 #define BRW_ARF_MASK 0x40 #define BRW_ARF_STATE 0x70 #define BRW_ARF_CONTROL 0x80 #define BRW_ARF_NOTIFICATION_COUNT 0x90 #define BRW_ARF_IP 0xA0 #define BRW_ARF_TDR 0xB0 #define BRW_ARF_TIMESTAMP 0xC0 #define BRW_THREAD_NORMAL 0 #define BRW_THREAD_ATOMIC 1 #define BRW_THREAD_SWITCH 2 enum ENUM_PACKED brw_vertical_stride { BRW_VERTICAL_STRIDE_0 = 0, BRW_VERTICAL_STRIDE_1 = 1, BRW_VERTICAL_STRIDE_2 = 2, BRW_VERTICAL_STRIDE_4 = 3, BRW_VERTICAL_STRIDE_8 = 4, BRW_VERTICAL_STRIDE_16 = 5, BRW_VERTICAL_STRIDE_32 = 6, BRW_VERTICAL_STRIDE_ONE_DIMENSIONAL = 0xF, }; enum ENUM_PACKED gfx10_align1_3src_vertical_stride { BRW_ALIGN1_3SRC_VERTICAL_STRIDE_0 = 0, BRW_ALIGN1_3SRC_VERTICAL_STRIDE_1 = 1, BRW_ALIGN1_3SRC_VERTICAL_STRIDE_2 = 1, BRW_ALIGN1_3SRC_VERTICAL_STRIDE_4 = 2, BRW_ALIGN1_3SRC_VERTICAL_STRIDE_8 = 3, }; enum ENUM_PACKED brw_width { BRW_WIDTH_1 = 0, BRW_WIDTH_2 = 1, BRW_WIDTH_4 = 2, BRW_WIDTH_8 = 3, BRW_WIDTH_16 = 4, }; /** * Gfx12+ SWSB SBID synchronization mode. * * This is represented as a bitmask including any required SBID token * synchronization modes, used to synchronize out-of-order instructions. Only * the strongest mode of the mask will be provided to the hardware in the SWSB * field of an actual hardware instruction, but virtual instructions may be * able to take into account multiple of them. */ enum tgl_sbid_mode { TGL_SBID_NULL = 0, TGL_SBID_SRC = 1, TGL_SBID_DST = 2, TGL_SBID_SET = 4 }; enum gfx12_sub_byte_precision { BRW_SUB_BYTE_PRECISION_NONE = 0, /** 4 bits. Signedness determined by base type */ BRW_SUB_BYTE_PRECISION_4BIT = 1, /** 2 bits. Signedness determined by base type */ BRW_SUB_BYTE_PRECISION_2BIT = 2, }; enum gfx12_systolic_depth { BRW_SYSTOLIC_DEPTH_16 = 0, BRW_SYSTOLIC_DEPTH_2 = 1, BRW_SYSTOLIC_DEPTH_4 = 2, BRW_SYSTOLIC_DEPTH_8 = 3, }; #ifdef __cplusplus /** * Allow bitwise arithmetic of tgl_sbid_mode enums. */ inline tgl_sbid_mode operator|(tgl_sbid_mode x, tgl_sbid_mode y) { return tgl_sbid_mode(unsigned(x) | unsigned(y)); } inline tgl_sbid_mode operator&(tgl_sbid_mode x, tgl_sbid_mode y) { return tgl_sbid_mode(unsigned(x) & unsigned(y)); } inline tgl_sbid_mode & operator|=(tgl_sbid_mode &x, tgl_sbid_mode y) { return x = x | y; } #endif /** * TGL+ SWSB RegDist synchronization pipeline. * * On TGL all instructions that use the RegDist synchronization mechanism are * considered to be executed as a single in-order pipeline, therefore only the * TGL_PIPE_FLOAT pipeline is applicable. On XeHP+ platforms there are two * additional asynchronous ALU pipelines (which still execute instructions * in-order and use the RegDist synchronization mechanism). TGL_PIPE_NONE * doesn't provide any RegDist pipeline synchronization information and allows * the hardware to infer the pipeline based on the source types of the * instruction. TGL_PIPE_ALL can be used when synchronization with all ALU * pipelines is intended. */ enum tgl_pipe { TGL_PIPE_NONE = 0, TGL_PIPE_FLOAT, TGL_PIPE_INT, TGL_PIPE_LONG, TGL_PIPE_MATH, TGL_PIPE_ALL }; /** * Logical representation of the SWSB scheduling information of a hardware * instruction. The binary representation is slightly more compact. */ struct tgl_swsb { unsigned regdist : 3; enum tgl_pipe pipe : 3; unsigned sbid : 5; enum tgl_sbid_mode mode : 3; }; /** * Construct a scheduling annotation with a single RegDist dependency. This * synchronizes with the completion of the d-th previous in-order instruction. * The index is one-based, zero causes a no-op tgl_swsb to be constructed. */ static inline struct tgl_swsb tgl_swsb_regdist(unsigned d) { const struct tgl_swsb swsb = { d, d ? TGL_PIPE_ALL : TGL_PIPE_NONE }; assert(swsb.regdist == d); return swsb; } /** * Construct a scheduling annotation that synchronizes with the specified SBID * token. */ static inline struct tgl_swsb tgl_swsb_sbid(enum tgl_sbid_mode mode, unsigned sbid) { const struct tgl_swsb swsb = { 0, TGL_PIPE_NONE, sbid, mode }; assert(swsb.sbid == sbid); return swsb; } /** * Construct a no-op scheduling annotation. */ static inline struct tgl_swsb tgl_swsb_null(void) { return tgl_swsb_regdist(0); } /** * Return a scheduling annotation that allocates the same SBID synchronization * token as \p swsb. In addition it will synchronize against a previous * in-order instruction if \p regdist is non-zero. */ static inline struct tgl_swsb tgl_swsb_dst_dep(struct tgl_swsb swsb, unsigned regdist) { swsb.regdist = regdist; swsb.mode = swsb.mode & TGL_SBID_SET; swsb.pipe = (regdist ? TGL_PIPE_ALL : TGL_PIPE_NONE); return swsb; } /** * Return a scheduling annotation that synchronizes against the same SBID and * RegDist dependencies as \p swsb, but doesn't allocate any SBID token. */ static inline struct tgl_swsb tgl_swsb_src_dep(struct tgl_swsb swsb) { swsb.mode = swsb.mode & (TGL_SBID_SRC | TGL_SBID_DST); return swsb; } /** * Convert the provided tgl_swsb to the hardware's binary representation of an * SWSB annotation. */ static inline uint32_t tgl_swsb_encode(const struct intel_device_info *devinfo, struct tgl_swsb swsb, enum opcode opcode) { if (!swsb.mode) { const unsigned pipe = devinfo->verx10 < 125 ? 0 : swsb.pipe == TGL_PIPE_FLOAT ? 0x10 : swsb.pipe == TGL_PIPE_INT ? 0x18 : swsb.pipe == TGL_PIPE_LONG ? 0x20 : swsb.pipe == TGL_PIPE_MATH ? 0x28 : swsb.pipe == TGL_PIPE_ALL ? 0x8 : 0; return pipe | swsb.regdist; } else if (swsb.regdist) { if (devinfo->ver >= 20) { unsigned mode = 0; if (opcode == BRW_OPCODE_DPAS) { mode = (swsb.mode & TGL_SBID_SET) ? 0b01 : (swsb.mode & TGL_SBID_SRC) ? 0b10 : /* swsb.mode & TGL_SBID_DST */ 0b11; } else if (swsb.mode & TGL_SBID_SET) { assert(opcode == BRW_OPCODE_SEND || opcode == BRW_OPCODE_SENDC); assert(swsb.pipe == TGL_PIPE_ALL || swsb.pipe == TGL_PIPE_INT || swsb.pipe == TGL_PIPE_FLOAT); mode = swsb.pipe == TGL_PIPE_INT ? 0b11 : swsb.pipe == TGL_PIPE_FLOAT ? 0b10 : /* swsb.pipe == TGL_PIPE_ALL */ 0b01; } else { assert(!(swsb.mode & ~(TGL_SBID_DST | TGL_SBID_SRC))); mode = swsb.pipe == TGL_PIPE_ALL ? 0b11 : swsb.mode == TGL_SBID_SRC ? 0b10 : /* swsb.mode == TGL_SBID_DST */ 0b01; } return mode << 8 | swsb.regdist << 5 | swsb.sbid; } else { assert(!(swsb.sbid & ~0xfu)); return 0x80 | swsb.regdist << 4 | swsb.sbid; } } else { if (devinfo->ver >= 20) { return swsb.sbid | (swsb.mode & TGL_SBID_SET ? 0xc0 : swsb.mode & TGL_SBID_DST ? 0x80 : 0xa0); } else { assert(!(swsb.sbid & ~0xfu)); return swsb.sbid | (swsb.mode & TGL_SBID_SET ? 0x40 : swsb.mode & TGL_SBID_DST ? 0x20 : 0x30); } } } /** * Convert the provided binary representation of an SWSB annotation to a * tgl_swsb. */ static inline struct tgl_swsb tgl_swsb_decode(const struct intel_device_info *devinfo, const bool is_unordered, const uint32_t x, enum opcode opcode) { if (devinfo->ver >= 20) { if (x & 0x300) { /* Mode isn't SingleInfo, there's a tuple */ if (opcode == BRW_OPCODE_SEND || opcode == BRW_OPCODE_SENDC) { const struct tgl_swsb swsb = { (x & 0xe0u) >> 5, ((x & 0x300) == 0x300 ? TGL_PIPE_INT : (x & 0x300) == 0x200 ? TGL_PIPE_FLOAT : TGL_PIPE_ALL), x & 0x1fu, TGL_SBID_SET }; return swsb; } else if (opcode == BRW_OPCODE_DPAS) { const struct tgl_swsb swsb = { .regdist = (x & 0xe0u) >> 5, .pipe = TGL_PIPE_NONE, .sbid = x & 0x1fu, .mode = (x & 0x300) == 0x300 ? TGL_SBID_DST : (x & 0x300) == 0x200 ? TGL_SBID_SRC : TGL_SBID_SET, }; return swsb; } else { const struct tgl_swsb swsb = { (x & 0xe0u) >> 5, ((x & 0x300) == 0x300 ? TGL_PIPE_ALL : TGL_PIPE_NONE), x & 0x1fu, ((x & 0x300) == 0x200 ? TGL_SBID_SRC : TGL_SBID_DST) }; return swsb; } } else if ((x & 0xe0) == 0x80) { return tgl_swsb_sbid(TGL_SBID_DST, x & 0x1f); } else if ((x & 0xe0) == 0xa0) { return tgl_swsb_sbid(TGL_SBID_SRC, x & 0x1fu); } else if ((x & 0xe0) == 0xc0) { return tgl_swsb_sbid(TGL_SBID_SET, x & 0x1fu); } else { const struct tgl_swsb swsb = { x & 0x7u, ((x & 0x38) == 0x10 ? TGL_PIPE_FLOAT : (x & 0x38) == 0x18 ? TGL_PIPE_INT : (x & 0x38) == 0x20 ? TGL_PIPE_LONG : (x & 0x38) == 0x28 ? TGL_PIPE_MATH : (x & 0x38) == 0x8 ? TGL_PIPE_ALL : TGL_PIPE_NONE) }; return swsb; } } else { if (x & 0x80) { const struct tgl_swsb swsb = { (x & 0x70u) >> 4, TGL_PIPE_NONE, x & 0xfu, is_unordered ? TGL_SBID_SET : TGL_SBID_DST }; return swsb; } else if ((x & 0x70) == 0x20) { return tgl_swsb_sbid(TGL_SBID_DST, x & 0xfu); } else if ((x & 0x70) == 0x30) { return tgl_swsb_sbid(TGL_SBID_SRC, x & 0xfu); } else if ((x & 0x70) == 0x40) { return tgl_swsb_sbid(TGL_SBID_SET, x & 0xfu); } else { const struct tgl_swsb swsb = { x & 0x7u, ((x & 0x78) == 0x10 ? TGL_PIPE_FLOAT : (x & 0x78) == 0x18 ? TGL_PIPE_INT : (x & 0x78) == 0x50 ? TGL_PIPE_LONG : (x & 0x78) == 0x8 ? TGL_PIPE_ALL : TGL_PIPE_NONE) }; assert(devinfo->verx10 >= 125 || swsb.pipe == TGL_PIPE_NONE); return swsb; } } } enum tgl_sync_function { TGL_SYNC_NOP = 0x0, TGL_SYNC_ALLRD = 0x2, TGL_SYNC_ALLWR = 0x3, TGL_SYNC_FENCE = 0xd, TGL_SYNC_BAR = 0xe, TGL_SYNC_HOST = 0xf }; /** * Message target: Shared Function ID for where to SEND a message. * * These are enumerated in the ISA reference under "send - Send Message". * In particular, see the following tables: * - G45 PRM, Volume 4, Table 14-15 "Message Descriptor Definition" * - Sandybridge PRM, Volume 4 Part 2, Table 8-16 "Extended Message Descriptor" * - Ivybridge PRM, Volume 1 Part 1, section 3.2.7 "GPE Function IDs" */ enum brw_message_target { BRW_SFID_NULL = 0, BRW_SFID_SAMPLER = 2, BRW_SFID_MESSAGE_GATEWAY = 3, BRW_SFID_URB = 6, BRW_SFID_THREAD_SPAWNER = 7, BRW_SFID_VME = 8, GFX6_SFID_DATAPORT_SAMPLER_CACHE = 4, GFX6_SFID_DATAPORT_RENDER_CACHE = 5, GFX6_SFID_DATAPORT_CONSTANT_CACHE = 9, GFX7_SFID_DATAPORT_DATA_CACHE = 10, GFX7_SFID_PIXEL_INTERPOLATOR = 11, HSW_SFID_DATAPORT_DATA_CACHE_1 = 12, HSW_SFID_CRE = 13, GFX12_SFID_TGM = 13, /* Typed Global Memory */ GFX12_SFID_SLM = 14, /* Shared Local Memory */ GFX12_SFID_UGM = 15, /* Untyped Global Memory */ GEN_RT_SFID_BINDLESS_THREAD_DISPATCH = 7, GEN_RT_SFID_RAY_TRACE_ACCELERATOR = 8, }; #define GFX7_MESSAGE_TARGET_DP_DATA_CACHE 10 #define BRW_SAMPLER_RETURN_FORMAT_FLOAT32 0 #define BRW_SAMPLER_RETURN_FORMAT_UINT32 2 #define BRW_SAMPLER_RETURN_FORMAT_SINT32 3 #define GFX8_SAMPLER_RETURN_FORMAT_32BITS 0 #define GFX8_SAMPLER_RETURN_FORMAT_16BITS 1 #define GFX5_SAMPLER_MESSAGE_SAMPLE 0 #define GFX5_SAMPLER_MESSAGE_SAMPLE_BIAS 1 #define GFX5_SAMPLER_MESSAGE_SAMPLE_LOD 2 #define GFX5_SAMPLER_MESSAGE_SAMPLE_COMPARE 3 #define GFX5_SAMPLER_MESSAGE_SAMPLE_DERIVS 4 #define GFX5_SAMPLER_MESSAGE_SAMPLE_BIAS_COMPARE 5 #define GFX5_SAMPLER_MESSAGE_SAMPLE_LOD_COMPARE 6 #define GFX5_SAMPLER_MESSAGE_SAMPLE_LD 7 #define GFX7_SAMPLER_MESSAGE_SAMPLE_GATHER4 8 #define GFX5_SAMPLER_MESSAGE_LOD 9 #define GFX5_SAMPLER_MESSAGE_SAMPLE_RESINFO 10 #define GFX6_SAMPLER_MESSAGE_SAMPLE_SAMPLEINFO 11 #define XE2_SAMPLER_MESSAGE_SAMPLE_GATHER4_L 13 #define XE2_SAMPLER_MESSAGE_SAMPLE_GATHER4_B 14 #define XE2_SAMPLER_MESSAGE_SAMPLE_GATHER4_I 15 #define GFX7_SAMPLER_MESSAGE_SAMPLE_GATHER4_C 16 #define GFX7_SAMPLER_MESSAGE_SAMPLE_GATHER4_PO 17 #define GFX7_SAMPLER_MESSAGE_SAMPLE_GATHER4_PO_C 18 #define XE2_SAMPLER_MESSAGE_SAMPLE_MLOD 18 #define XE2_SAMPLER_MESSAGE_SAMPLE_COMPARE_MLOD 19 #define HSW_SAMPLER_MESSAGE_SAMPLE_DERIV_COMPARE 20 #define XE2_SAMPLER_MESSAGE_SAMPLE_GATHER4_I_C 21 #define XE2_SAMPLER_MESSAGE_SAMPLE_GATHER4_L_C 23 #define GFX9_SAMPLER_MESSAGE_SAMPLE_LZ 24 #define GFX9_SAMPLER_MESSAGE_SAMPLE_C_LZ 25 #define GFX9_SAMPLER_MESSAGE_SAMPLE_LD_LZ 26 #define GFX9_SAMPLER_MESSAGE_SAMPLE_LD2DMS_W 28 #define GFX7_SAMPLER_MESSAGE_SAMPLE_LD_MCS 29 #define GFX7_SAMPLER_MESSAGE_SAMPLE_LD2DMS 30 #define GFX7_SAMPLER_MESSAGE_SAMPLE_LD2DSS 31 #define XE2_SAMPLER_MESSAGE_SAMPLE_GATHER4_PO_L 45 #define XE2_SAMPLER_MESSAGE_SAMPLE_GATHER4_PO_B 46 #define XE2_SAMPLER_MESSAGE_SAMPLE_GATHER4_PO_L_C 55 /* for GFX5 only */ #define BRW_SAMPLER_SIMD_MODE_SIMD4X2 0 #define BRW_SAMPLER_SIMD_MODE_SIMD8 1 #define BRW_SAMPLER_SIMD_MODE_SIMD16 2 #define BRW_SAMPLER_SIMD_MODE_SIMD32_64 3 #define GFX10_SAMPLER_SIMD_MODE_SIMD8H 5 #define GFX10_SAMPLER_SIMD_MODE_SIMD16H 6 #define XE2_SAMPLER_SIMD_MODE_SIMD16 1 #define XE2_SAMPLER_SIMD_MODE_SIMD32 2 #define XE2_SAMPLER_SIMD_MODE_SIMD16H 5 #define XE2_SAMPLER_SIMD_MODE_SIMD32H 6 /* GFX9 changes SIMD mode 0 to mean SIMD8D, but lets us get the SIMD4x2 * behavior by setting bit 22 of dword 2 in the message header. */ #define GFX9_SAMPLER_SIMD_MODE_SIMD8D 0 #define GFX9_SAMPLER_SIMD_MODE_EXTENSION_SIMD4X2 (1 << 22) #define BRW_DATAPORT_OWORD_BLOCK_1_OWORDLOW 0 #define BRW_DATAPORT_OWORD_BLOCK_1_OWORDHIGH 1 #define BRW_DATAPORT_OWORD_BLOCK_2_OWORDS 2 #define BRW_DATAPORT_OWORD_BLOCK_4_OWORDS 3 #define BRW_DATAPORT_OWORD_BLOCK_8_OWORDS 4 #define GFX12_DATAPORT_OWORD_BLOCK_16_OWORDS 5 #define BRW_DATAPORT_OWORD_BLOCK_OWORDS(n) \ ((n) == 1 ? BRW_DATAPORT_OWORD_BLOCK_1_OWORDLOW : \ (n) == 2 ? BRW_DATAPORT_OWORD_BLOCK_2_OWORDS : \ (n) == 4 ? BRW_DATAPORT_OWORD_BLOCK_4_OWORDS : \ (n) == 8 ? BRW_DATAPORT_OWORD_BLOCK_8_OWORDS : \ (n) == 16 ? GFX12_DATAPORT_OWORD_BLOCK_16_OWORDS : \ (abort(), ~0)) #define BRW_DATAPORT_OWORD_BLOCK_DWORDS(n) \ ((n) == 4 ? BRW_DATAPORT_OWORD_BLOCK_1_OWORDLOW : \ (n) == 8 ? BRW_DATAPORT_OWORD_BLOCK_2_OWORDS : \ (n) == 16 ? BRW_DATAPORT_OWORD_BLOCK_4_OWORDS : \ (n) == 32 ? BRW_DATAPORT_OWORD_BLOCK_8_OWORDS : \ (abort(), ~0)) #define BRW_DATAPORT_OWORD_DUAL_BLOCK_1OWORD 0 #define BRW_DATAPORT_OWORD_DUAL_BLOCK_4OWORDS 2 #define BRW_DATAPORT_DWORD_SCATTERED_BLOCK_8DWORDS 2 #define BRW_DATAPORT_DWORD_SCATTERED_BLOCK_16DWORDS 3 /* This one stays the same across generations. */ #define BRW_DATAPORT_READ_MESSAGE_OWORD_BLOCK_READ 0 /* GFX6 */ #define GFX6_DATAPORT_READ_MESSAGE_RENDER_UNORM_READ 1 #define GFX6_DATAPORT_READ_MESSAGE_OWORD_DUAL_BLOCK_READ 2 #define GFX6_DATAPORT_READ_MESSAGE_MEDIA_BLOCK_READ 4 #define GFX6_DATAPORT_READ_MESSAGE_OWORD_UNALIGN_BLOCK_READ 5 #define GFX6_DATAPORT_READ_MESSAGE_DWORD_SCATTERED_READ 6 #define BRW_DATAPORT_RENDER_TARGET_WRITE_SIMD16_SINGLE_SOURCE 0 #define BRW_DATAPORT_RENDER_TARGET_WRITE_SIMD16_SINGLE_SOURCE_REPLICATED 1 #define BRW_DATAPORT_RENDER_TARGET_WRITE_SIMD8_DUAL_SOURCE_SUBSPAN01 2 #define BRW_DATAPORT_RENDER_TARGET_WRITE_SIMD8_DUAL_SOURCE_SUBSPAN23 3 #define BRW_DATAPORT_RENDER_TARGET_WRITE_SIMD8_SINGLE_SOURCE_SUBSPAN01 4 #define XE2_DATAPORT_RENDER_TARGET_WRITE_SIMD32_SINGLE_SOURCE 1 #define XE2_DATAPORT_RENDER_TARGET_WRITE_SIMD16_DUAL_SOURCE 2 /* GFX6 */ #define GFX6_DATAPORT_WRITE_MESSAGE_DWORD_ATOMIC_WRITE 7 #define GFX6_DATAPORT_WRITE_MESSAGE_OWORD_BLOCK_WRITE 8 #define GFX6_DATAPORT_WRITE_MESSAGE_OWORD_DUAL_BLOCK_WRITE 9 #define GFX6_DATAPORT_WRITE_MESSAGE_MEDIA_BLOCK_WRITE 10 #define GFX6_DATAPORT_WRITE_MESSAGE_DWORD_SCATTERED_WRITE 11 #define GFX6_DATAPORT_WRITE_MESSAGE_RENDER_TARGET_WRITE 12 #define GFX6_DATAPORT_WRITE_MESSAGE_STREAMED_VB_WRITE 13 #define GFX6_DATAPORT_WRITE_MESSAGE_RENDER_TARGET_UNORM_WRITE 14 /* GFX7 */ #define GFX7_DATAPORT_RC_MEDIA_BLOCK_READ 4 #define GFX7_DATAPORT_RC_TYPED_SURFACE_READ 5 #define GFX7_DATAPORT_RC_TYPED_ATOMIC_OP 6 #define GFX7_DATAPORT_RC_MEMORY_FENCE 7 #define GFX7_DATAPORT_RC_MEDIA_BLOCK_WRITE 10 #define GFX7_DATAPORT_RC_RENDER_TARGET_WRITE 12 #define GFX7_DATAPORT_RC_TYPED_SURFACE_WRITE 13 #define GFX7_DATAPORT_DC_OWORD_BLOCK_READ 0 #define GFX7_DATAPORT_DC_UNALIGNED_OWORD_BLOCK_READ 1 #define GFX7_DATAPORT_DC_OWORD_DUAL_BLOCK_READ 2 #define GFX7_DATAPORT_DC_DWORD_SCATTERED_READ 3 #define GFX7_DATAPORT_DC_BYTE_SCATTERED_READ 4 #define GFX7_DATAPORT_DC_UNTYPED_SURFACE_READ 5 #define GFX7_DATAPORT_DC_UNTYPED_ATOMIC_OP 6 #define GFX7_DATAPORT_DC_MEMORY_FENCE 7 #define GFX7_DATAPORT_DC_OWORD_BLOCK_WRITE 8 #define GFX7_DATAPORT_DC_OWORD_DUAL_BLOCK_WRITE 10 #define GFX7_DATAPORT_DC_DWORD_SCATTERED_WRITE 11 #define GFX7_DATAPORT_DC_BYTE_SCATTERED_WRITE 12 #define GFX7_DATAPORT_DC_UNTYPED_SURFACE_WRITE 13 #define GFX7_DATAPORT_SCRATCH_READ ((1 << 18) | \ (0 << 17)) #define GFX7_DATAPORT_SCRATCH_WRITE ((1 << 18) | \ (1 << 17)) #define GFX7_DATAPORT_SCRATCH_NUM_REGS_SHIFT 12 #define GFX7_PIXEL_INTERPOLATOR_LOC_SHARED_OFFSET 0 #define GFX7_PIXEL_INTERPOLATOR_LOC_SAMPLE 1 #define GFX7_PIXEL_INTERPOLATOR_LOC_CENTROID 2 #define GFX7_PIXEL_INTERPOLATOR_LOC_PER_SLOT_OFFSET 3 /* HSW */ #define HSW_DATAPORT_DC_PORT0_OWORD_BLOCK_READ 0 #define HSW_DATAPORT_DC_PORT0_UNALIGNED_OWORD_BLOCK_READ 1 #define HSW_DATAPORT_DC_PORT0_OWORD_DUAL_BLOCK_READ 2 #define HSW_DATAPORT_DC_PORT0_DWORD_SCATTERED_READ 3 #define HSW_DATAPORT_DC_PORT0_BYTE_SCATTERED_READ 4 #define HSW_DATAPORT_DC_PORT0_MEMORY_FENCE 7 #define HSW_DATAPORT_DC_PORT0_OWORD_BLOCK_WRITE 8 #define HSW_DATAPORT_DC_PORT0_OWORD_DUAL_BLOCK_WRITE 10 #define HSW_DATAPORT_DC_PORT0_DWORD_SCATTERED_WRITE 11 #define HSW_DATAPORT_DC_PORT0_BYTE_SCATTERED_WRITE 12 #define HSW_DATAPORT_DC_PORT1_UNTYPED_SURFACE_READ 1 #define HSW_DATAPORT_DC_PORT1_UNTYPED_ATOMIC_OP 2 #define HSW_DATAPORT_DC_PORT1_UNTYPED_ATOMIC_OP_SIMD4X2 3 #define HSW_DATAPORT_DC_PORT1_MEDIA_BLOCK_READ 4 #define HSW_DATAPORT_DC_PORT1_TYPED_SURFACE_READ 5 #define HSW_DATAPORT_DC_PORT1_TYPED_ATOMIC_OP 6 #define HSW_DATAPORT_DC_PORT1_TYPED_ATOMIC_OP_SIMD4X2 7 #define HSW_DATAPORT_DC_PORT1_UNTYPED_SURFACE_WRITE 9 #define HSW_DATAPORT_DC_PORT1_MEDIA_BLOCK_WRITE 10 #define HSW_DATAPORT_DC_PORT1_ATOMIC_COUNTER_OP 11 #define HSW_DATAPORT_DC_PORT1_ATOMIC_COUNTER_OP_SIMD4X2 12 #define HSW_DATAPORT_DC_PORT1_TYPED_SURFACE_WRITE 13 #define GFX9_DATAPORT_DC_PORT1_A64_SCATTERED_READ 0x10 #define GFX8_DATAPORT_DC_PORT1_A64_UNTYPED_SURFACE_READ 0x11 #define GFX8_DATAPORT_DC_PORT1_A64_UNTYPED_ATOMIC_OP 0x12 #define GFX12_DATAPORT_DC_PORT1_A64_UNTYPED_ATOMIC_HALF_INT_OP 0x13 #define GFX9_DATAPORT_DC_PORT1_A64_OWORD_BLOCK_READ 0x14 #define GFX9_DATAPORT_DC_PORT1_A64_OWORD_BLOCK_WRITE 0x15 #define GFX8_DATAPORT_DC_PORT1_A64_UNTYPED_SURFACE_WRITE 0x19 #define GFX8_DATAPORT_DC_PORT1_A64_SCATTERED_WRITE 0x1a #define GFX9_DATAPORT_DC_PORT1_UNTYPED_ATOMIC_FLOAT_OP 0x1b #define GFX9_DATAPORT_DC_PORT1_A64_UNTYPED_ATOMIC_FLOAT_OP 0x1d #define GFX12_DATAPORT_DC_PORT1_A64_UNTYPED_ATOMIC_HALF_FLOAT_OP 0x1e /* GFX9 */ #define GFX9_DATAPORT_RC_RENDER_TARGET_WRITE 12 #define GFX9_DATAPORT_RC_RENDER_TARGET_READ 13 /* A64 scattered message subtype */ #define GFX8_A64_SCATTERED_SUBTYPE_BYTE 0 #define GFX8_A64_SCATTERED_SUBTYPE_DWORD 1 #define GFX8_A64_SCATTERED_SUBTYPE_QWORD 2 #define GFX8_A64_SCATTERED_SUBTYPE_HWORD 3 /* Dataport special binding table indices: */ #define BRW_BTI_STATELESS 255 #define GFX7_BTI_SLM 254 /* The hardware docs are a bit contradictory here. On Haswell, where they * first added cache ability control, there were 5 different cache modes (see * HSW_BTI_STATELESS_* above). On Broadwell, they reduced to two: * * - IA-Coherent (BTI=255): Coherent within Gen and coherent within the * entire IA cache memory hierarchy. * * - Non-Coherent (BTI=253): Coherent within Gen, same cache type. * * Information about stateless cache coherency can be found in the "A32 * Stateless" section of the "3D Media GPGPU" volume of the PRM for each * hardware generation. * * Unfortunately, the docs for MDC_STATELESS appear to have been copied and * pasted from Haswell and give the Haswell definitions for the BTI values of * 255 and 253 including a warning about accessing 253 surfaces from multiple * threads. This seems to be a copy+paste error and the definitions from the * "A32 Stateless" section should be trusted instead. * * Note that because the DRM sets bit 4 of HDC_CHICKEN0 on BDW, CHV and at * least some pre-production steppings of SKL due to WaForceEnableNonCoherent, * HDC memory access may have been overridden by the kernel to be non-coherent * (matching the behavior of the same BTI on pre-Gfx8 hardware) and BTI 255 * may actually be an alias for BTI 253. */ #define GFX8_BTI_STATELESS_IA_COHERENT 255 #define GFX8_BTI_STATELESS_NON_COHERENT 253 #define GFX9_BTI_BINDLESS 252 /* Dataport atomic operations for Untyped Atomic Integer Operation message * (and others). */ #define BRW_AOP_AND 1 #define BRW_AOP_OR 2 #define BRW_AOP_XOR 3 #define BRW_AOP_MOV 4 #define BRW_AOP_INC 5 #define BRW_AOP_DEC 6 #define BRW_AOP_ADD 7 #define BRW_AOP_SUB 8 #define BRW_AOP_REVSUB 9 #define BRW_AOP_IMAX 10 #define BRW_AOP_IMIN 11 #define BRW_AOP_UMAX 12 #define BRW_AOP_UMIN 13 #define BRW_AOP_CMPWR 14 #define BRW_AOP_PREDEC 15 /* Dataport atomic operations for Untyped Atomic Float Operation message. */ #define BRW_AOP_FMAX 1 #define BRW_AOP_FMIN 2 #define BRW_AOP_FCMPWR 3 #define BRW_AOP_FADD 4 #define BRW_MATH_FUNCTION_INV 1 #define BRW_MATH_FUNCTION_LOG 2 #define BRW_MATH_FUNCTION_EXP 3 #define BRW_MATH_FUNCTION_SQRT 4 #define BRW_MATH_FUNCTION_RSQ 5 #define BRW_MATH_FUNCTION_SIN 6 #define BRW_MATH_FUNCTION_COS 7 #define BRW_MATH_FUNCTION_FDIV 9 /* gfx6+ */ #define BRW_MATH_FUNCTION_POW 10 #define BRW_MATH_FUNCTION_INT_DIV_QUOTIENT_AND_REMAINDER 11 #define BRW_MATH_FUNCTION_INT_DIV_QUOTIENT 12 #define BRW_MATH_FUNCTION_INT_DIV_REMAINDER 13 #define GFX8_MATH_FUNCTION_INVM 14 #define GFX8_MATH_FUNCTION_RSQRTM 15 #define GFX7_URB_OPCODE_ATOMIC_MOV 4 #define GFX7_URB_OPCODE_ATOMIC_INC 5 #define GFX8_URB_OPCODE_ATOMIC_ADD 6 #define GFX8_URB_OPCODE_SIMD8_WRITE 7 #define GFX8_URB_OPCODE_SIMD8_READ 8 #define GFX125_URB_OPCODE_FENCE 9 #define BRW_URB_SWIZZLE_NONE 0 #define BRW_URB_SWIZZLE_INTERLEAVE 1 #define BRW_URB_SWIZZLE_TRANSPOSE 2 #define BRW_MESSAGE_GATEWAY_SFID_OPEN_GATEWAY 0 #define BRW_MESSAGE_GATEWAY_SFID_CLOSE_GATEWAY 1 #define BRW_MESSAGE_GATEWAY_SFID_FORWARD_MSG 2 #define BRW_MESSAGE_GATEWAY_SFID_GET_TIMESTAMP 3 #define BRW_MESSAGE_GATEWAY_SFID_BARRIER_MSG 4 #define BRW_MESSAGE_GATEWAY_SFID_UPDATE_GATEWAY_STATE 5 #define BRW_MESSAGE_GATEWAY_SFID_MMIO_READ_WRITE 6 /* Gfx7 "GS URB Entry Allocation Size" is a U9-1 field, so the maximum gs_size * is 2^9, or 512. It's counted in multiples of 64 bytes. * * Identical for VS, DS, and HS. */ #define GFX7_MAX_GS_URB_ENTRY_SIZE_BYTES (512*64) #define GFX7_MAX_DS_URB_ENTRY_SIZE_BYTES (512*64) #define GFX7_MAX_HS_URB_ENTRY_SIZE_BYTES (512*64) #define GFX7_MAX_VS_URB_ENTRY_SIZE_BYTES (512*64) /* GS Thread Payload */ /* 3DSTATE_GS "Output Vertex Size" has an effective maximum of 62. It's * counted in multiples of 16 bytes. */ #define GFX7_MAX_GS_OUTPUT_VERTEX_SIZE_BYTES (62*16) /* CR0.0[5:4] Floating-Point Rounding Modes * Skylake PRM, Volume 7 Part 1, "Control Register", page 756 */ #define BRW_CR0_RND_MODE_MASK 0x30 #define BRW_CR0_RND_MODE_SHIFT 4 enum ENUM_PACKED brw_rnd_mode { BRW_RND_MODE_RTNE = 0, /* Round to Nearest or Even */ BRW_RND_MODE_RU = 1, /* Round Up, toward +inf */ BRW_RND_MODE_RD = 2, /* Round Down, toward -inf */ BRW_RND_MODE_RTZ = 3, /* Round Toward Zero */ BRW_RND_MODE_UNSPECIFIED, /* Unspecified rounding mode */ }; #define BRW_CR0_FP64_DENORM_PRESERVE (1 << 6) #define BRW_CR0_FP32_DENORM_PRESERVE (1 << 7) #define BRW_CR0_FP16_DENORM_PRESERVE (1 << 10) #define BRW_CR0_FP_MODE_MASK (BRW_CR0_FP64_DENORM_PRESERVE | \ BRW_CR0_FP32_DENORM_PRESERVE | \ BRW_CR0_FP16_DENORM_PRESERVE | \ BRW_CR0_RND_MODE_MASK) /* MDC_DS - Data Size Message Descriptor Control Field * Skylake PRM, Volume 2d, page 129 * * Specifies the number of Bytes to be read or written per Dword used at * byte_scattered read/write and byte_scaled read/write messages. */ #define GFX7_BYTE_SCATTERED_DATA_ELEMENT_BYTE 0 #define GFX7_BYTE_SCATTERED_DATA_ELEMENT_WORD 1 #define GFX7_BYTE_SCATTERED_DATA_ELEMENT_DWORD 2 #define GEN_RT_BTD_MESSAGE_SPAWN 1 #define GEN_RT_TRACE_RAY_INITAL 0 #define GEN_RT_TRACE_RAY_INSTANCE 1 #define GEN_RT_TRACE_RAY_COMMIT 2 #define GEN_RT_TRACE_RAY_CONTINUE 3 #define GEN_RT_BTD_SHADER_TYPE_ANY_HIT 0 #define GEN_RT_BTD_SHADER_TYPE_CLOSEST_HIT 1 #define GEN_RT_BTD_SHADER_TYPE_MISS 2 #define GEN_RT_BTD_SHADER_TYPE_INTERSECTION 3 /* Starting with Xe-HPG, the old dataport was massively reworked dataport. * The new thing, called Load/Store Cache or LSC, has a significantly improved * interface. Instead of bespoke messages for every case, there's basically * one or two messages with different bits to control things like address * size, how much data is read/written, etc. It's way nicer but also means we * get to rewrite all our dataport encoding/decoding code. This patch kicks * off the party with all of the new enums. */ enum lsc_opcode { LSC_OP_LOAD = 0, LSC_OP_LOAD_CMASK = 2, LSC_OP_STORE = 4, LSC_OP_STORE_CMASK = 6, LSC_OP_ATOMIC_INC = 8, LSC_OP_ATOMIC_DEC = 9, LSC_OP_ATOMIC_LOAD = 10, LSC_OP_ATOMIC_STORE = 11, LSC_OP_ATOMIC_ADD = 12, LSC_OP_ATOMIC_SUB = 13, LSC_OP_ATOMIC_MIN = 14, LSC_OP_ATOMIC_MAX = 15, LSC_OP_ATOMIC_UMIN = 16, LSC_OP_ATOMIC_UMAX = 17, LSC_OP_ATOMIC_CMPXCHG = 18, LSC_OP_ATOMIC_FADD = 19, LSC_OP_ATOMIC_FSUB = 20, LSC_OP_ATOMIC_FMIN = 21, LSC_OP_ATOMIC_FMAX = 22, LSC_OP_ATOMIC_FCMPXCHG = 23, LSC_OP_ATOMIC_AND = 24, LSC_OP_ATOMIC_OR = 25, LSC_OP_ATOMIC_XOR = 26, LSC_OP_FENCE = 31 }; /* * Specifies the size of the dataport address payload in registers. */ enum ENUM_PACKED lsc_addr_reg_size { LSC_ADDR_REG_SIZE_1 = 1, LSC_ADDR_REG_SIZE_2 = 2, LSC_ADDR_REG_SIZE_3 = 3, LSC_ADDR_REG_SIZE_4 = 4, LSC_ADDR_REG_SIZE_6 = 6, LSC_ADDR_REG_SIZE_8 = 8, }; /* * Specifies the size of the address payload item in a dataport message. */ enum ENUM_PACKED lsc_addr_size { LSC_ADDR_SIZE_A16 = 1, /* 16-bit address offset */ LSC_ADDR_SIZE_A32 = 2, /* 32-bit address offset */ LSC_ADDR_SIZE_A64 = 3, /* 64-bit address offset */ }; /* * Specifies the type of the address payload item in a dataport message. The * address type specifies how the dataport message decodes the Extended * Descriptor for the surface attributes and address calculation. */ enum ENUM_PACKED lsc_addr_surface_type { LSC_ADDR_SURFTYPE_FLAT = 0, /* Flat */ LSC_ADDR_SURFTYPE_BSS = 1, /* Bindless surface state */ LSC_ADDR_SURFTYPE_SS = 2, /* Surface state */ LSC_ADDR_SURFTYPE_BTI = 3, /* Binding table index */ }; /* * Specifies the dataport message override to the default L1 and L3 memory * cache policies. Dataport L1 cache policies are uncached (UC), cached (C), * cache streaming (S) and invalidate-after-read (IAR). Dataport L3 cache * policies are uncached (UC) and cached (C). */ enum lsc_cache_load { /* No override. Use the non-pipelined state or surface state cache settings * for L1 and L3. */ LSC_CACHE_LOAD_L1STATE_L3MOCS = 0, /* Override to L1 uncached and L3 uncached */ LSC_CACHE_LOAD_L1UC_L3UC = 1, /* Override to L1 uncached and L3 cached */ LSC_CACHE_LOAD_L1UC_L3C = 2, /* Override to L1 cached and L3 uncached */ LSC_CACHE_LOAD_L1C_L3UC = 3, /* Override to cache at both L1 and L3 */ LSC_CACHE_LOAD_L1C_L3C = 4, /* Override to L1 streaming load and L3 uncached */ LSC_CACHE_LOAD_L1S_L3UC = 5, /* Override to L1 streaming load and L3 cached */ LSC_CACHE_LOAD_L1S_L3C = 6, /* For load messages, override to L1 invalidate-after-read, and L3 cached. */ LSC_CACHE_LOAD_L1IAR_L3C = 7, }; /* * Specifies the dataport message override to the default L1 and L3 memory * cache policies. Dataport L1 cache policies are uncached (UC), cached (C), * streaming (S) and invalidate-after-read (IAR). Dataport L3 cache policies * are uncached (UC), cached (C), cached-as-a-constand (CC) and * invalidate-after-read (IAR). */ enum PACKED xe2_lsc_cache_load { /* No override. Use the non-pipelined or surface state cache settings for L1 * and L3. */ XE2_LSC_CACHE_LOAD_L1STATE_L3MOCS = 0, /* Override to L1 uncached and L3 uncached */ XE2_LSC_CACHE_LOAD_L1UC_L3UC = 2, /* Override to L1 uncached and L3 cached */ XE2_LSC_CACHE_LOAD_L1UC_L3C = 4, /* Override to L1 uncached and L3 cached as a constant */ XE2_LSC_CACHE_LOAD_L1UC_L3CC = 5, /* Override to L1 cached and L3 uncached */ XE2_LSC_CACHE_LOAD_L1C_L3UC = 6, /* Override to L1 cached and L3 cached */ XE2_LSC_CACHE_LOAD_L1C_L3C = 8, /* Override to L1 cached and L3 cached as a constant */ XE2_LSC_CACHE_LOAD_L1C_L3CC = 9, /* Override to L1 cached as streaming load and L3 uncached */ XE2_LSC_CACHE_LOAD_L1S_L3UC = 10, /* Override to L1 cached as streaming load and L3 cached */ XE2_LSC_CACHE_LOAD_L1S_L3C = 12, /* Override to L1 and L3 invalidate after read */ XE2_LSC_CACHE_LOAD_L1IAR_L3IAR = 14, }; /* * Specifies the dataport message override to the default L1 and L3 memory * cache policies. Dataport L1 cache policies are uncached (UC), write-through * (WT), write-back (WB) and streaming (S). Dataport L3 cache policies are * uncached (UC) and cached (WB). */ enum ENUM_PACKED lsc_cache_store { /* No override. Use the non-pipelined or surface state cache settings for L1 * and L3. */ LSC_CACHE_STORE_L1STATE_L3MOCS = 0, /* Override to L1 uncached and L3 uncached */ LSC_CACHE_STORE_L1UC_L3UC = 1, /* Override to L1 uncached and L3 cached */ LSC_CACHE_STORE_L1UC_L3WB = 2, /* Override to L1 write-through and L3 uncached */ LSC_CACHE_STORE_L1WT_L3UC = 3, /* Override to L1 write-through and L3 cached */ LSC_CACHE_STORE_L1WT_L3WB = 4, /* Override to L1 streaming and L3 uncached */ LSC_CACHE_STORE_L1S_L3UC = 5, /* Override to L1 streaming and L3 cached */ LSC_CACHE_STORE_L1S_L3WB = 6, /* Override to L1 write-back, and L3 cached */ LSC_CACHE_STORE_L1WB_L3WB = 7, }; /* * Specifies the dataport message override to the default L1 and L3 memory * cache policies. Dataport L1 cache policies are uncached (UC), write-through * (WT), write-back (WB) and streaming (S). Dataport L3 cache policies are * uncached (UC) and cached (WB). */ enum PACKED xe2_lsc_cache_store { /* No override. Use the non-pipelined or surface state cache settings for L1 * and L3. */ XE2_LSC_CACHE_STORE_L1STATE_L3MOCS = 0, /* Override to L1 uncached and L3 uncached */ XE2_LSC_CACHE_STORE_L1UC_L3UC = 2, /* Override to L1 uncached and L3 cached */ XE2_LSC_CACHE_STORE_L1UC_L3WB = 4, /* Override to L1 write-through and L3 uncached */ XE2_LSC_CACHE_STORE_L1WT_L3UC = 6, /* Override to L1 write-through and L3 cached */ XE2_LSC_CACHE_STORE_L1WT_L3WB = 8, /* Override to L1 streaming and L3 uncached */ XE2_LSC_CACHE_STORE_L1S_L3UC = 10, /* Override to L1 streaming and L3 cached */ XE2_LSC_CACHE_STORE_L1S_L3WB = 12, /* Override to L1 write-back and L3 cached */ XE2_LSC_CACHE_STORE_L1WB_L3WB = 14, }; #define LSC_CACHE(devinfo, l_or_s, cc) \ ((devinfo)->ver < 20 ? (unsigned)LSC_CACHE_ ## l_or_s ## _ ## cc : \ (unsigned)XE2_LSC_CACHE_ ## l_or_s ## _ ## cc) /* * Specifies which components of the data payload 4-element vector (X,Y,Z,W) is * packed into the register payload. */ enum ENUM_PACKED lsc_cmask { LSC_CMASK_X = 0x1, LSC_CMASK_Y = 0x2, LSC_CMASK_XY = 0x3, LSC_CMASK_Z = 0x4, LSC_CMASK_XZ = 0x5, LSC_CMASK_YZ = 0x6, LSC_CMASK_XYZ = 0x7, LSC_CMASK_W = 0x8, LSC_CMASK_XW = 0x9, LSC_CMASK_YW = 0xa, LSC_CMASK_XYW = 0xb, LSC_CMASK_ZW = 0xc, LSC_CMASK_XZW = 0xd, LSC_CMASK_YZW = 0xe, LSC_CMASK_XYZW = 0xf, }; /* * Specifies the size of the data payload item in a dataport message. */ enum ENUM_PACKED lsc_data_size { /* 8-bit scalar data value in memory, packed into a 8-bit data value in * register. */ LSC_DATA_SIZE_D8 = 0, /* 16-bit scalar data value in memory, packed into a 16-bit data value in * register. */ LSC_DATA_SIZE_D16 = 1, /* 32-bit scalar data value in memory, packed into 32-bit data value in * register. */ LSC_DATA_SIZE_D32 = 2, /* 64-bit scalar data value in memory, packed into 64-bit data value in * register. */ LSC_DATA_SIZE_D64 = 3, /* 8-bit scalar data value in memory, packed into 32-bit unsigned data value * in register. */ LSC_DATA_SIZE_D8U32 = 4, /* 16-bit scalar data value in memory, packed into 32-bit unsigned data * value in register. */ LSC_DATA_SIZE_D16U32 = 5, /* 16-bit scalar BigFloat data value in memory, packed into 32-bit float * value in register. */ LSC_DATA_SIZE_D16BF32 = 6, }; /* * Enum specifies the scope of the fence. */ enum ENUM_PACKED lsc_fence_scope { /* Wait until all previous memory transactions from this thread are observed * within the local thread-group. */ LSC_FENCE_THREADGROUP = 0, /* Wait until all previous memory transactions from this thread are observed * within the local sub-slice. */ LSC_FENCE_LOCAL = 1, /* Wait until all previous memory transactions from this thread are observed * in the local tile. */ LSC_FENCE_TILE = 2, /* Wait until all previous memory transactions from this thread are observed * in the local GPU. */ LSC_FENCE_GPU = 3, /* Wait until all previous memory transactions from this thread are observed * across all GPUs in the system. */ LSC_FENCE_ALL_GPU = 4, /* Wait until all previous memory transactions from this thread are observed * at the "system" level. */ LSC_FENCE_SYSTEM_RELEASE = 5, /* For GPUs that do not follow PCIe Write ordering for downstream writes * targeting device memory, a fence message with scope=System_Acquire will * commit to device memory all downstream and peer writes that have reached * the device. */ LSC_FENCE_SYSTEM_ACQUIRE = 6, }; /* * Specifies the type of cache flush operation to perform after a fence is * complete. */ enum ENUM_PACKED lsc_flush_type { LSC_FLUSH_TYPE_NONE = 0, /* * For a R/W cache, evict dirty lines (M to I state) and invalidate clean * lines. For a RO cache, invalidate clean lines. */ LSC_FLUSH_TYPE_EVICT = 1, /* * For both R/W and RO cache, invalidate clean lines in the cache. */ LSC_FLUSH_TYPE_INVALIDATE = 2, /* * For a R/W cache, invalidate dirty lines (M to I state), without * write-back to next level. This opcode does nothing for a RO cache. */ LSC_FLUSH_TYPE_DISCARD = 3, /* * For a R/W cache, write-back dirty lines to the next level, but kept in * the cache as "clean" (M to V state). This opcode does nothing for a RO * cache. */ LSC_FLUSH_TYPE_CLEAN = 4, /* * Flush "RW" section of the L3 cache, but leave L1 and L2 caches untouched. */ LSC_FLUSH_TYPE_L3ONLY = 5, /* * HW maps this flush type internally to NONE. */ LSC_FLUSH_TYPE_NONE_6 = 6, }; enum ENUM_PACKED lsc_backup_fence_routing { /* Normal routing: UGM fence is routed to UGM pipeline. */ LSC_NORMAL_ROUTING, /* Route UGM fence to LSC unit. */ LSC_ROUTE_TO_LSC, }; /* * Specifies the size of the vector in a dataport message. */ enum ENUM_PACKED lsc_vect_size { LSC_VECT_SIZE_V1 = 0, /* vector length 1 */ LSC_VECT_SIZE_V2 = 1, /* vector length 2 */ LSC_VECT_SIZE_V3 = 2, /* Vector length 3 */ LSC_VECT_SIZE_V4 = 3, /* Vector length 4 */ LSC_VECT_SIZE_V8 = 4, /* Vector length 8 */ LSC_VECT_SIZE_V16 = 5, /* Vector length 16 */ LSC_VECT_SIZE_V32 = 6, /* Vector length 32 */ LSC_VECT_SIZE_V64 = 7, /* Vector length 64 */ }; #define LSC_ONE_ADDR_REG 1 #endif /* BRW_EU_DEFINES_H */