/* * Copyright (c) 2011 Intel Corporation * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS * IN THE SOFTWARE. */ #include #include #include "util/u_debug.h" #include "util/macros.h" #include "util/u_math.h" #include "compiler/shader_enums.h" #include "intel_l3_config.h" /** * The following diagram shows how we partition the URB: * * 16kb or 32kb Rest of the URB space * __________-__________ _________________-_________________ * / \ / \ * +-------------------------------------------------------------+ * | VS/HS/DS/GS/FS Push | VS/HS/DS/GS URB | * | Constants | Entries | * +-------------------------------------------------------------+ * * Push constants must be stored at the beginning of the URB space, * while URB entries can be stored anywhere. We choose to lay them * out in pipeline order (VS -> HS -> DS -> GS). */ /** * Decide how to partition the URB among the various stages. * * \param[in] push_constant_bytes - space allocate for push constants. * \param[in] urb_size_bytes - total size of the URB (from L3 config). * \param[in] tess_present - are tessellation shaders active? * \param[in] gs_present - are geometry shaders active? * \param[in] entry_size - the URB entry size (from the shader compiler) * \param[out] entries - the number of URB entries for each stage * \param[out] start - the starting offset for each stage * \param[out] deref_block_size - deref block size for 3DSTATE_SF * \param[out] constrained - true if we wanted more space than we had */ void intel_get_urb_config(const struct intel_device_info *devinfo, const struct intel_l3_config *l3_cfg, bool tess_present, bool gs_present, struct intel_urb_config *urb_cfg, enum intel_urb_deref_block_size *deref_block_size, bool *constrained) { unsigned urb_size_kB = intel_get_l3_config_urb_size(devinfo, l3_cfg); /* RCU_MODE register for Gfx12LP in BSpec says: * * "HW reserves 4KB of URB space per bank for Compute Engine out of the * total storage available in L3. SW must consider that 4KB of storage * per bank will be reduced from what is programmed for the URB space * in L3 for Render Engine executed workloads. * * Example: When URB space programmed is 64KB (per bank) for Render * Engine, the actual URB space available for operation is only 60KB * (per bank). Similarly when URB space programmed is 128KB (per bank) * for render engine, the actual URB space available for operation is * only 124KB (per bank). More detailed description available in "L3 * Cache" section of the B-Spec." */ if (devinfo->verx10 == 120 && devinfo->has_compute_engine) { assert(devinfo->num_slices == 1); urb_size_kB -= 4 * devinfo->l3_banks; } const unsigned push_constant_kB = devinfo->max_constant_urb_size_kb; const bool active[4] = { true, tess_present, tess_present, gs_present }; /* URB allocations must be done in 8k chunks. */ const unsigned chunk_size_kB = 8; const unsigned chunk_size_bytes = chunk_size_kB * 1024; const unsigned push_constant_chunks = push_constant_kB / chunk_size_kB; const unsigned urb_chunks = urb_size_kB / chunk_size_kB; /* From p35 of the Ivy Bridge PRM (section 1.7.1: 3DSTATE_URB_GS): * * VS Number of URB Entries must be divisible by 8 if the VS URB Entry * Allocation Size is less than 9 512-bit URB entries. * * Similar text exists for HS, DS and GS. */ unsigned granularity[4]; for (int i = MESA_SHADER_VERTEX; i <= MESA_SHADER_GEOMETRY; i++) { granularity[i] = (urb_cfg->size[i] < 9) ? 8 : 1; } unsigned min_entries[4] = { /* VS has a lower limit on the number of URB entries. * * From the Broadwell PRM, 3DSTATE_URB_VS instruction: * "When tessellation is enabled, the VS Number of URB Entries must be * greater than or equal to 192." */ [MESA_SHADER_VERTEX] = tess_present && devinfo->ver == 8 ? 192 : devinfo->urb.min_entries[MESA_SHADER_VERTEX], /* There are two constraints on the minimum amount of URB space we can * allocate: * * (1) We need room for at least 2 URB entries, since we always operate * the GS in DUAL_OBJECT mode. * * (2) We can't allocate less than nr_gs_entries_granularity. */ [MESA_SHADER_GEOMETRY] = gs_present ? 2 : 0, [MESA_SHADER_TESS_CTRL] = tess_present ? 1 : 0, [MESA_SHADER_TESS_EVAL] = tess_present ? devinfo->urb.min_entries[MESA_SHADER_TESS_EVAL] : 0, }; /* Min VS Entries isn't a multiple of 8 on Cherryview/Broxton; round up. * Round them all up. */ for (int i = MESA_SHADER_VERTEX; i <= MESA_SHADER_GEOMETRY; i++) { min_entries[i] = ALIGN(min_entries[i], granularity[i]); } unsigned entry_size_bytes[4]; for (int i = MESA_SHADER_VERTEX; i <= MESA_SHADER_GEOMETRY; i++) { entry_size_bytes[i] = 64 * urb_cfg->size[i]; } /* Initially, assign each stage the minimum amount of URB space it needs, * and make a note of how much additional space it "wants" (the amount of * additional space it could actually make use of). */ unsigned chunks[4]; unsigned wants[4]; unsigned total_needs = push_constant_chunks; unsigned total_wants = 0; for (int i = MESA_SHADER_VERTEX; i <= MESA_SHADER_GEOMETRY; i++) { if (active[i]) { chunks[i] = DIV_ROUND_UP(min_entries[i] * entry_size_bytes[i], chunk_size_bytes); wants[i] = DIV_ROUND_UP(devinfo->urb.max_entries[i] * entry_size_bytes[i], chunk_size_bytes) - chunks[i]; } else { chunks[i] = 0; wants[i] = 0; } total_needs += chunks[i]; total_wants += wants[i]; } assert(total_needs <= urb_chunks); *constrained = total_needs + total_wants > urb_chunks; /* Mete out remaining space (if any) in proportion to "wants". */ unsigned remaining_space = MIN2(urb_chunks - total_needs, total_wants); if (remaining_space > 0) { for (int i = MESA_SHADER_VERTEX; total_wants > 0 && i <= MESA_SHADER_TESS_EVAL; i++) { unsigned additional = (unsigned) roundf(wants[i] * (((float) remaining_space) / total_wants)); chunks[i] += additional; remaining_space -= additional; total_wants -= wants[i]; } chunks[MESA_SHADER_GEOMETRY] += remaining_space; } /* Sanity check that we haven't over-allocated. */ unsigned total_chunks = push_constant_chunks; for (int i = MESA_SHADER_VERTEX; i <= MESA_SHADER_GEOMETRY; i++) { total_chunks += chunks[i]; } assert(total_chunks <= urb_chunks); /* Finally, compute the number of entries that can fit in the space * allocated to each stage. */ for (int i = MESA_SHADER_VERTEX; i <= MESA_SHADER_GEOMETRY; i++) { urb_cfg->entries[i] = chunks[i] * chunk_size_bytes / entry_size_bytes[i]; /* Since we rounded up when computing wants[], this may be slightly * more than the maximum allowed amount, so correct for that. */ urb_cfg->entries[i] = MIN2(urb_cfg->entries[i], devinfo->urb.max_entries[i]); /* Ensure that we program a multiple of the granularity. */ urb_cfg->entries[i] = ROUND_DOWN_TO(urb_cfg->entries[i], granularity[i]); /* Finally, sanity check to make sure we have at least the minimum * number of entries needed for each stage. */ assert(urb_cfg->entries[i] >= min_entries[i]); } /* Lay out the URB in pipeline order: push constants, VS, HS, DS, GS. */ int first_urb = push_constant_chunks; /* From the BDW PRM: for 3DSTATE_URB_*: VS URB Starting Address * * "Value: [4,48] Device [SliceCount] GT 1" * * From the ICL PRMs and above : * * "If CTXT_SR_CTL::POSH_Enable is clear and Push Constants are required * or Device[SliceCount] GT 1, the lower limit is 4." * * "If Push Constants are not required andDevice[SliceCount] == 1, the * lower limit is 0." */ if ((devinfo->ver == 8 && devinfo->num_slices == 1) || (devinfo->ver >= 11 && push_constant_chunks > 0 && devinfo->num_slices == 1)) first_urb = MAX2(first_urb, 4); int next_urb = first_urb; for (int i = MESA_SHADER_VERTEX; i <= MESA_SHADER_GEOMETRY; i++) { if (urb_cfg->entries[i]) { urb_cfg->start[i] = next_urb; next_urb += chunks[i]; } else { /* Put disabled stages at the beginning of the valid range */ urb_cfg->start[i] = first_urb; } } if (deref_block_size) { if (devinfo->ver >= 12) { /* From the Gfx12 BSpec: * * "Deref Block size depends on the last enabled shader and number * of handles programmed for that shader * * 1) For GS last shader enabled cases, the deref block is * always set to a per poly(within hardware) * * If the last enabled shader is VS or DS. * * 1) If DS is last enabled shader then if the number of DS * handles is less than 324, need to set per poly deref. * * 2) If VS is last enabled shader then if the number of VS * handles is less than 192, need to set per poly deref" * * The default is 32 so we assume that's the right choice if we're * not in one of the explicit cases listed above. */ if (gs_present) { *deref_block_size = INTEL_URB_DEREF_BLOCK_SIZE_PER_POLY; } else if (tess_present) { if (urb_cfg->entries[MESA_SHADER_TESS_EVAL] < 324) *deref_block_size = INTEL_URB_DEREF_BLOCK_SIZE_PER_POLY; else *deref_block_size = INTEL_URB_DEREF_BLOCK_SIZE_32; } else { if (urb_cfg->entries[MESA_SHADER_VERTEX] < 192) *deref_block_size = INTEL_URB_DEREF_BLOCK_SIZE_PER_POLY; else *deref_block_size = INTEL_URB_DEREF_BLOCK_SIZE_32; } } else { *deref_block_size = 0; } } } struct intel_mesh_urb_allocation intel_get_mesh_urb_config(const struct intel_device_info *devinfo, const struct intel_l3_config *l3_cfg, unsigned tue_size_dw, unsigned mue_size_dw) { struct intel_mesh_urb_allocation r = {0}; /* Allocation Size must be aligned to 64B. */ r.task_entry_size_64b = DIV_ROUND_UP(tue_size_dw * 4, 64); r.mesh_entry_size_64b = DIV_ROUND_UP(mue_size_dw * 4, 64); assert(r.task_entry_size_64b <= 1024); assert(r.mesh_entry_size_64b <= 1024); /* Per-slice URB size. */ unsigned total_urb_kb = intel_get_l3_config_urb_size(devinfo, l3_cfg); /* Programming Note in bspec requires all the slice to have the same number * of entries, so we need to discount the space for constants for all of * them. See 3DSTATE_URB_ALLOC_MESH and 3DSTATE_URB_ALLOC_TASK. */ unsigned push_constant_kb = devinfo->mesh_max_constant_urb_size_kb; /* 3DSTATE_URB_ALLOC_MESH_BODY says * * MESH URB Starting Address SliceN * This field specifies the offset (from the start of the URB memory * in slices beyond Slice0) of the MESH URB allocation, specified in * multiples of 8 KB. */ push_constant_kb = ALIGN(push_constant_kb, 8); total_urb_kb -= push_constant_kb; const unsigned total_urb_avail_mesh_task_kb = total_urb_kb; /* TODO(mesh): Take push constant size as parameter instead of considering always * the max? */ float task_urb_share = 0.0f; if (r.task_entry_size_64b > 0) { /* By default, split memory between TASK and MESH proportionally to * their entry sizes. Environment variable allow us to tweak it. * * TODO(mesh): Re-evaluate if this is a good default once there are more * workloads. */ static int task_urb_share_percentage = -1; if (task_urb_share_percentage == -1) { task_urb_share_percentage = MIN2(debug_get_num_option("INTEL_MESH_TASK_URB_SHARE", -2), 100); } if (task_urb_share_percentage >= 0) { task_urb_share = task_urb_share_percentage / 100.0f; } else { task_urb_share = (float)r.task_entry_size_64b / (r.task_entry_size_64b + r.mesh_entry_size_64b); } } /* 3DSTATE_URB_ALLOC_MESH_BODY and 3DSTATE_URB_ALLOC_TASK_BODY says * * MESH Number of URB Entries must be divisible by 8 if the MESH/TASK URB * Entry Allocation Size is less than 9 512-bit URB entries. */ const unsigned min_mesh_entries = r.mesh_entry_size_64b < 9 ? 8 : 1; const unsigned min_task_entries = r.task_entry_size_64b < 9 ? 8 : 1; const unsigned min_mesh_urb_kb = ALIGN(r.mesh_entry_size_64b * min_mesh_entries * 64, 1024) / 1024; const unsigned min_task_urb_kb = ALIGN(r.task_entry_size_64b * min_task_entries * 64, 1024) / 1024; total_urb_kb -= (min_mesh_urb_kb + min_task_urb_kb); /* split the remaining urb_kbs */ unsigned task_urb_kb = total_urb_kb * task_urb_share; unsigned mesh_urb_kb = total_urb_kb - task_urb_kb; /* sum minimum + split urb_kbs */ mesh_urb_kb += min_mesh_urb_kb; /* 3DSTATE_URB_ALLOC_TASK_BODY says * MESH Number of URB Entries SliceN * This field specifies the offset (from the start of the URB memory * in slices beyond Slice0) of the TASK URB allocation, specified in * multiples of 8 KB. */ if ((total_urb_avail_mesh_task_kb - ALIGN(mesh_urb_kb, 8)) >= min_task_entries) { mesh_urb_kb = ALIGN(mesh_urb_kb, 8); } else { mesh_urb_kb = ROUND_DOWN_TO(mesh_urb_kb, 8); } /* TODO(mesh): Could we avoid allocating URB for Mesh if rasterization is * disabled? */ unsigned next_address_8kb = push_constant_kb / 8; assert(push_constant_kb % 8 == 0); r.mesh_starting_address_8kb = next_address_8kb; r.mesh_entries = MIN2((mesh_urb_kb * 16) / r.mesh_entry_size_64b, 1548); r.mesh_entries = r.mesh_entry_size_64b < 9 ? ROUND_DOWN_TO(r.mesh_entries, 8) : r.mesh_entries; next_address_8kb += mesh_urb_kb / 8; assert(mesh_urb_kb % 8 == 0); r.task_starting_address_8kb = next_address_8kb; task_urb_kb = total_urb_avail_mesh_task_kb - mesh_urb_kb; if (r.task_entry_size_64b > 0) { r.task_entries = MIN2((task_urb_kb * 16) / r.task_entry_size_64b, 1548); r.task_entries = r.task_entry_size_64b < 9 ? ROUND_DOWN_TO(r.task_entries, 8) : r.task_entries; } r.deref_block_size = r.mesh_entries > 32 ? INTEL_URB_DEREF_BLOCK_SIZE_MESH : INTEL_URB_DEREF_BLOCK_SIZE_PER_POLY; assert(mesh_urb_kb + task_urb_kb <= total_urb_avail_mesh_task_kb); assert(mesh_urb_kb >= min_mesh_urb_kb); assert(task_urb_kb >= min_task_urb_kb); return r; }