/* * Copyright © 2022 Imagination Technologies Ltd. * * based in part on tu driver which is: * Copyright © 2022 Google LLC * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ #include #include #include #include #include #include #if defined(HAVE_VALGRIND) # include # include #endif #include "hwdef/rogue_hw_utils.h" #include "pvr_bo.h" #include "pvr_debug.h" #include "pvr_dump.h" #include "pvr_private.h" #include "pvr_types.h" #include "pvr_util.h" #include "pvr_winsys.h" #include "util/macros.h" #include "util/rb_tree.h" #include "util/simple_mtx.h" #include "util/u_debug.h" #include "vk_alloc.h" #include "vk_log.h" struct pvr_bo_store { struct rb_tree tree; simple_mtx_t mutex; uint32_t size; }; struct pvr_bo_store_entry { struct rb_node node; struct pvr_bo bo; }; #define entry_from_node(node_) \ container_of(node_, struct pvr_bo_store_entry, node) #define entry_from_bo(bo_) container_of(bo_, struct pvr_bo_store_entry, bo) static inline int pvr_dev_addr_cmp(const pvr_dev_addr_t a, const pvr_dev_addr_t b) { const uint64_t addr_a = a.addr; const uint64_t addr_b = b.addr; if (addr_a < addr_b) return 1; else if (addr_a > addr_b) return -1; else return 0; } /* Borrowed from pandecode. Using this comparator allows us to lookup intervals * in the RB-tree without storing extra information. */ static inline int pvr_bo_store_entry_cmp_key(const struct rb_node *node, const void *const key) { const struct pvr_winsys_vma *const vma = entry_from_node(node)->bo.vma; const pvr_dev_addr_t addr = *(const pvr_dev_addr_t *)key; if (addr.addr >= vma->dev_addr.addr && addr.addr < (vma->dev_addr.addr + vma->size)) { return 0; } return pvr_dev_addr_cmp(vma->dev_addr, addr); } static inline int pvr_bo_store_entry_cmp(const struct rb_node *const a, const struct rb_node *const b) { return pvr_dev_addr_cmp(entry_from_node(a)->bo.vma->dev_addr, entry_from_node(b)->bo.vma->dev_addr); } VkResult pvr_bo_store_create(struct pvr_device *device) { struct pvr_bo_store *store; if (!PVR_IS_DEBUG_SET(TRACK_BOS)) { device->bo_store = NULL; return VK_SUCCESS; } store = vk_alloc(&device->vk.alloc, sizeof(*store), 8, VK_SYSTEM_ALLOCATION_SCOPE_DEVICE); if (!store) return vk_error(device, VK_ERROR_OUT_OF_HOST_MEMORY); rb_tree_init(&store->tree); store->size = 0; simple_mtx_init(&store->mutex, mtx_plain); device->bo_store = store; return VK_SUCCESS; } void pvr_bo_store_destroy(struct pvr_device *device) { struct pvr_bo_store *store = device->bo_store; if (likely(!store)) return; if (unlikely(!rb_tree_is_empty(&store->tree))) { debug_warning("Non-empty BO store destroyed; dump follows"); pvr_bo_store_dump(device); } simple_mtx_destroy(&store->mutex); vk_free(&device->vk.alloc, store); device->bo_store = NULL; } static void pvr_bo_store_insert(struct pvr_bo_store *const store, struct pvr_bo *const bo) { if (likely(!store)) return; simple_mtx_lock(&store->mutex); rb_tree_insert(&store->tree, &entry_from_bo(bo)->node, pvr_bo_store_entry_cmp); store->size++; simple_mtx_unlock(&store->mutex); } static void pvr_bo_store_remove(struct pvr_bo_store *const store, struct pvr_bo *const bo) { if (likely(!store)) return; simple_mtx_lock(&store->mutex); rb_tree_remove(&store->tree, &entry_from_bo(bo)->node); store->size--; simple_mtx_unlock(&store->mutex); } struct pvr_bo *pvr_bo_store_lookup(struct pvr_device *const device, const pvr_dev_addr_t addr) { struct pvr_bo_store *const store = device->bo_store; struct rb_node *node; if (unlikely(!store)) return NULL; simple_mtx_lock(&store->mutex); node = rb_tree_search(&store->tree, &addr, pvr_bo_store_entry_cmp_key); simple_mtx_unlock(&store->mutex); if (!node) return NULL; return &entry_from_node(node)->bo; } static void pvr_bo_dump_line(struct pvr_dump_ctx *const ctx, const struct pvr_bo *bo, const uint32_t index, const uint32_t nr_bos_log10) { static const char *const pretty_sizes[64 + 1] = { "", "1 B", "2 B", "4 B", "8 B", "16 B", "32 B", "64 B", "128 B", "256 B", "512 B", "1 KiB", "2 KiB", "4 KiB", "8 KiB", "16 KiB", "32 KiB", "64 KiB", "128 KiB", "256 KiB", "512 KiB", "1 MiB", "2 MiB", "4 MiB", "8 MiB", "16 MiB", "32 MiB", "64 MiB", "128 MiB", "256 MiB", "512 MiB", "1 GiB", "2 GiB", "4 GiB", "8 GiB", "16 GiB", "32 GiB", "64 GiB", "128 GiB", "256 GiB", "512 GiB", "1 TiB", "2 TiB", "4 TiB", "8 TiB", "16 TiB", "32 TiB", "64 TiB", "128 TiB", "256 TiB", "512 TiB", "1 PiB", "2 PiB", "4 PiB", "8 PiB", "16 PiB", "32 PiB", "64 PiB", "128 PiB", "256 PiB", "512 PiB", "1 EiB", "2 EiB", "4 EiB", "8 EiB", }; const uint64_t size = bo->vma->size; const uint32_t size_log2 = util_is_power_of_two_or_zero64(size) ? util_last_bit(size) : 0; pvr_dump_println(ctx, "[%0*" PRIu32 "] " PVR_DEV_ADDR_FMT " -> %*p " "(%s%s0x%" PRIx64 " bytes)", nr_bos_log10, index, bo->vma->dev_addr.addr, (int)sizeof(void *) * 2 + 2, /* nr hex digits + 0x prefix */ bo->bo->map, pretty_sizes[size_log2], size_log2 ? ", " : "", size); } bool pvr_bo_store_dump(struct pvr_device *const device) { struct pvr_bo_store *const store = device->bo_store; const uint32_t nr_bos = store->size; const uint32_t nr_bos_log10 = u32_dec_digits(nr_bos); struct pvr_dump_ctx ctx; uint32_t bo_idx = 0; if (unlikely(!store)) { debug_warning("Requested BO store dump, but no BO store is present."); return false; } pvr_dump_begin(&ctx, stderr, "BO STORE", 1); pvr_dump_println(&ctx, "Dumping %" PRIu32 " BO store entries...", nr_bos); pvr_dump_indent(&ctx); rb_tree_foreach_safe (struct pvr_bo_store_entry, entry, &store->tree, node) { pvr_bo_dump_line(&ctx, &entry->bo, bo_idx++, nr_bos_log10); } pvr_dump_dedent(&ctx); return pvr_dump_end(&ctx); } void pvr_bo_list_dump(struct pvr_dump_ctx *const ctx, const struct list_head *const bo_list, const uint32_t nr_bos) { const uint32_t real_nr_bos = nr_bos ? nr_bos : list_length(bo_list); const uint32_t nr_bos_log10 = u32_dec_digits(real_nr_bos); uint32_t bo_idx = 0; list_for_each_entry (struct pvr_bo, bo, bo_list, link) { pvr_bo_dump_line(ctx, bo, bo_idx++, nr_bos_log10); } } static uint32_t pvr_bo_alloc_to_winsys_flags(uint64_t flags) { uint32_t ws_flags = 0; if (flags & (PVR_BO_ALLOC_FLAG_CPU_ACCESS | PVR_BO_ALLOC_FLAG_CPU_MAPPED)) ws_flags |= PVR_WINSYS_BO_FLAG_CPU_ACCESS; if (flags & PVR_BO_ALLOC_FLAG_GPU_UNCACHED) ws_flags |= PVR_WINSYS_BO_FLAG_GPU_UNCACHED; if (flags & PVR_BO_ALLOC_FLAG_PM_FW_PROTECT) ws_flags |= PVR_WINSYS_BO_FLAG_PM_FW_PROTECT; return ws_flags; } static inline struct pvr_bo * pvr_bo_alloc_bo(const struct pvr_device *const device) { size_t size; void *ptr; if (unlikely(device->bo_store)) size = sizeof(struct pvr_bo_store_entry); else size = sizeof(struct pvr_bo); ptr = vk_alloc(&device->vk.alloc, size, 8, VK_SYSTEM_ALLOCATION_SCOPE_OBJECT); if (unlikely(!ptr)) return NULL; if (unlikely(device->bo_store)) return &((struct pvr_bo_store_entry *)ptr)->bo; else return (struct pvr_bo *)ptr; } static inline void pvr_bo_free_bo(const struct pvr_device *const device, struct pvr_bo *const bo) { void *ptr; if (unlikely(device->bo_store)) ptr = entry_from_bo(bo); else ptr = bo; vk_free(&device->vk.alloc, ptr); } /** * \brief Helper interface to allocate a GPU buffer and map it to both host and * device virtual memory. Host mapping is conditional and is controlled by * flags. * * \param[in] device Logical device pointer. * \param[in] heap Heap to allocate device virtual address from. * \param[in] size Size of buffer to allocate. * \param[in] alignment Required alignment of the allocation. Must be a power * of two. * \param[in] flags Controls allocation, CPU and GPU mapping behavior * using PVR_BO_ALLOC_FLAG_*. * \param[out] pvr_bo_out On success output buffer is returned in this pointer. * \return VK_SUCCESS on success, or error code otherwise. * * \sa #pvr_bo_free() */ VkResult pvr_bo_alloc(struct pvr_device *device, struct pvr_winsys_heap *heap, uint64_t size, uint64_t alignment, uint64_t flags, struct pvr_bo **const pvr_bo_out) { struct pvr_bo *pvr_bo; VkResult result; pvr_bo = pvr_bo_alloc_bo(device); if (!pvr_bo) { result = vk_error(device, VK_ERROR_OUT_OF_HOST_MEMORY); goto err_out; } pvr_bo->ref_count = 1; result = device->ws->ops->buffer_create(device->ws, size, alignment, PVR_WINSYS_BO_TYPE_GPU, pvr_bo_alloc_to_winsys_flags(flags), &pvr_bo->bo); if (result != VK_SUCCESS) goto err_free_bo; if (flags & PVR_BO_ALLOC_FLAG_CPU_MAPPED) { result = device->ws->ops->buffer_map(pvr_bo->bo); if (result != VK_SUCCESS) goto err_buffer_destroy; VG(VALGRIND_MAKE_MEM_DEFINED(pvr_bo->bo->map, pvr_bo->bo->size)); } result = device->ws->ops->heap_alloc(heap, size, alignment, &pvr_bo->vma); if (result != VK_SUCCESS) goto err_buffer_unmap; result = device->ws->ops->vma_map(pvr_bo->vma, pvr_bo->bo, 0, size, NULL); if (result != VK_SUCCESS) goto err_heap_free; pvr_bo_store_insert(device->bo_store, pvr_bo); *pvr_bo_out = pvr_bo; return VK_SUCCESS; err_heap_free: device->ws->ops->heap_free(pvr_bo->vma); err_buffer_unmap: if (flags & PVR_BO_ALLOC_FLAG_CPU_MAPPED) device->ws->ops->buffer_unmap(pvr_bo->bo); err_buffer_destroy: device->ws->ops->buffer_destroy(pvr_bo->bo); err_free_bo: pvr_bo_free_bo(device, pvr_bo); err_out: return result; } /** * \brief Interface to map the buffer into host virtual address space. * * Buffer should have been created with the #PVR_BO_ALLOC_FLAG_CPU_ACCESS * flag. It should also not already be mapped or it should have been unmapped * using #pvr_bo_cpu_unmap() before mapping again. * * \param[in] device Logical device pointer. * \param[in] pvr_bo Buffer to map. * \return Valid host virtual address on success, or NULL otherwise. * * \sa #pvr_bo_alloc(), #PVR_BO_ALLOC_FLAG_CPU_MAPPED */ VkResult pvr_bo_cpu_map(struct pvr_device *device, struct pvr_bo *pvr_bo) { assert(!pvr_bo->bo->map); return device->ws->ops->buffer_map(pvr_bo->bo); } /** * \brief Interface to unmap the buffer from host virtual address space. * * Buffer should have a valid mapping, created either using #pvr_bo_cpu_map() or * by passing #PVR_BO_ALLOC_FLAG_CPU_MAPPED flag to #pvr_bo_alloc() at * allocation time. * * Buffer can be remapped using #pvr_bo_cpu_map(). * * \param[in] device Logical device pointer. * \param[in] pvr_bo Buffer to unmap. */ void pvr_bo_cpu_unmap(struct pvr_device *device, struct pvr_bo *pvr_bo) { struct pvr_winsys_bo *bo = pvr_bo->bo; assert(bo->map); #if defined(HAVE_VALGRIND) if (!bo->vbits) bo->vbits = vk_alloc(&device->vk.alloc, bo->size, 8, VK_SYSTEM_ALLOCATION_SCOPE_OBJECT); if (bo->vbits) { unsigned ret = VALGRIND_GET_VBITS(bo->map, bo->vbits, bo->size); if (ret != 0 && ret != 1) mesa_loge("Failed to get vbits; expect bad valgrind results."); } else { mesa_loge("Failed to alloc vbits storage; expect bad valgrind results."); } #endif /* defined(HAVE_VALGRIND) */ device->ws->ops->buffer_unmap(bo); } /** * \brief Interface to free the buffer object. * * \param[in] device Logical device pointer. * \param[in] pvr_bo Buffer to free. * * \sa #pvr_bo_alloc() */ void pvr_bo_free(struct pvr_device *device, struct pvr_bo *pvr_bo) { if (!pvr_bo) return; if (!p_atomic_dec_zero(&pvr_bo->ref_count)) return; #if defined(HAVE_VALGRIND) vk_free(&device->vk.alloc, pvr_bo->bo->vbits); #endif /* defined(HAVE_VALGRIND) */ pvr_bo_store_remove(device->bo_store, pvr_bo); device->ws->ops->vma_unmap(pvr_bo->vma); device->ws->ops->heap_free(pvr_bo->vma); if (pvr_bo->bo->map) device->ws->ops->buffer_unmap(pvr_bo->bo); device->ws->ops->buffer_destroy(pvr_bo->bo); pvr_bo_free_bo(device, pvr_bo); } /** * \brief Interface to initialize a pvr_suballocator. * * \param[in] allocator Sub-allocator to initialize. * \param[in] heap Heap to sub-allocate device virtual address from. * \param[in] device Logical device pointer. * \param[in] default_size Minimum size used for pvr bo(s). * * \sa #pvr_bo_suballocator_fini() */ void pvr_bo_suballocator_init(struct pvr_suballocator *allocator, struct pvr_winsys_heap *heap, struct pvr_device *device, uint32_t default_size) { *allocator = (struct pvr_suballocator){ .device = device, .default_size = default_size, .heap = heap, }; simple_mtx_init(&allocator->mtx, mtx_plain); } /** * \brief Interface to destroy a pvr_suballocator. * * \param[in] allocator Sub-allocator to clean-up. * * \sa #pvr_bo_suballocator_init() */ void pvr_bo_suballocator_fini(struct pvr_suballocator *allocator) { pvr_bo_free(allocator->device, allocator->bo); pvr_bo_free(allocator->device, allocator->bo_cached); simple_mtx_destroy(&allocator->mtx); } static inline struct pvr_bo *pvr_bo_get_ref(struct pvr_bo *bo) { p_atomic_inc(&bo->ref_count); return bo; } /** * \brief Interface to sub-allocate buffer objects. * * \param[in] allocator Sub-allocator used to make a sub-allocation. * \param[in] size Size of buffer to sub-alllocate. * \param[in] align Required alignment of the allocation. Must be * a power of two. * \param[in] zero_on_alloc Require memory for the sub-allocation to be 0. * \param[out] suballoc_bo_out On success points to the sub-allocated buffer * object. * \return VK_SUCCESS on success, or error code otherwise. * * \sa # pvr_bo_suballoc_free() */ VkResult pvr_bo_suballoc(struct pvr_suballocator *allocator, uint32_t size, uint32_t align, bool zero_on_alloc, struct pvr_suballoc_bo **const suballoc_bo_out) { const struct pvr_device_info *dev_info = &allocator->device->pdevice->dev_info; const uint32_t cache_line_size = rogue_get_slc_cache_line_size(dev_info); struct pvr_suballoc_bo *suballoc_bo; uint32_t alloc_size, aligned_size; VkResult result; suballoc_bo = vk_alloc(&allocator->device->vk.alloc, sizeof(*suballoc_bo), 8, VK_SYSTEM_ALLOCATION_SCOPE_OBJECT); if (!suballoc_bo) return vk_error(allocator->device, VK_ERROR_OUT_OF_HOST_MEMORY); /* This cache line value is used for all type of allocations (i.e. USC, PDS, * transfer and general), so always align them to at least the size of the * cache line. */ align = MAX2(align, cache_line_size); assert(util_is_power_of_two_nonzero(align)); aligned_size = ALIGN_POT(size, align); simple_mtx_lock(&allocator->mtx); if (allocator->bo) { uint32_t aligned_offset = ALIGN_POT(allocator->next_offset, align); if (aligned_offset + aligned_size <= allocator->bo->bo->size) { suballoc_bo->allocator = allocator; suballoc_bo->bo = pvr_bo_get_ref(allocator->bo); suballoc_bo->dev_addr = PVR_DEV_ADDR_OFFSET(allocator->bo->vma->dev_addr, aligned_offset); suballoc_bo->offset = aligned_offset; suballoc_bo->size = aligned_size; allocator->next_offset = aligned_offset + aligned_size; if (zero_on_alloc) memset(pvr_bo_suballoc_get_map_addr(suballoc_bo), 0, aligned_size); *suballoc_bo_out = suballoc_bo; simple_mtx_unlock(&allocator->mtx); return VK_SUCCESS; } else { pvr_bo_free(allocator->device, allocator->bo); allocator->bo = NULL; } } alloc_size = MAX2(aligned_size, ALIGN_POT(allocator->default_size, align)); if (allocator->bo_cached) { struct pvr_winsys_bo *bo_cached = allocator->bo_cached->bo; if (alloc_size <= bo_cached->size) allocator->bo = allocator->bo_cached; else pvr_bo_free(allocator->device, allocator->bo_cached); allocator->bo_cached = NULL; } if (!allocator->bo) { result = pvr_bo_alloc(allocator->device, allocator->heap, alloc_size, align, PVR_BO_ALLOC_FLAG_CPU_MAPPED, &allocator->bo); if (result != VK_SUCCESS) { vk_free(&allocator->device->vk.alloc, suballoc_bo); simple_mtx_unlock(&allocator->mtx); return result; } } suballoc_bo->allocator = allocator; suballoc_bo->bo = pvr_bo_get_ref(allocator->bo); suballoc_bo->dev_addr = allocator->bo->vma->dev_addr; suballoc_bo->offset = 0; suballoc_bo->size = aligned_size; allocator->next_offset = aligned_size; if (zero_on_alloc) memset(pvr_bo_suballoc_get_map_addr(suballoc_bo), 0, aligned_size); *suballoc_bo_out = suballoc_bo; simple_mtx_unlock(&allocator->mtx); return VK_SUCCESS; } /** * \brief Interface to free a sub-allocated buffer object. * * \param[in] suballoc_bo Sub-allocated buffer object to free. * * \sa #pvr_bo_suballoc() */ void pvr_bo_suballoc_free(struct pvr_suballoc_bo *suballoc_bo) { if (!suballoc_bo) return; simple_mtx_lock(&suballoc_bo->allocator->mtx); if (p_atomic_read(&suballoc_bo->bo->ref_count) == 1 && !suballoc_bo->allocator->bo_cached) { suballoc_bo->allocator->bo_cached = suballoc_bo->bo; } else { pvr_bo_free(suballoc_bo->allocator->device, suballoc_bo->bo); } simple_mtx_unlock(&suballoc_bo->allocator->mtx); vk_free(&suballoc_bo->allocator->device->vk.alloc, suballoc_bo); } /** * \brief Interface to retrieve sub-allocated memory offset from the host * virtual address space. * * \param[in] suballoc_bo Sub-allocated buffer object pointer. * * \return Valid host virtual address on success. * * \sa #pvr_bo_suballoc() */ void *pvr_bo_suballoc_get_map_addr(const struct pvr_suballoc_bo *suballoc_bo) { const struct pvr_bo *pvr_bo = suballoc_bo->bo; assert((uint8_t *)pvr_bo->bo->map + suballoc_bo->offset < (uint8_t *)pvr_bo->bo->map + pvr_bo->bo->size); return (uint8_t *)pvr_bo->bo->map + suballoc_bo->offset; } #if defined(HAVE_VALGRIND) VkResult pvr_bo_cpu_map_unchanged(struct pvr_device *device, struct pvr_bo *pvr_bo) { VkResult result = pvr_bo_cpu_map(device, pvr_bo); if (result == VK_SUCCESS) { unsigned ret = VALGRIND_SET_VBITS(pvr_bo->bo->map, pvr_bo->bo->vbits, pvr_bo->bo->size); if (ret != 0 && ret != 1) mesa_loge("Failed to set vbits; expect bad valgrind results."); } return result; } #endif /* defined(HAVE_VALGRIND) */