/* * Copyright (C) 2023 Amazon.com, Inc. or its affiliates. * Copyright (C) 2018 Alyssa Rosenzweig * Copyright (C) 2020 Collabora Ltd. * Copyright © 2017 Intel Corporation * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ #include "gallium/auxiliary/util/u_blend.h" #include "pipe/p_defines.h" #include "pipe/p_state.h" #include "util/macros.h" #include "util/u_draw.h" #include "util/u_helpers.h" #include "util/u_memory.h" #include "util/u_prim.h" #include "util/u_sample_positions.h" #include "util/u_vbuf.h" #include "util/u_viewport.h" #include "decode.h" #include "genxml/gen_macros.h" #include "pan_afbc_cso.h" #include "pan_blend.h" #include "pan_blitter.h" #include "pan_bo.h" #include "pan_cmdstream.h" #include "pan_context.h" #include "pan_csf.h" #include "pan_format.h" #include "pan_indirect_dispatch.h" #include "pan_jm.h" #include "pan_job.h" #include "pan_pool.h" #include "pan_resource.h" #include "pan_samples.h" #include "pan_shader.h" #include "pan_texture.h" #include "pan_util.h" /* JOBX() is used to select the job backend helpers to call from generic * functions. */ #if PAN_ARCH <= 9 #define JOBX(__suffix) GENX(jm_##__suffix) #elif PAN_ARCH <= 10 #define JOBX(__suffix) GENX(csf_##__suffix) #else #error "Unsupported arch" #endif struct panfrost_sampler_state { struct pipe_sampler_state base; struct mali_sampler_packed hw; }; /* Misnomer: Sampler view corresponds to textures, not samplers */ struct panfrost_sampler_view { struct pipe_sampler_view base; struct panfrost_pool_ref state; struct mali_texture_packed bifrost_descriptor; mali_ptr texture_bo; uint64_t modifier; /* Pool used to allocate the descriptor. If NULL, defaults to the global * descriptor pool. Can be set for short lived descriptors, useful for * shader images on Valhall. */ struct panfrost_pool *pool; }; /* Statically assert that PIPE_* enums match the hardware enums. * (As long as they match, we don't need to translate them.) */ static_assert((int)PIPE_FUNC_NEVER == MALI_FUNC_NEVER, "must match"); static_assert((int)PIPE_FUNC_LESS == MALI_FUNC_LESS, "must match"); static_assert((int)PIPE_FUNC_EQUAL == MALI_FUNC_EQUAL, "must match"); static_assert((int)PIPE_FUNC_LEQUAL == MALI_FUNC_LEQUAL, "must match"); static_assert((int)PIPE_FUNC_GREATER == MALI_FUNC_GREATER, "must match"); static_assert((int)PIPE_FUNC_NOTEQUAL == MALI_FUNC_NOT_EQUAL, "must match"); static_assert((int)PIPE_FUNC_GEQUAL == MALI_FUNC_GEQUAL, "must match"); static_assert((int)PIPE_FUNC_ALWAYS == MALI_FUNC_ALWAYS, "must match"); static inline enum mali_sample_pattern panfrost_sample_pattern(unsigned samples) { switch (samples) { case 1: return MALI_SAMPLE_PATTERN_SINGLE_SAMPLED; case 4: return MALI_SAMPLE_PATTERN_ROTATED_4X_GRID; case 8: return MALI_SAMPLE_PATTERN_D3D_8X_GRID; case 16: return MALI_SAMPLE_PATTERN_D3D_16X_GRID; default: unreachable("Unsupported sample count"); } } static unsigned translate_tex_wrap(enum pipe_tex_wrap w, bool using_nearest) { /* CLAMP is only supported on Midgard, where it is broken for nearest * filtering. Use CLAMP_TO_EDGE in that case. */ switch (w) { case PIPE_TEX_WRAP_REPEAT: return MALI_WRAP_MODE_REPEAT; case PIPE_TEX_WRAP_CLAMP_TO_EDGE: return MALI_WRAP_MODE_CLAMP_TO_EDGE; case PIPE_TEX_WRAP_CLAMP_TO_BORDER: return MALI_WRAP_MODE_CLAMP_TO_BORDER; case PIPE_TEX_WRAP_MIRROR_REPEAT: return MALI_WRAP_MODE_MIRRORED_REPEAT; case PIPE_TEX_WRAP_MIRROR_CLAMP_TO_EDGE: return MALI_WRAP_MODE_MIRRORED_CLAMP_TO_EDGE; case PIPE_TEX_WRAP_MIRROR_CLAMP_TO_BORDER: return MALI_WRAP_MODE_MIRRORED_CLAMP_TO_BORDER; #if PAN_ARCH <= 5 case PIPE_TEX_WRAP_CLAMP: return using_nearest ? MALI_WRAP_MODE_CLAMP_TO_EDGE : MALI_WRAP_MODE_CLAMP; case PIPE_TEX_WRAP_MIRROR_CLAMP: return using_nearest ? MALI_WRAP_MODE_MIRRORED_CLAMP_TO_EDGE : MALI_WRAP_MODE_MIRRORED_CLAMP; #endif default: unreachable("Invalid wrap"); } } /* The hardware compares in the wrong order order, so we have to flip before * encoding. Yes, really. */ static enum mali_func panfrost_sampler_compare_func(const struct pipe_sampler_state *cso) { return !cso->compare_mode ? MALI_FUNC_NEVER : panfrost_flip_compare_func((enum mali_func)cso->compare_func); } static enum mali_mipmap_mode pan_pipe_to_mipmode(enum pipe_tex_mipfilter f) { switch (f) { case PIPE_TEX_MIPFILTER_NEAREST: return MALI_MIPMAP_MODE_NEAREST; case PIPE_TEX_MIPFILTER_LINEAR: return MALI_MIPMAP_MODE_TRILINEAR; #if PAN_ARCH >= 6 case PIPE_TEX_MIPFILTER_NONE: return MALI_MIPMAP_MODE_NONE; #else case PIPE_TEX_MIPFILTER_NONE: return MALI_MIPMAP_MODE_NEAREST; #endif default: unreachable("Invalid"); } } static void * panfrost_create_sampler_state(struct pipe_context *pctx, const struct pipe_sampler_state *cso) { struct panfrost_sampler_state *so = CALLOC_STRUCT(panfrost_sampler_state); so->base = *cso; #if PAN_ARCH == 7 || PAN_ARCH >= 10 /* On v7 and v10+, pan_texture.c composes the API swizzle with a bijective * swizzle derived from the format, to allow more formats than the * hardware otherwise supports. When packing border colours, we need to * undo this bijection, by swizzling with its inverse. * On v10+, watch out for depth+stencil formats, because those have a * swizzle that doesn't really apply to the border color */ #if PAN_ARCH >= 10 if (!util_format_is_depth_and_stencil(cso->border_color_format)) { #endif unsigned mali_format = GENX(panfrost_format_from_pipe_format)(cso->border_color_format)->hw; enum mali_rgb_component_order order = mali_format & BITFIELD_MASK(12); unsigned char inverted_swizzle[4]; panfrost_invert_swizzle(GENX(pan_decompose_swizzle)(order).post, inverted_swizzle); util_format_apply_color_swizzle(&so->base.border_color, &cso->border_color, inverted_swizzle, false /* is_integer (irrelevant) */); #if PAN_ARCH >= 10 } #endif #endif bool using_nearest = cso->min_img_filter == PIPE_TEX_MIPFILTER_NEAREST; pan_pack(&so->hw, SAMPLER, cfg) { cfg.magnify_nearest = cso->mag_img_filter == PIPE_TEX_FILTER_NEAREST; cfg.minify_nearest = cso->min_img_filter == PIPE_TEX_FILTER_NEAREST; cfg.normalized_coordinates = !cso->unnormalized_coords; cfg.lod_bias = cso->lod_bias; cfg.minimum_lod = cso->min_lod; cfg.maximum_lod = cso->max_lod; cfg.wrap_mode_s = translate_tex_wrap(cso->wrap_s, using_nearest); cfg.wrap_mode_t = translate_tex_wrap(cso->wrap_t, using_nearest); cfg.wrap_mode_r = translate_tex_wrap(cso->wrap_r, using_nearest); cfg.mipmap_mode = pan_pipe_to_mipmode(cso->min_mip_filter); cfg.compare_function = panfrost_sampler_compare_func(cso); cfg.seamless_cube_map = cso->seamless_cube_map; cfg.border_color_r = so->base.border_color.ui[0]; cfg.border_color_g = so->base.border_color.ui[1]; cfg.border_color_b = so->base.border_color.ui[2]; cfg.border_color_a = so->base.border_color.ui[3]; #if PAN_ARCH >= 6 if (cso->max_anisotropy > 1) { cfg.maximum_anisotropy = cso->max_anisotropy; cfg.lod_algorithm = MALI_LOD_ALGORITHM_ANISOTROPIC; } #else /* Emulate disabled mipmapping by clamping the LOD as tight as * possible (from 0 to epsilon = 1/256) */ if (cso->min_mip_filter == PIPE_TEX_MIPFILTER_NONE) cfg.maximum_lod = cfg.minimum_lod + (1.0 / 256.0); #endif } return so; } /* Get pointers to the blend shaders bound to each active render target. Used * to emit the blend descriptors, as well as the fragment renderer state * descriptor. */ static void panfrost_get_blend_shaders(struct panfrost_batch *batch, mali_ptr *blend_shaders) { unsigned shader_offset = 0; struct panfrost_bo *shader_bo = NULL; for (unsigned c = 0; c < batch->key.nr_cbufs; ++c) { if (batch->key.cbufs[c]) { blend_shaders[c] = panfrost_get_blend(batch, c, &shader_bo, &shader_offset); } } if (shader_bo) perf_debug(batch->ctx, "Blend shader use"); } #if PAN_ARCH >= 5 UNUSED static uint16_t pack_blend_constant(enum pipe_format format, float cons) { const struct util_format_description *format_desc = util_format_description(format); unsigned chan_size = 0; for (unsigned i = 0; i < format_desc->nr_channels; i++) chan_size = MAX2(format_desc->channel[0].size, chan_size); uint16_t unorm = (cons * ((1 << chan_size) - 1)); return unorm << (16 - chan_size); } static void panfrost_emit_blend(struct panfrost_batch *batch, void *rts, mali_ptr *blend_shaders) { unsigned rt_count = batch->key.nr_cbufs; struct panfrost_context *ctx = batch->ctx; const struct panfrost_blend_state *so = ctx->blend; bool dithered = so->base.dither; /* Always have at least one render target for depth-only passes */ for (unsigned i = 0; i < MAX2(rt_count, 1); ++i) { struct mali_blend_packed *packed = rts + (i * pan_size(BLEND)); /* Disable blending for unbacked render targets */ if (rt_count == 0 || !batch->key.cbufs[i] || !so->info[i].enabled) { pan_pack(rts + i * pan_size(BLEND), BLEND, cfg) { cfg.enable = false; #if PAN_ARCH >= 6 cfg.internal.mode = MALI_BLEND_MODE_OFF; #endif } continue; } struct pan_blend_info info = so->info[i]; enum pipe_format format = batch->key.cbufs[i]->format; float cons = pan_blend_get_constant(info.constant_mask, ctx->blend_color.color); /* Word 0: Flags and constant */ pan_pack(packed, BLEND, cfg) { cfg.srgb = util_format_is_srgb(format); cfg.load_destination = info.load_dest; cfg.round_to_fb_precision = !dithered; cfg.alpha_to_one = ctx->blend->base.alpha_to_one; #if PAN_ARCH >= 6 if (!blend_shaders[i]) cfg.constant = pack_blend_constant(format, cons); #else cfg.blend_shader = (blend_shaders[i] != 0); if (blend_shaders[i]) cfg.shader_pc = blend_shaders[i]; else cfg.constant = cons; #endif } if (!blend_shaders[i]) { /* Word 1: Blend Equation */ STATIC_ASSERT(pan_size(BLEND_EQUATION) == 4); packed->opaque[PAN_ARCH >= 6 ? 1 : 2] = so->equation[i]; } #if PAN_ARCH >= 6 struct panfrost_compiled_shader *fs = ctx->prog[PIPE_SHADER_FRAGMENT]; /* Words 2 and 3: Internal blend */ if (blend_shaders[i]) { /* The blend shader's address needs to be at * the same top 32 bit as the fragment shader. * TODO: Ensure that's always the case. */ assert(!fs->bin.bo || (blend_shaders[i] & (0xffffffffull << 32)) == (fs->bin.gpu & (0xffffffffull << 32))); pan_pack(&packed->opaque[2], INTERNAL_BLEND, cfg) { cfg.mode = MALI_BLEND_MODE_SHADER; cfg.shader.pc = (u32)blend_shaders[i]; #if PAN_ARCH <= 7 unsigned ret_offset = fs->info.bifrost.blend[i].return_offset; assert(!(ret_offset & 0x7)); cfg.shader.return_value = ret_offset ? fs->bin.gpu + ret_offset : 0; #endif } } else { pan_pack(&packed->opaque[2], INTERNAL_BLEND, cfg) { cfg.mode = info.opaque ? MALI_BLEND_MODE_OPAQUE : MALI_BLEND_MODE_FIXED_FUNCTION; /* If we want the conversion to work properly, * num_comps must be set to 4 */ cfg.fixed_function.num_comps = 4; cfg.fixed_function.conversion.memory_format = GENX( panfrost_dithered_format_from_pipe_format)(format, dithered); cfg.fixed_function.rt = i; #if PAN_ARCH >= 7 if (cfg.mode == MALI_BLEND_MODE_FIXED_FUNCTION && (cfg.fixed_function.conversion.memory_format & 0xff) == MALI_RGB_COMPONENT_ORDER_RGB1) { /* fixed function does not like RGB1 as the component order */ /* force this field to be the default 0 (RGBA) */ cfg.fixed_function.conversion.memory_format &= ~0xff; cfg.fixed_function.conversion.memory_format |= MALI_RGB_COMPONENT_ORDER_RGBA; } #endif #if PAN_ARCH <= 7 if (!info.opaque) { cfg.fixed_function.alpha_zero_nop = info.alpha_zero_nop; cfg.fixed_function.alpha_one_store = info.alpha_one_store; } if (fs->info.fs.untyped_color_outputs) { cfg.fixed_function.conversion.register_format = GENX( pan_fixup_blend_type)(fs->info.bifrost.blend[i].type, format); } else { cfg.fixed_function.conversion.register_format = fs->info.bifrost.blend[i].format; } #endif } } #endif } } #endif static mali_ptr panfrost_emit_compute_shader_meta(struct panfrost_batch *batch, enum pipe_shader_type stage) { struct panfrost_compiled_shader *ss = batch->ctx->prog[stage]; panfrost_batch_add_bo(batch, ss->bin.bo, PIPE_SHADER_VERTEX); panfrost_batch_add_bo(batch, ss->state.bo, PIPE_SHADER_VERTEX); return ss->state.gpu; } static float panfrost_z_depth_offset(struct panfrost_context *ctx, float offset_units) { if (ctx->pipe_framebuffer.zsbuf) { if (util_format_is_float(ctx->pipe_framebuffer.zsbuf->format)) { /* no scaling necessary, hw will do this at run time */ return offset_units; } } /* if fixed point, apply the minimum resolvable difference scaling here */ return 2.0f * offset_units; } #if PAN_ARCH <= 7 /* Construct a partial RSD corresponding to no executed fragment shader, and * merge with the existing partial RSD. */ static void pan_merge_empty_fs(struct mali_renderer_state_packed *rsd) { struct mali_renderer_state_packed empty_rsd; pan_pack(&empty_rsd, RENDERER_STATE, cfg) { #if PAN_ARCH >= 6 cfg.properties.shader_modifies_coverage = true; cfg.properties.allow_forward_pixel_to_kill = true; cfg.properties.allow_forward_pixel_to_be_killed = true; cfg.properties.zs_update_operation = MALI_PIXEL_KILL_STRONG_EARLY; /* Alpha isn't written so these are vacuous */ cfg.multisample_misc.overdraw_alpha0 = true; cfg.multisample_misc.overdraw_alpha1 = true; #else cfg.shader.shader = 0x1; cfg.properties.work_register_count = 1; cfg.properties.depth_source = MALI_DEPTH_SOURCE_FIXED_FUNCTION; cfg.properties.force_early_z = true; #endif } pan_merge((*rsd), empty_rsd, RENDERER_STATE); } static void panfrost_prepare_fs_state(struct panfrost_context *ctx, mali_ptr *blend_shaders, struct mali_renderer_state_packed *rsd) { struct pipe_rasterizer_state *rast = &ctx->rasterizer->base; const struct panfrost_zsa_state *zsa = ctx->depth_stencil; struct panfrost_compiled_shader *fs = ctx->prog[PIPE_SHADER_FRAGMENT]; struct panfrost_blend_state *so = ctx->blend; bool alpha_to_coverage = ctx->blend->base.alpha_to_coverage; bool msaa = rast->multisample; unsigned rt_count = ctx->pipe_framebuffer.nr_cbufs; bool has_blend_shader = false; for (unsigned c = 0; c < rt_count; ++c) has_blend_shader |= (blend_shaders[c] != 0); bool has_oq = ctx->occlusion_query && ctx->active_queries; pan_pack(rsd, RENDERER_STATE, cfg) { if (panfrost_fs_required(fs, so, &ctx->pipe_framebuffer, zsa)) { #if PAN_ARCH >= 6 struct pan_earlyzs_state earlyzs = pan_earlyzs_get( fs->earlyzs, ctx->depth_stencil->writes_zs || has_oq, ctx->blend->base.alpha_to_coverage, ctx->depth_stencil->zs_always_passes); cfg.properties.pixel_kill_operation = earlyzs.kill; cfg.properties.zs_update_operation = earlyzs.update; cfg.properties.allow_forward_pixel_to_kill = pan_allow_forward_pixel_to_kill(ctx, fs); #else cfg.properties.force_early_z = fs->info.fs.can_early_z && !alpha_to_coverage && ((enum mali_func)zsa->base.alpha_func == MALI_FUNC_ALWAYS); /* TODO: Reduce this limit? */ if (has_blend_shader) cfg.properties.work_register_count = MAX2(fs->info.work_reg_count, 8); else cfg.properties.work_register_count = fs->info.work_reg_count; /* Hardware quirks around early-zs forcing without a * depth buffer. Note this breaks occlusion queries. */ bool force_ez_with_discard = !zsa->enabled && !has_oq; cfg.properties.shader_reads_tilebuffer = force_ez_with_discard && fs->info.fs.can_discard; cfg.properties.shader_contains_discard = !force_ez_with_discard && fs->info.fs.can_discard; #endif } #if PAN_ARCH == 4 if (rt_count > 0) { cfg.multisample_misc.load_destination = so->info[0].load_dest; cfg.multisample_misc.blend_shader = (blend_shaders[0] != 0); cfg.stencil_mask_misc.write_enable = so->info[0].enabled; cfg.stencil_mask_misc.srgb = util_format_is_srgb(ctx->pipe_framebuffer.cbufs[0]->format); cfg.stencil_mask_misc.dither_disable = !so->base.dither; cfg.stencil_mask_misc.alpha_to_one = so->base.alpha_to_one; if (blend_shaders[0]) { cfg.blend_shader = blend_shaders[0]; } else { cfg.blend_constant = pan_blend_get_constant( so->info[0].constant_mask, ctx->blend_color.color); } } else { /* If there is no colour buffer, leaving fields default is * fine, except for blending which is nonnullable */ cfg.blend_equation.color_mask = 0xf; cfg.blend_equation.rgb.a = MALI_BLEND_OPERAND_A_SRC; cfg.blend_equation.rgb.b = MALI_BLEND_OPERAND_B_SRC; cfg.blend_equation.rgb.c = MALI_BLEND_OPERAND_C_ZERO; cfg.blend_equation.alpha.a = MALI_BLEND_OPERAND_A_SRC; cfg.blend_equation.alpha.b = MALI_BLEND_OPERAND_B_SRC; cfg.blend_equation.alpha.c = MALI_BLEND_OPERAND_C_ZERO; } #elif PAN_ARCH == 5 /* Workaround */ cfg.legacy_blend_shader = panfrost_last_nonnull(blend_shaders, rt_count); #endif cfg.multisample_misc.sample_mask = msaa ? ctx->sample_mask : 0xFFFF; cfg.multisample_misc.evaluate_per_sample = msaa && (ctx->min_samples > 1); #if PAN_ARCH >= 6 /* MSAA blend shaders need to pass their sample ID to * LD_TILE/ST_TILE, so we must preload it. Additionally, we * need per-sample shading for the blend shader, accomplished * by forcing per-sample shading for the whole program. */ if (msaa && has_blend_shader) { cfg.multisample_misc.evaluate_per_sample = true; cfg.preload.fragment.sample_mask_id = true; } /* Bifrost does not have native point sprites. Point sprites are * lowered in the driver to gl_PointCoord reads. This field * actually controls the orientation of gl_PointCoord. Both * orientations are controlled with sprite_coord_mode in * Gallium. */ cfg.properties.point_sprite_coord_origin_max_y = (rast->sprite_coord_mode == PIPE_SPRITE_COORD_LOWER_LEFT); cfg.multisample_misc.overdraw_alpha0 = panfrost_overdraw_alpha(ctx, 0); cfg.multisample_misc.overdraw_alpha1 = panfrost_overdraw_alpha(ctx, 1); #endif cfg.stencil_mask_misc.alpha_to_coverage = alpha_to_coverage; cfg.depth_units = panfrost_z_depth_offset(ctx, rast->offset_units); cfg.depth_factor = rast->offset_scale; cfg.depth_bias_clamp = rast->offset_clamp; bool back_enab = zsa->base.stencil[1].enabled; cfg.stencil_front.reference_value = ctx->stencil_ref.ref_value[0]; cfg.stencil_back.reference_value = ctx->stencil_ref.ref_value[back_enab ? 1 : 0]; #if PAN_ARCH <= 5 /* v6+ fits register preload here, no alpha testing */ cfg.alpha_reference = zsa->base.alpha_ref_value; #endif } } static void panfrost_emit_frag_shader(struct panfrost_context *ctx, struct mali_renderer_state_packed *fragmeta, mali_ptr *blend_shaders) { const struct panfrost_zsa_state *zsa = ctx->depth_stencil; const struct panfrost_rasterizer *rast = ctx->rasterizer; struct panfrost_compiled_shader *fs = ctx->prog[PIPE_SHADER_FRAGMENT]; /* We need to merge several several partial renderer state descriptors, * so stage to temporary storage rather than reading back write-combine * memory, which will trash performance. */ struct mali_renderer_state_packed rsd; panfrost_prepare_fs_state(ctx, blend_shaders, &rsd); #if PAN_ARCH == 4 if (ctx->pipe_framebuffer.nr_cbufs > 0 && !blend_shaders[0]) { /* Word 14: SFBD Blend Equation */ STATIC_ASSERT(pan_size(BLEND_EQUATION) == 4); rsd.opaque[14] = ctx->blend->equation[0]; } #endif /* Merge with CSO state and upload */ if (panfrost_fs_required(fs, ctx->blend, &ctx->pipe_framebuffer, zsa)) { struct mali_renderer_state_packed *partial_rsd = (struct mali_renderer_state_packed *)&fs->partial_rsd; STATIC_ASSERT(sizeof(fs->partial_rsd) == sizeof(*partial_rsd)); pan_merge(rsd, *partial_rsd, RENDERER_STATE); } else { pan_merge_empty_fs(&rsd); } /* Word 8, 9 Misc state */ rsd.opaque[8] |= zsa->rsd_depth.opaque[0] | rast->multisample.opaque[0]; rsd.opaque[9] |= zsa->rsd_stencil.opaque[0] | rast->stencil_misc.opaque[0]; /* late patching of the merged RSD in case of line-smoothing */ if (u_reduced_prim(ctx->active_prim) == MESA_PRIM_LINES && rast->base.line_smooth) { rsd.opaque[8] |= (1u << 16); // multisample_enable = 1 rsd.opaque[9] &= ~(1u << 30); // single_sampled_lines = 0 } /* Word 10, 11 Stencil Front and Back */ rsd.opaque[10] |= zsa->stencil_front.opaque[0]; rsd.opaque[11] |= zsa->stencil_back.opaque[0]; memcpy(fragmeta, &rsd, sizeof(rsd)); } static mali_ptr panfrost_emit_frag_shader_meta(struct panfrost_batch *batch) { struct panfrost_context *ctx = batch->ctx; struct panfrost_compiled_shader *ss = ctx->prog[PIPE_SHADER_FRAGMENT]; panfrost_batch_add_bo(batch, ss->bin.bo, PIPE_SHADER_FRAGMENT); panfrost_batch_add_bo(batch, ss->state.bo, PIPE_SHADER_FRAGMENT); struct panfrost_ptr xfer; #if PAN_ARCH == 4 xfer = pan_pool_alloc_desc(&batch->pool.base, RENDERER_STATE); #else unsigned rt_count = MAX2(ctx->pipe_framebuffer.nr_cbufs, 1); xfer = pan_pool_alloc_desc_aggregate(&batch->pool.base, PAN_DESC(RENDERER_STATE), PAN_DESC_ARRAY(rt_count, BLEND)); #endif mali_ptr blend_shaders[PIPE_MAX_COLOR_BUFS] = {0}; panfrost_get_blend_shaders(batch, blend_shaders); panfrost_emit_frag_shader(ctx, (struct mali_renderer_state_packed *)xfer.cpu, blend_shaders); #if PAN_ARCH >= 5 panfrost_emit_blend(batch, xfer.cpu + pan_size(RENDERER_STATE), blend_shaders); #endif return xfer.gpu; } #endif static mali_ptr panfrost_emit_viewport(struct panfrost_batch *batch) { struct panfrost_context *ctx = batch->ctx; const struct pipe_viewport_state *vp = &ctx->pipe_viewport; const struct pipe_scissor_state *ss = &ctx->scissor; const struct pipe_rasterizer_state *rast = &ctx->rasterizer->base; /* Derive min/max from translate/scale. Note since |x| >= 0 by * definition, we have that -|x| <= |x| hence translate - |scale| <= * translate + |scale|, so the ordering is correct here. */ float vp_minx = vp->translate[0] - fabsf(vp->scale[0]); float vp_maxx = vp->translate[0] + fabsf(vp->scale[0]); float vp_miny = vp->translate[1] - fabsf(vp->scale[1]); float vp_maxy = vp->translate[1] + fabsf(vp->scale[1]); float minz, maxz; util_viewport_zmin_zmax(vp, rast->clip_halfz, &minz, &maxz); /* Scissor to the intersection of viewport and to the scissor, clamped * to the framebuffer */ unsigned minx = MIN2(batch->key.width, MAX2((int)vp_minx, 0)); unsigned maxx = MIN2(batch->key.width, MAX2((int)vp_maxx, 0)); unsigned miny = MIN2(batch->key.height, MAX2((int)vp_miny, 0)); unsigned maxy = MIN2(batch->key.height, MAX2((int)vp_maxy, 0)); if (ss && rast->scissor) { minx = MAX2(ss->minx, minx); miny = MAX2(ss->miny, miny); maxx = MIN2(ss->maxx, maxx); maxy = MIN2(ss->maxy, maxy); } /* Set the range to [1, 1) so max values don't wrap round */ if (maxx == 0 || maxy == 0) maxx = maxy = minx = miny = 1; panfrost_batch_union_scissor(batch, minx, miny, maxx, maxy); batch->scissor_culls_everything = (minx >= maxx || miny >= maxy); /* [minx, maxx) and [miny, maxy) are exclusive ranges in the hardware */ maxx--; maxy--; batch->minimum_z = minz; batch->maximum_z = maxz; #if PAN_ARCH <= 7 struct panfrost_ptr T = pan_pool_alloc_desc(&batch->pool.base, VIEWPORT); pan_pack(T.cpu, VIEWPORT, cfg) { cfg.scissor_minimum_x = minx; cfg.scissor_minimum_y = miny; cfg.scissor_maximum_x = maxx; cfg.scissor_maximum_y = maxy; cfg.minimum_z = batch->minimum_z; cfg.maximum_z = batch->maximum_z; } return T.gpu; #else pan_pack(&batch->scissor, SCISSOR, cfg) { cfg.scissor_minimum_x = minx; cfg.scissor_minimum_y = miny; cfg.scissor_maximum_x = maxx; cfg.scissor_maximum_y = maxy; } return 0; #endif } #if PAN_ARCH >= 9 /** * Emit a Valhall depth/stencil descriptor at draw-time. The bulk of the * descriptor corresponds to a pipe_depth_stencil_alpha CSO and is packed at * CSO create time. However, the stencil reference values and shader * interactions are dynamic state. Pack only the dynamic state here and OR * together. */ static mali_ptr panfrost_emit_depth_stencil(struct panfrost_batch *batch) { struct panfrost_context *ctx = batch->ctx; const struct panfrost_zsa_state *zsa = ctx->depth_stencil; struct panfrost_rasterizer *rast = ctx->rasterizer; struct panfrost_compiled_shader *fs = ctx->prog[PIPE_SHADER_FRAGMENT]; bool back_enab = zsa->base.stencil[1].enabled; struct panfrost_ptr T = pan_pool_alloc_desc(&batch->pool.base, DEPTH_STENCIL); struct mali_depth_stencil_packed dynamic; pan_pack(&dynamic, DEPTH_STENCIL, cfg) { cfg.front_reference_value = ctx->stencil_ref.ref_value[0]; cfg.back_reference_value = ctx->stencil_ref.ref_value[back_enab ? 1 : 0]; cfg.stencil_from_shader = fs->info.fs.writes_stencil; cfg.depth_source = pan_depth_source(&fs->info); cfg.depth_bias_enable = rast->base.offset_tri; cfg.depth_units = panfrost_z_depth_offset(ctx, rast->base.offset_units); cfg.depth_factor = rast->base.offset_scale; cfg.depth_bias_clamp = rast->base.offset_clamp; assert(rast->base.depth_clip_near == rast->base.depth_clip_far); cfg.depth_cull_enable = rast->base.depth_clip_near; cfg.depth_clamp_mode = rast->base.depth_clamp ? MALI_DEPTH_CLAMP_MODE_BOUNDS : MALI_DEPTH_CLAMP_MODE_0_1; } pan_merge(dynamic, zsa->desc, DEPTH_STENCIL); memcpy(T.cpu, &dynamic, pan_size(DEPTH_STENCIL)); return T.gpu; } /** * Emit Valhall blend descriptor at draw-time. The descriptor itself is shared * with Bifrost, but the container data structure is simplified. */ static mali_ptr panfrost_emit_blend_valhall(struct panfrost_batch *batch) { unsigned rt_count = MAX2(batch->key.nr_cbufs, 1); struct panfrost_ptr T = pan_pool_alloc_desc_array(&batch->pool.base, rt_count, BLEND); mali_ptr blend_shaders[PIPE_MAX_COLOR_BUFS] = {0}; panfrost_get_blend_shaders(batch, blend_shaders); panfrost_emit_blend(batch, T.cpu, blend_shaders); /* Precalculate for the per-draw path */ bool has_blend_shader = false; for (unsigned i = 0; i < rt_count; ++i) has_blend_shader |= !!blend_shaders[i]; batch->ctx->valhall_has_blend_shader = has_blend_shader; return T.gpu; } /** * Emit Valhall buffer descriptors for bound vertex buffers at draw-time. */ static mali_ptr panfrost_emit_vertex_buffers(struct panfrost_batch *batch) { struct panfrost_context *ctx = batch->ctx; unsigned buffer_count = util_last_bit(ctx->vb_mask); struct panfrost_ptr T = pan_pool_alloc_desc_array(&batch->pool.base, buffer_count, BUFFER); struct mali_buffer_packed *buffers = T.cpu; u_foreach_bit(i, ctx->vb_mask) { struct pipe_vertex_buffer vb = ctx->vertex_buffers[i]; struct pipe_resource *prsrc = vb.buffer.resource; struct panfrost_resource *rsrc = pan_resource(prsrc); assert(!vb.is_user_buffer); panfrost_batch_read_rsrc(batch, rsrc, PIPE_SHADER_VERTEX); pan_pack(buffers + i, BUFFER, cfg) { cfg.address = rsrc->image.data.base + vb.buffer_offset; cfg.size = prsrc->width0 - vb.buffer_offset; } } return T.gpu; } static mali_ptr panfrost_emit_vertex_data(struct panfrost_batch *batch) { struct panfrost_context *ctx = batch->ctx; struct panfrost_vertex_state *vtx = ctx->vertex; return pan_pool_upload_aligned(&batch->pool.base, vtx->attributes, vtx->num_elements * pan_size(ATTRIBUTE), pan_alignment(ATTRIBUTE)); } static void panfrost_update_sampler_view(struct panfrost_sampler_view *view, struct pipe_context *pctx); static mali_ptr panfrost_emit_images(struct panfrost_batch *batch, enum pipe_shader_type stage) { struct panfrost_context *ctx = batch->ctx; unsigned last_bit = util_last_bit(ctx->image_mask[stage]); struct panfrost_ptr T = pan_pool_alloc_desc_array(&batch->pool.base, last_bit, TEXTURE); struct mali_texture_packed *out = (struct mali_texture_packed *)T.cpu; for (int i = 0; i < last_bit; ++i) { struct pipe_image_view *image = &ctx->images[stage][i]; if (!(ctx->image_mask[stage] & BITFIELD_BIT(i))) { memset(&out[i], 0, sizeof(out[i])); continue; } /* Construct a synthetic sampler view so we can use our usual * sampler view code for the actual descriptor packing. * * Use the batch pool for a transient allocation, rather than * allocating a long-lived descriptor. */ struct panfrost_sampler_view view = { .base = util_image_to_sampler_view(image), .pool = &batch->pool, }; /* If we specify a cube map, the hardware internally treat it as * a 2D array. Since cube maps as images can confuse our common * texturing code, explicitly use a 2D array. * * Similar concerns apply to 3D textures. */ if (view.base.target == PIPE_BUFFER) view.base.target = PIPE_BUFFER; else view.base.target = PIPE_TEXTURE_2D_ARRAY; panfrost_update_sampler_view(&view, &ctx->base); out[i] = view.bifrost_descriptor; panfrost_track_image_access(batch, stage, image); } return T.gpu; } #endif static mali_ptr panfrost_map_constant_buffer_gpu(struct panfrost_batch *batch, enum pipe_shader_type st, struct panfrost_constant_buffer *buf, unsigned index) { struct pipe_constant_buffer *cb = &buf->cb[index]; struct panfrost_resource *rsrc = pan_resource(cb->buffer); if (rsrc) { panfrost_batch_read_rsrc(batch, rsrc, st); /* Alignment gauranteed by * PIPE_CAP_CONSTANT_BUFFER_OFFSET_ALIGNMENT */ return rsrc->image.data.base + cb->buffer_offset; } else if (cb->user_buffer) { return pan_pool_upload_aligned(&batch->pool.base, cb->user_buffer + cb->buffer_offset, cb->buffer_size, 16); } else { unreachable("No constant buffer"); } } struct sysval_uniform { union { float f[4]; int32_t i[4]; uint32_t u[4]; uint64_t du[2]; }; }; static void panfrost_upload_viewport_scale_sysval(struct panfrost_batch *batch, struct sysval_uniform *uniform) { struct panfrost_context *ctx = batch->ctx; const struct pipe_viewport_state *vp = &ctx->pipe_viewport; uniform->f[0] = vp->scale[0]; uniform->f[1] = vp->scale[1]; uniform->f[2] = vp->scale[2]; } static void panfrost_upload_viewport_offset_sysval(struct panfrost_batch *batch, struct sysval_uniform *uniform) { struct panfrost_context *ctx = batch->ctx; const struct pipe_viewport_state *vp = &ctx->pipe_viewport; uniform->f[0] = vp->translate[0]; uniform->f[1] = vp->translate[1]; uniform->f[2] = vp->translate[2]; } static void panfrost_upload_txs_sysval(struct panfrost_batch *batch, enum pipe_shader_type st, unsigned int sysvalid, struct sysval_uniform *uniform) { struct panfrost_context *ctx = batch->ctx; unsigned texidx = PAN_SYSVAL_ID_TO_TXS_TEX_IDX(sysvalid); unsigned dim = PAN_SYSVAL_ID_TO_TXS_DIM(sysvalid); bool is_array = PAN_SYSVAL_ID_TO_TXS_IS_ARRAY(sysvalid); struct pipe_sampler_view *tex = &ctx->sampler_views[st][texidx]->base; assert(dim); if (tex->target == PIPE_BUFFER) { assert(dim == 1); unsigned buf_size = tex->u.buf.size / util_format_get_blocksize(tex->format); uniform->i[0] = MIN2(buf_size, PAN_MAX_TEXEL_BUFFER_ELEMENTS); return; } uniform->i[0] = u_minify(tex->texture->width0, tex->u.tex.first_level); if (dim > 1) uniform->i[1] = u_minify(tex->texture->height0, tex->u.tex.first_level); if (dim > 2) uniform->i[2] = u_minify(tex->texture->depth0, tex->u.tex.first_level); if (is_array) { unsigned size = tex->texture->array_size; /* Internally, we store the number of 2D images (faces * array * size). Externally, we report the array size in terms of * complete cubes. So divide by the # of faces per cube. */ if (tex->target == PIPE_TEXTURE_CUBE_ARRAY) size /= 6; uniform->i[dim] = size; } } static void panfrost_upload_image_size_sysval(struct panfrost_batch *batch, enum pipe_shader_type st, unsigned int sysvalid, struct sysval_uniform *uniform) { struct panfrost_context *ctx = batch->ctx; unsigned idx = PAN_SYSVAL_ID_TO_TXS_TEX_IDX(sysvalid); unsigned dim = PAN_SYSVAL_ID_TO_TXS_DIM(sysvalid); unsigned is_array = PAN_SYSVAL_ID_TO_TXS_IS_ARRAY(sysvalid); assert(dim && dim < 4); struct pipe_image_view *image = &ctx->images[st][idx]; if (image->resource->target == PIPE_BUFFER) { unsigned blocksize = util_format_get_blocksize(image->format); uniform->i[0] = image->resource->width0 / blocksize; return; } uniform->i[0] = u_minify(image->resource->width0, image->u.tex.level); if (dim > 1) uniform->i[1] = u_minify(image->resource->height0, image->u.tex.level); if (dim > 2) uniform->i[2] = u_minify(image->resource->depth0, image->u.tex.level); if (is_array) uniform->i[dim] = image->resource->array_size; } static void panfrost_upload_ssbo_sysval(struct panfrost_batch *batch, enum pipe_shader_type st, unsigned ssbo_id, struct sysval_uniform *uniform) { struct panfrost_context *ctx = batch->ctx; assert(ctx->ssbo_mask[st] & (1 << ssbo_id)); struct pipe_shader_buffer sb = ctx->ssbo[st][ssbo_id]; /* Compute address */ struct panfrost_resource *rsrc = pan_resource(sb.buffer); struct panfrost_bo *bo = rsrc->bo; panfrost_batch_write_rsrc(batch, rsrc, st); util_range_add(&rsrc->base, &rsrc->valid_buffer_range, sb.buffer_offset, sb.buffer_size); /* Upload address and size as sysval */ uniform->du[0] = bo->ptr.gpu + sb.buffer_offset; uniform->u[2] = sb.buffer_size; } static void panfrost_upload_sampler_sysval(struct panfrost_batch *batch, enum pipe_shader_type st, unsigned samp_idx, struct sysval_uniform *uniform) { struct panfrost_context *ctx = batch->ctx; struct pipe_sampler_state *sampl = &ctx->samplers[st][samp_idx]->base; uniform->f[0] = sampl->min_lod; uniform->f[1] = sampl->max_lod; uniform->f[2] = sampl->lod_bias; /* Even without any errata, Midgard represents "no mipmapping" as * fixing the LOD with the clamps; keep behaviour consistent. c.f. * panfrost_create_sampler_state which also explains our choice of * epsilon value (again to keep behaviour consistent) */ if (sampl->min_mip_filter == PIPE_TEX_MIPFILTER_NONE) uniform->f[1] = uniform->f[0] + (1.0 / 256.0); } static void panfrost_upload_num_work_groups_sysval(struct panfrost_batch *batch, struct sysval_uniform *uniform) { struct panfrost_context *ctx = batch->ctx; uniform->u[0] = ctx->compute_grid->grid[0]; uniform->u[1] = ctx->compute_grid->grid[1]; uniform->u[2] = ctx->compute_grid->grid[2]; } static void panfrost_upload_local_group_size_sysval(struct panfrost_batch *batch, struct sysval_uniform *uniform) { struct panfrost_context *ctx = batch->ctx; uniform->u[0] = ctx->compute_grid->block[0]; uniform->u[1] = ctx->compute_grid->block[1]; uniform->u[2] = ctx->compute_grid->block[2]; } static void panfrost_upload_work_dim_sysval(struct panfrost_batch *batch, struct sysval_uniform *uniform) { struct panfrost_context *ctx = batch->ctx; uniform->u[0] = ctx->compute_grid->work_dim; } /* Sample positions are pushed in a Bifrost specific format on Bifrost. On * Midgard, we emulate the Bifrost path with some extra arithmetic in the * shader, to keep the code as unified as possible. */ static void panfrost_upload_sample_positions_sysval(struct panfrost_batch *batch, struct sysval_uniform *uniform) { struct panfrost_context *ctx = batch->ctx; struct panfrost_device *dev = pan_device(ctx->base.screen); unsigned samples = util_framebuffer_get_num_samples(&batch->key); uniform->du[0] = dev->sample_positions->ptr.gpu + panfrost_sample_positions_offset(panfrost_sample_pattern(samples)); } static void panfrost_upload_multisampled_sysval(struct panfrost_batch *batch, struct sysval_uniform *uniform) { unsigned samples = util_framebuffer_get_num_samples(&batch->key); uniform->u[0] = (samples > 1) ? ~0 : 0; } #if PAN_ARCH >= 6 static void panfrost_upload_rt_conversion_sysval(struct panfrost_batch *batch, unsigned size_and_rt, struct sysval_uniform *uniform) { unsigned rt = size_and_rt & 0xF; unsigned size = size_and_rt >> 4; if (rt < batch->key.nr_cbufs && batch->key.cbufs[rt]) { enum pipe_format format = batch->key.cbufs[rt]->format; uniform->u[0] = GENX(pan_blend_get_internal_desc)(format, rt, size, false) >> 32; } else { pan_pack(&uniform->u[0], INTERNAL_CONVERSION, cfg) cfg.memory_format = GENX(panfrost_format_from_pipe_format)(PIPE_FORMAT_NONE)->hw; } } #endif static unsigned panfrost_xfb_offset(unsigned stride, struct pipe_stream_output_target *target) { return target->buffer_offset + (pan_so_target(target)->offset * stride); } static void panfrost_upload_sysvals(struct panfrost_batch *batch, void *ptr_cpu, mali_ptr ptr_gpu, struct panfrost_compiled_shader *ss, enum pipe_shader_type st) { struct sysval_uniform *uniforms = ptr_cpu; for (unsigned i = 0; i < ss->sysvals.sysval_count; ++i) { int sysval = ss->sysvals.sysvals[i]; switch (PAN_SYSVAL_TYPE(sysval)) { case PAN_SYSVAL_VIEWPORT_SCALE: panfrost_upload_viewport_scale_sysval(batch, &uniforms[i]); break; case PAN_SYSVAL_VIEWPORT_OFFSET: panfrost_upload_viewport_offset_sysval(batch, &uniforms[i]); break; case PAN_SYSVAL_TEXTURE_SIZE: panfrost_upload_txs_sysval(batch, st, PAN_SYSVAL_ID(sysval), &uniforms[i]); break; case PAN_SYSVAL_SSBO: panfrost_upload_ssbo_sysval(batch, st, PAN_SYSVAL_ID(sysval), &uniforms[i]); break; case PAN_SYSVAL_XFB: { unsigned buf = PAN_SYSVAL_ID(sysval); struct panfrost_compiled_shader *vs = batch->ctx->prog[PIPE_SHADER_VERTEX]; struct pipe_stream_output_info *so = &vs->stream_output; unsigned stride = so->stride[buf] * 4; struct pipe_stream_output_target *target = NULL; if (buf < batch->ctx->streamout.num_targets) target = batch->ctx->streamout.targets[buf]; if (!target) { /* Memory sink */ uniforms[i].du[0] = 0x8ull << 60; break; } struct panfrost_resource *rsrc = pan_resource(target->buffer); unsigned offset = panfrost_xfb_offset(stride, target); util_range_add(&rsrc->base, &rsrc->valid_buffer_range, offset, target->buffer_size - offset); panfrost_batch_write_rsrc(batch, rsrc, PIPE_SHADER_VERTEX); uniforms[i].du[0] = rsrc->image.data.base + offset; break; } case PAN_SYSVAL_NUM_VERTICES: uniforms[i].u[0] = batch->ctx->vertex_count; break; case PAN_SYSVAL_NUM_WORK_GROUPS: for (unsigned j = 0; j < 3; j++) { batch->num_wg_sysval[j] = ptr_gpu + (i * sizeof(*uniforms)) + (j * 4); } panfrost_upload_num_work_groups_sysval(batch, &uniforms[i]); break; case PAN_SYSVAL_LOCAL_GROUP_SIZE: panfrost_upload_local_group_size_sysval(batch, &uniforms[i]); break; case PAN_SYSVAL_WORK_DIM: panfrost_upload_work_dim_sysval(batch, &uniforms[i]); break; case PAN_SYSVAL_SAMPLER: panfrost_upload_sampler_sysval(batch, st, PAN_SYSVAL_ID(sysval), &uniforms[i]); break; case PAN_SYSVAL_IMAGE_SIZE: panfrost_upload_image_size_sysval(batch, st, PAN_SYSVAL_ID(sysval), &uniforms[i]); break; case PAN_SYSVAL_SAMPLE_POSITIONS: panfrost_upload_sample_positions_sysval(batch, &uniforms[i]); break; case PAN_SYSVAL_MULTISAMPLED: panfrost_upload_multisampled_sysval(batch, &uniforms[i]); break; #if PAN_ARCH >= 6 case PAN_SYSVAL_RT_CONVERSION: panfrost_upload_rt_conversion_sysval(batch, PAN_SYSVAL_ID(sysval), &uniforms[i]); break; #endif case PAN_SYSVAL_VERTEX_INSTANCE_OFFSETS: uniforms[i].u[0] = batch->ctx->offset_start; uniforms[i].u[1] = batch->ctx->base_vertex; uniforms[i].u[2] = batch->ctx->base_instance; break; case PAN_SYSVAL_DRAWID: uniforms[i].u[0] = batch->ctx->drawid; break; default: assert(0); } } } static const void * panfrost_map_constant_buffer_cpu(struct panfrost_context *ctx, struct panfrost_constant_buffer *buf, unsigned index) { struct pipe_constant_buffer *cb = &buf->cb[index]; struct panfrost_resource *rsrc = pan_resource(cb->buffer); if (rsrc) { panfrost_bo_mmap(rsrc->bo); panfrost_flush_writer(ctx, rsrc, "CPU constant buffer mapping"); panfrost_bo_wait(rsrc->bo, INT64_MAX, false); return rsrc->bo->ptr.cpu + cb->buffer_offset; } else if (cb->user_buffer) { return cb->user_buffer + cb->buffer_offset; } else unreachable("No constant buffer"); } /* Emit a single UBO record. On Valhall, UBOs are dumb buffers and are * implemented with buffer descriptors in the resource table, sized in terms of * bytes. On Bifrost and older, UBOs have special uniform buffer data * structure, sized in terms of entries. */ static void panfrost_emit_ubo(void *base, unsigned index, mali_ptr address, size_t size) { #if PAN_ARCH >= 9 struct mali_buffer_packed *out = base; pan_pack(out + index, BUFFER, cfg) { cfg.size = size; cfg.address = address; } #else struct mali_uniform_buffer_packed *out = base; /* Issue (57) for the ARB_uniform_buffer_object spec says that * the buffer can be larger than the uniform data inside it, * so clamp ubo size to what hardware supports. */ pan_pack(out + index, UNIFORM_BUFFER, cfg) { cfg.entries = MIN2(DIV_ROUND_UP(size, 16), 1 << 12); cfg.pointer = address; } #endif } #if PAN_ARCH >= 9 static mali_ptr panfrost_emit_ssbos(struct panfrost_batch *batch, enum pipe_shader_type st) { struct panfrost_context *ctx = batch->ctx; unsigned ssbo_count = util_last_bit(ctx->ssbo_mask[st]); if (!ssbo_count) return 0; struct panfrost_ptr ssbos = pan_pool_alloc_desc_array(&batch->pool.base, ssbo_count, BUFFER); struct mali_buffer_packed *bufs = ssbos.cpu; memset(bufs, 0, sizeof(bufs[0]) * ssbo_count); u_foreach_bit(ssbo_id, ctx->ssbo_mask[st]) { struct pipe_shader_buffer sb = ctx->ssbo[st][ssbo_id]; struct panfrost_resource *rsrc = pan_resource(sb.buffer); struct panfrost_bo *bo = rsrc->bo; panfrost_batch_write_rsrc(batch, rsrc, st); util_range_add(&rsrc->base, &rsrc->valid_buffer_range, sb.buffer_offset, sb.buffer_size); pan_pack(&bufs[ssbo_id], BUFFER, cfg) { cfg.size = sb.buffer_size; cfg.address = bo->ptr.gpu + sb.buffer_offset; } } return ssbos.gpu; } #endif static mali_ptr panfrost_emit_const_buf(struct panfrost_batch *batch, enum pipe_shader_type stage, unsigned *buffer_count, mali_ptr *push_constants, unsigned *pushed_words) { struct panfrost_context *ctx = batch->ctx; struct panfrost_constant_buffer *buf = &ctx->constant_buffer[stage]; struct panfrost_compiled_shader *ss = ctx->prog[stage]; if (!ss) return 0; /* Allocate room for the sysval and the uniforms */ size_t sys_size = sizeof(float) * 4 * ss->sysvals.sysval_count; struct panfrost_ptr transfer = pan_pool_alloc_aligned(&batch->pool.base, sys_size, 16); /* Upload sysvals requested by the shader */ uint8_t *sysvals = alloca(sys_size); panfrost_upload_sysvals(batch, sysvals, transfer.gpu, ss, stage); memcpy(transfer.cpu, sysvals, sys_size); /* Next up, attach UBOs. UBO count includes gaps but no sysval UBO */ struct panfrost_compiled_shader *shader = ctx->prog[stage]; unsigned ubo_count = shader->info.ubo_count - (sys_size ? 1 : 0); unsigned sysval_ubo = sys_size ? ubo_count : ~0; struct panfrost_ptr ubos = {0}; #if PAN_ARCH >= 9 ubos = pan_pool_alloc_desc_array(&batch->pool.base, ubo_count + 1, BUFFER); #else ubos = pan_pool_alloc_desc_array(&batch->pool.base, ubo_count + 1, UNIFORM_BUFFER); #endif if (buffer_count) *buffer_count = ubo_count + (sys_size ? 1 : 0); /* Upload sysval as a final UBO */ if (sys_size) panfrost_emit_ubo(ubos.cpu, ubo_count, transfer.gpu, sys_size); /* The rest are honest-to-goodness UBOs */ u_foreach_bit(ubo, ss->info.ubo_mask & buf->enabled_mask) { size_t usz = buf->cb[ubo].buffer_size; mali_ptr address = 0; if (usz > 0) { address = panfrost_map_constant_buffer_gpu(batch, stage, buf, ubo); } panfrost_emit_ubo(ubos.cpu, ubo, address, usz); } if (pushed_words) *pushed_words = ss->info.push.count; if (ss->info.push.count == 0) return ubos.gpu; /* Copy push constants required by the shader */ struct panfrost_ptr push_transfer = pan_pool_alloc_aligned(&batch->pool.base, ss->info.push.count * 4, 16); uint32_t *push_cpu = (uint32_t *)push_transfer.cpu; *push_constants = push_transfer.gpu; for (unsigned i = 0; i < ss->info.push.count; ++i) { struct panfrost_ubo_word src = ss->info.push.words[i]; if (src.ubo == sysval_ubo) { unsigned sysval_idx = src.offset / 16; unsigned sysval_comp = (src.offset % 16) / 4; unsigned sysval_type = PAN_SYSVAL_TYPE(ss->sysvals.sysvals[sysval_idx]); mali_ptr ptr = push_transfer.gpu + (4 * i); if (sysval_type == PAN_SYSVAL_NUM_WORK_GROUPS && sysval_comp < ARRAY_SIZE(batch->num_wg_sysval)) batch->num_wg_sysval[sysval_comp] = ptr; } /* Map the UBO, this should be cheap. For some buffers this may * read from write-combine memory which is slow, though :-( */ const void *mapped_ubo = (src.ubo == sysval_ubo) ? sysvals : panfrost_map_constant_buffer_cpu(ctx, buf, src.ubo); /* TODO: Is there any benefit to combining ranges */ memcpy(push_cpu + i, (uint8_t *)mapped_ubo + src.offset, 4); } return ubos.gpu; } /* * Choose the number of WLS instances to allocate. This must be a power-of-two. * The number of WLS instances limits the number of concurrent tasks on a given * shader core, setting to the (rounded) total number of tasks avoids any * throttling. Smaller values save memory at the expense of possible throttling. * * With indirect dispatch, we don't know at launch-time how many tasks will be * needed, so we use a conservative value that's unlikely to cause slowdown in * practice without wasting too much memory. */ static unsigned panfrost_choose_wls_instance_count(const struct pipe_grid_info *grid) { if (grid->indirect) { /* May need tuning in the future, conservative guess */ return 128; } else { return util_next_power_of_two(grid->grid[0]) * util_next_power_of_two(grid->grid[1]) * util_next_power_of_two(grid->grid[2]); } } static mali_ptr panfrost_emit_shared_memory(struct panfrost_batch *batch, const struct pipe_grid_info *grid) { struct panfrost_context *ctx = batch->ctx; struct panfrost_device *dev = pan_device(ctx->base.screen); struct panfrost_compiled_shader *ss = ctx->prog[PIPE_SHADER_COMPUTE]; struct panfrost_ptr t = pan_pool_alloc_desc(&batch->pool.base, LOCAL_STORAGE); struct pan_tls_info info = { .tls.size = ss->info.tls_size, .wls.size = ss->info.wls_size + grid->variable_shared_mem, .wls.instances = panfrost_choose_wls_instance_count(grid), }; if (ss->info.tls_size) { struct panfrost_bo *bo = panfrost_batch_get_scratchpad( batch, ss->info.tls_size, dev->thread_tls_alloc, dev->core_id_range); info.tls.ptr = bo->ptr.gpu; } if (info.wls.size) { unsigned size = pan_wls_adjust_size(info.wls.size) * info.wls.instances * dev->core_id_range; struct panfrost_bo *bo = panfrost_batch_get_shared_memory(batch, size, 1); info.wls.ptr = bo->ptr.gpu; } GENX(pan_emit_tls)(&info, t.cpu); return t.gpu; } #if PAN_ARCH <= 5 static mali_ptr panfrost_get_tex_desc(struct panfrost_batch *batch, enum pipe_shader_type st, struct panfrost_sampler_view *view) { if (!view) return (mali_ptr)0; struct pipe_sampler_view *pview = &view->base; struct panfrost_resource *rsrc = pan_resource(pview->texture); panfrost_batch_read_rsrc(batch, rsrc, st); panfrost_batch_add_bo(batch, view->state.bo, st); return view->state.gpu; } #endif static void panfrost_create_sampler_view_bo(struct panfrost_sampler_view *so, struct pipe_context *pctx, struct pipe_resource *texture) { struct panfrost_device *device = pan_device(pctx->screen); struct panfrost_context *ctx = pan_context(pctx); struct panfrost_resource *prsrc = (struct panfrost_resource *)texture; enum pipe_format format = so->base.format; assert(prsrc->bo); /* Format to access the stencil/depth portion of a Z32_S8 texture */ if (format == PIPE_FORMAT_X32_S8X24_UINT) { assert(prsrc->separate_stencil); texture = &prsrc->separate_stencil->base; prsrc = (struct panfrost_resource *)texture; format = texture->format; } else if (format == PIPE_FORMAT_Z32_FLOAT_S8X24_UINT) { format = PIPE_FORMAT_Z32_FLOAT; } so->texture_bo = prsrc->image.data.base; so->modifier = prsrc->image.layout.modifier; /* MSAA only supported for 2D textures */ assert(texture->nr_samples <= 1 || so->base.target == PIPE_TEXTURE_2D || so->base.target == PIPE_TEXTURE_2D_ARRAY); enum mali_texture_dimension type = panfrost_translate_texture_dimension(so->base.target); bool is_buffer = (so->base.target == PIPE_BUFFER); unsigned first_level = is_buffer ? 0 : so->base.u.tex.first_level; unsigned last_level = is_buffer ? 0 : so->base.u.tex.last_level; unsigned first_layer = is_buffer ? 0 : so->base.u.tex.first_layer; unsigned last_layer = is_buffer ? 0 : so->base.u.tex.last_layer; unsigned buf_offset = is_buffer ? so->base.u.buf.offset : 0; unsigned buf_size = (is_buffer ? so->base.u.buf.size : 0) / util_format_get_blocksize(format); buf_size = MIN2(buf_size, PAN_MAX_TEXEL_BUFFER_ELEMENTS); if (so->base.target == PIPE_TEXTURE_3D) { first_layer /= prsrc->image.layout.depth; last_layer /= prsrc->image.layout.depth; assert(!first_layer && !last_layer); } struct pan_image_view iview = { .format = format, .dim = type, .first_level = first_level, .last_level = last_level, .first_layer = first_layer, .last_layer = last_layer, .swizzle = { so->base.swizzle_r, so->base.swizzle_g, so->base.swizzle_b, so->base.swizzle_a, }, .planes = {NULL}, .buf.offset = buf_offset, .buf.size = buf_size, }; panfrost_set_image_view_planes(&iview, texture); unsigned size = (PAN_ARCH <= 5 ? pan_size(TEXTURE) : 0) + GENX(panfrost_estimate_texture_payload_size)(&iview); struct panfrost_pool *pool = so->pool ?: &ctx->descs; struct panfrost_ptr payload = pan_pool_alloc_aligned(&pool->base, size, 64); so->state = panfrost_pool_take_ref(&ctx->descs, payload.gpu); void *tex = (PAN_ARCH >= 6) ? &so->bifrost_descriptor : payload.cpu; if (PAN_ARCH <= 5) { payload.cpu += pan_size(TEXTURE); payload.gpu += pan_size(TEXTURE); } const struct util_format_description *desc = util_format_description(format); if ((device->debug & PAN_DBG_YUV) && panfrost_format_is_yuv(format)) { if (desc->layout == UTIL_FORMAT_LAYOUT_SUBSAMPLED) { iview.swizzle[2] = PIPE_SWIZZLE_1; } else if (desc->layout == UTIL_FORMAT_LAYOUT_PLANAR2) { iview.swizzle[1] = PIPE_SWIZZLE_0; iview.swizzle[2] = PIPE_SWIZZLE_0; } } if (desc->layout == UTIL_FORMAT_LAYOUT_ASTC && so->base.astc_decode_format == PIPE_ASTC_DECODE_FORMAT_UNORM8) { iview.astc.narrow = true; } GENX(panfrost_new_texture)(&iview, tex, &payload); } static void panfrost_update_sampler_view(struct panfrost_sampler_view *view, struct pipe_context *pctx) { struct panfrost_resource *rsrc = pan_resource(view->base.texture); if (view->texture_bo != rsrc->image.data.base || view->modifier != rsrc->image.layout.modifier) { panfrost_bo_unreference(view->state.bo); panfrost_create_sampler_view_bo(view, pctx, &rsrc->base); } } #if PAN_ARCH >= 6 static void panfrost_emit_null_texture(struct mali_texture_packed *out) { /* Annoyingly, an all zero texture descriptor is not valid and will raise * a DATA_INVALID_FAULT if you try to texture it, instead of returning * 0000s! Fill in with sometthing that will behave robustly. */ pan_pack(out, TEXTURE, cfg) { cfg.dimension = MALI_TEXTURE_DIMENSION_2D; cfg.width = 1; cfg.height = 1; cfg.depth = 1; cfg.array_size = 1; cfg.format = MALI_PACK_FMT(CONSTANT, 0000, L); #if PAN_ARCH <= 7 cfg.texel_ordering = MALI_TEXTURE_LAYOUT_LINEAR; #endif } } #endif static mali_ptr panfrost_emit_texture_descriptors(struct panfrost_batch *batch, enum pipe_shader_type stage) { struct panfrost_context *ctx = batch->ctx; unsigned actual_count = ctx->sampler_view_count[stage]; unsigned needed_count = ctx->prog[stage]->info.texture_count; unsigned alloc_count = MAX2(actual_count, needed_count); if (!alloc_count) return 0; #if PAN_ARCH >= 6 struct panfrost_ptr T = pan_pool_alloc_desc_array(&batch->pool.base, alloc_count, TEXTURE); struct mali_texture_packed *out = (struct mali_texture_packed *)T.cpu; for (int i = 0; i < actual_count; ++i) { struct panfrost_sampler_view *view = ctx->sampler_views[stage][i]; if (!view) { panfrost_emit_null_texture(&out[i]); continue; } struct pipe_sampler_view *pview = &view->base; struct panfrost_resource *rsrc = pan_resource(pview->texture); panfrost_update_sampler_view(view, &ctx->base); out[i] = view->bifrost_descriptor; panfrost_batch_read_rsrc(batch, rsrc, stage); panfrost_batch_add_bo(batch, view->state.bo, stage); } for (int i = actual_count; i < needed_count; ++i) panfrost_emit_null_texture(&out[i]); return T.gpu; #else uint64_t trampolines[PIPE_MAX_SHADER_SAMPLER_VIEWS]; for (int i = 0; i < actual_count; ++i) { struct panfrost_sampler_view *view = ctx->sampler_views[stage][i]; if (!view) { trampolines[i] = 0; continue; } panfrost_update_sampler_view(view, &ctx->base); trampolines[i] = panfrost_get_tex_desc(batch, stage, view); } for (int i = actual_count; i < needed_count; ++i) trampolines[i] = 0; return pan_pool_upload_aligned(&batch->pool.base, trampolines, sizeof(uint64_t) * alloc_count, sizeof(uint64_t)); #endif } static mali_ptr panfrost_upload_wa_sampler(struct panfrost_batch *batch) { struct panfrost_ptr T = pan_pool_alloc_desc(&batch->pool.base, SAMPLER); pan_pack(T.cpu, SAMPLER, cfg) ; return T.gpu; } static mali_ptr panfrost_emit_sampler_descriptors(struct panfrost_batch *batch, enum pipe_shader_type stage) { struct panfrost_context *ctx = batch->ctx; /* We always need at least 1 sampler for txf to work */ if (!ctx->sampler_count[stage]) return panfrost_upload_wa_sampler(batch); struct panfrost_ptr T = pan_pool_alloc_desc_array( &batch->pool.base, ctx->sampler_count[stage], SAMPLER); struct mali_sampler_packed *out = (struct mali_sampler_packed *)T.cpu; for (unsigned i = 0; i < ctx->sampler_count[stage]; ++i) { struct panfrost_sampler_state *st = ctx->samplers[stage][i]; out[i] = st ? st->hw : (struct mali_sampler_packed){0}; } return T.gpu; } #if PAN_ARCH <= 7 /* Packs all image attribute descs and attribute buffer descs. * `first_image_buf_index` must be the index of the first image attribute buffer * descriptor. */ static void emit_image_attribs(struct panfrost_context *ctx, enum pipe_shader_type shader, struct mali_attribute_packed *attribs, unsigned first_buf) { unsigned last_bit = util_last_bit(ctx->image_mask[shader]); for (unsigned i = 0; i < last_bit; ++i) { enum pipe_format format = ctx->images[shader][i].format; pan_pack(attribs + i, ATTRIBUTE, cfg) { /* Continuation record means 2 buffers per image */ cfg.buffer_index = first_buf + (i * 2); cfg.offset_enable = (PAN_ARCH <= 5); cfg.format = GENX(panfrost_format_from_pipe_format)(format)->hw; } } } static enum mali_attribute_type pan_modifier_to_attr_type(uint64_t modifier) { switch (modifier) { case DRM_FORMAT_MOD_LINEAR: return MALI_ATTRIBUTE_TYPE_3D_LINEAR; case DRM_FORMAT_MOD_ARM_16X16_BLOCK_U_INTERLEAVED: return MALI_ATTRIBUTE_TYPE_3D_INTERLEAVED; default: unreachable("Invalid modifier for attribute record"); } } static void emit_image_bufs(struct panfrost_batch *batch, enum pipe_shader_type shader, struct mali_attribute_buffer_packed *bufs, unsigned first_image_buf_index) { struct panfrost_context *ctx = batch->ctx; unsigned last_bit = util_last_bit(ctx->image_mask[shader]); for (unsigned i = 0; i < last_bit; ++i) { struct pipe_image_view *image = &ctx->images[shader][i]; if (!(ctx->image_mask[shader] & (1 << i)) || !(image->shader_access & PIPE_IMAGE_ACCESS_READ_WRITE)) { /* Unused image bindings */ pan_pack(bufs + (i * 2), ATTRIBUTE_BUFFER, cfg) ; pan_pack(bufs + (i * 2) + 1, ATTRIBUTE_BUFFER, cfg) ; continue; } struct panfrost_resource *rsrc = pan_resource(image->resource); bool is_msaa = image->resource->nr_samples > 1; bool is_3d = rsrc->base.target == PIPE_TEXTURE_3D; bool is_buffer = rsrc->base.target == PIPE_BUFFER; unsigned offset = is_buffer ? image->u.buf.offset : panfrost_texture_offset( &rsrc->image.layout, image->u.tex.level, (is_3d || is_msaa) ? 0 : image->u.tex.first_layer, (is_3d || is_msaa) ? image->u.tex.first_layer : 0); panfrost_track_image_access(batch, shader, image); pan_pack(bufs + (i * 2), ATTRIBUTE_BUFFER, cfg) { cfg.type = pan_modifier_to_attr_type(rsrc->image.layout.modifier); cfg.pointer = rsrc->image.data.base + offset; cfg.stride = util_format_get_blocksize(image->format); cfg.size = panfrost_bo_size(rsrc->bo) - offset; } if (is_buffer) { pan_pack(bufs + (i * 2) + 1, ATTRIBUTE_BUFFER_CONTINUATION_3D, cfg) { cfg.s_dimension = rsrc->base.width0 / util_format_get_blocksize(image->format); cfg.t_dimension = cfg.r_dimension = 1; } continue; } pan_pack(bufs + (i * 2) + 1, ATTRIBUTE_BUFFER_CONTINUATION_3D, cfg) { unsigned level = image->u.tex.level; unsigned samples = rsrc->image.layout.nr_samples; cfg.s_dimension = u_minify(rsrc->base.width0, level); cfg.t_dimension = u_minify(rsrc->base.height0, level); cfg.r_dimension = is_3d ? u_minify(rsrc->image.layout.depth, level) : (image->u.tex.last_layer - image->u.tex.first_layer + 1); cfg.row_stride = rsrc->image.layout.slices[level].row_stride; if (cfg.r_dimension > 1) { cfg.slice_stride = panfrost_get_layer_stride(&rsrc->image.layout, level); } if (is_msaa) { if (cfg.r_dimension == 1) { /* regular multisampled images get the sample index in the R dimension */ cfg.r_dimension = samples; cfg.slice_stride = panfrost_get_layer_stride(&rsrc->image.layout, level) / samples; } else { /* multisampled image arrays are emulated by making the image "samples" times higher than the original image, and fixing up the T coordinate by the sample number to address the correct sample (on bifrost) */ cfg.t_dimension *= samples; } } } } } static mali_ptr panfrost_emit_image_attribs(struct panfrost_batch *batch, mali_ptr *buffers, enum pipe_shader_type type) { struct panfrost_context *ctx = batch->ctx; struct panfrost_compiled_shader *shader = ctx->prog[type]; if (!shader->info.attribute_count) { *buffers = 0; return 0; } /* Images always need a MALI_ATTRIBUTE_BUFFER_CONTINUATION_3D */ unsigned attr_count = shader->info.attribute_count; unsigned buf_count = (attr_count * 2) + (PAN_ARCH >= 6 ? 1 : 0); struct panfrost_ptr bufs = pan_pool_alloc_desc_array(&batch->pool.base, buf_count, ATTRIBUTE_BUFFER); struct panfrost_ptr attribs = pan_pool_alloc_desc_array(&batch->pool.base, attr_count, ATTRIBUTE); emit_image_attribs(ctx, type, attribs.cpu, 0); emit_image_bufs(batch, type, bufs.cpu, 0); /* We need an empty attrib buf to stop the prefetching on Bifrost */ #if PAN_ARCH >= 6 pan_pack(bufs.cpu + ((buf_count - 1) * pan_size(ATTRIBUTE_BUFFER)), ATTRIBUTE_BUFFER, cfg) ; #endif *buffers = bufs.gpu; return attribs.gpu; } static mali_ptr panfrost_emit_vertex_data(struct panfrost_batch *batch, mali_ptr *buffers) { struct panfrost_context *ctx = batch->ctx; struct panfrost_vertex_state *so = ctx->vertex; struct panfrost_compiled_shader *vs = ctx->prog[PIPE_SHADER_VERTEX]; bool instanced = ctx->instance_count > 1; uint32_t image_mask = ctx->image_mask[PIPE_SHADER_VERTEX]; unsigned nr_images = util_last_bit(image_mask); /* Worst case: everything is NPOT, which is only possible if instancing * is enabled. Otherwise single record is gauranteed. * Also, we allocate more memory than what's needed here if either instancing * is enabled or images are present, this can be improved. */ unsigned bufs_per_attrib = (instanced || nr_images > 0) ? 2 : 1; unsigned nr_bufs = ((so->nr_bufs + nr_images) * bufs_per_attrib) + (PAN_ARCH >= 6 ? 1 : 0); unsigned count = vs->info.attribute_count; struct panfrost_compiled_shader *xfb = ctx->uncompiled[PIPE_SHADER_VERTEX]->xfb; if (xfb) count = MAX2(count, xfb->info.attribute_count); #if PAN_ARCH <= 5 /* Midgard needs vertexid/instanceid handled specially */ bool special_vbufs = count >= PAN_VERTEX_ID; if (special_vbufs) nr_bufs += 2; #endif if (!nr_bufs) { *buffers = 0; return 0; } struct panfrost_ptr S = pan_pool_alloc_desc_array(&batch->pool.base, nr_bufs, ATTRIBUTE_BUFFER); struct panfrost_ptr T = pan_pool_alloc_desc_array(&batch->pool.base, count, ATTRIBUTE); struct mali_attribute_buffer_packed *bufs = (struct mali_attribute_buffer_packed *)S.cpu; struct mali_attribute_packed *out = (struct mali_attribute_packed *)T.cpu; unsigned attrib_to_buffer[PIPE_MAX_ATTRIBS] = {0}; unsigned k = 0; for (unsigned i = 0; i < so->nr_bufs; ++i) { unsigned vbi = so->buffers[i].vbi; unsigned divisor = so->buffers[i].divisor; attrib_to_buffer[i] = k; if (!(ctx->vb_mask & (1 << vbi))) continue; struct pipe_vertex_buffer *buf = &ctx->vertex_buffers[vbi]; struct panfrost_resource *rsrc; rsrc = pan_resource(buf->buffer.resource); if (!rsrc) continue; panfrost_batch_read_rsrc(batch, rsrc, PIPE_SHADER_VERTEX); /* Mask off lower bits, see offset fixup below */ mali_ptr raw_addr = rsrc->image.data.base + buf->buffer_offset; mali_ptr addr = raw_addr & ~63; /* Since we advanced the base pointer, we shrink the buffer * size, but add the offset we subtracted */ unsigned size = rsrc->base.width0 + (raw_addr - addr) - buf->buffer_offset; /* When there is a divisor, the hardware-level divisor is * the product of the instance divisor and the padded count */ unsigned stride = so->strides[vbi]; unsigned hw_divisor = ctx->padded_count * divisor; if (ctx->instance_count <= 1) { /* Per-instance would be every attribute equal */ if (divisor) stride = 0; pan_pack(bufs + k, ATTRIBUTE_BUFFER, cfg) { cfg.pointer = addr; cfg.stride = stride; cfg.size = size; } } else if (!divisor) { pan_pack(bufs + k, ATTRIBUTE_BUFFER, cfg) { cfg.type = MALI_ATTRIBUTE_TYPE_1D_MODULUS; cfg.pointer = addr; cfg.stride = stride; cfg.size = size; cfg.divisor = ctx->padded_count; } } else if (util_is_power_of_two_or_zero(hw_divisor)) { pan_pack(bufs + k, ATTRIBUTE_BUFFER, cfg) { cfg.type = MALI_ATTRIBUTE_TYPE_1D_POT_DIVISOR; cfg.pointer = addr; cfg.stride = stride; cfg.size = size; cfg.divisor_r = __builtin_ctz(hw_divisor); } } else { unsigned shift = 0, extra_flags = 0; unsigned magic_divisor = panfrost_compute_magic_divisor(hw_divisor, &shift, &extra_flags); /* Records with continuations must be aligned */ k = ALIGN_POT(k, 2); attrib_to_buffer[i] = k; pan_pack(bufs + k, ATTRIBUTE_BUFFER, cfg) { cfg.type = MALI_ATTRIBUTE_TYPE_1D_NPOT_DIVISOR; cfg.pointer = addr; cfg.stride = stride; cfg.size = size; cfg.divisor_r = shift; cfg.divisor_e = extra_flags; } pan_pack(bufs + k + 1, ATTRIBUTE_BUFFER_CONTINUATION_NPOT, cfg) { cfg.divisor_numerator = magic_divisor; cfg.divisor = divisor; } ++k; } ++k; } #if PAN_ARCH <= 5 /* Add special gl_VertexID/gl_InstanceID buffers */ if (special_vbufs) { panfrost_vertex_id(ctx->padded_count, &bufs[k], ctx->instance_count > 1); pan_pack(out + PAN_VERTEX_ID, ATTRIBUTE, cfg) { cfg.buffer_index = k++; cfg.format = so->formats[PAN_VERTEX_ID]; } panfrost_instance_id(ctx->padded_count, &bufs[k], ctx->instance_count > 1); pan_pack(out + PAN_INSTANCE_ID, ATTRIBUTE, cfg) { cfg.buffer_index = k++; cfg.format = so->formats[PAN_INSTANCE_ID]; } } #endif if (nr_images) { k = ALIGN_POT(k, 2); emit_image_attribs(ctx, PIPE_SHADER_VERTEX, out + so->num_elements, k); emit_image_bufs(batch, PIPE_SHADER_VERTEX, bufs + k, k); k += (util_last_bit(ctx->image_mask[PIPE_SHADER_VERTEX]) * 2); } #if PAN_ARCH >= 6 /* We need an empty attrib buf to stop the prefetching on Bifrost */ pan_pack(&bufs[k], ATTRIBUTE_BUFFER, cfg) ; #endif /* Attribute addresses require 64-byte alignment, so let: * * base' = base & ~63 = base - (base & 63) * offset' = offset + (base & 63) * * Since base' + offset' = base + offset, these are equivalent * addressing modes and now base is 64 aligned. */ /* While these are usually equal, they are not required to be. In some * cases, u_blitter passes too high a value for num_elements. */ assert(vs->info.attributes_read_count <= so->num_elements); for (unsigned i = 0; i < vs->info.attributes_read_count; ++i) { unsigned vbi = so->pipe[i].vertex_buffer_index; struct pipe_vertex_buffer *buf = &ctx->vertex_buffers[vbi]; /* BOs are aligned; just fixup for buffer_offset */ signed src_offset = so->pipe[i].src_offset; src_offset += (buf->buffer_offset & 63); /* Base instance offset */ if (ctx->base_instance && so->pipe[i].instance_divisor) { src_offset += (ctx->base_instance * so->pipe[i].src_stride) / so->pipe[i].instance_divisor; } /* Also, somewhat obscurely per-instance data needs to be * offset in response to a delayed start in an indexed draw */ if (so->pipe[i].instance_divisor && ctx->instance_count > 1) src_offset -= so->pipe[i].src_stride * ctx->offset_start; pan_pack(out + i, ATTRIBUTE, cfg) { cfg.buffer_index = attrib_to_buffer[so->element_buffer[i]]; cfg.format = so->formats[i]; cfg.offset = src_offset; } } *buffers = S.gpu; return T.gpu; } static mali_ptr panfrost_emit_varyings(struct panfrost_batch *batch, struct mali_attribute_buffer_packed *slot, unsigned stride, unsigned count) { unsigned size = stride * count; mali_ptr ptr = pan_pool_alloc_aligned(&batch->invisible_pool.base, size, 64).gpu; pan_pack(slot, ATTRIBUTE_BUFFER, cfg) { cfg.stride = stride; cfg.size = size; cfg.pointer = ptr; } return ptr; } /* Given a varying, figure out which index it corresponds to */ static inline unsigned pan_varying_index(unsigned present, enum pan_special_varying v) { return util_bitcount(present & BITFIELD_MASK(v)); } /* Determines which varying buffers are required */ static inline unsigned pan_varying_present(const struct panfrost_device *dev, struct pan_shader_info *producer, struct pan_shader_info *consumer, uint16_t point_coord_mask) { /* At the moment we always emit general and position buffers. Not * strictly necessary but usually harmless */ unsigned present = BITFIELD_BIT(PAN_VARY_GENERAL) | BITFIELD_BIT(PAN_VARY_POSITION); /* Enable special buffers by the shader info */ if (producer->vs.writes_point_size) present |= BITFIELD_BIT(PAN_VARY_PSIZ); #if PAN_ARCH <= 5 /* On Midgard, these exist as real varyings. Later architectures use * LD_VAR_SPECIAL reads instead. */ if (consumer->fs.reads_point_coord) present |= BITFIELD_BIT(PAN_VARY_PNTCOORD); if (consumer->fs.reads_face) present |= BITFIELD_BIT(PAN_VARY_FACE); if (consumer->fs.reads_frag_coord) present |= BITFIELD_BIT(PAN_VARY_FRAGCOORD); /* Also, if we have a point sprite, we need a point coord buffer */ for (unsigned i = 0; i < consumer->varyings.input_count; i++) { gl_varying_slot loc = consumer->varyings.input[i].location; if (util_varying_is_point_coord(loc, point_coord_mask)) present |= BITFIELD_BIT(PAN_VARY_PNTCOORD); } #endif return present; } /* Emitters for varying records */ static void pan_emit_vary(const struct panfrost_device *dev, struct mali_attribute_packed *out, unsigned buffer_index, mali_pixel_format format, unsigned offset) { pan_pack(out, ATTRIBUTE, cfg) { cfg.buffer_index = buffer_index; cfg.offset_enable = (PAN_ARCH <= 5); cfg.format = format; cfg.offset = offset; } } /* Special records */ /* clang-format off */ static const struct { unsigned components; enum mali_format format; } pan_varying_formats[PAN_VARY_MAX] = { [PAN_VARY_POSITION] = { 4, MALI_SNAP_4 }, [PAN_VARY_PSIZ] = { 1, MALI_R16F }, [PAN_VARY_PNTCOORD] = { 4, MALI_RGBA32F }, [PAN_VARY_FACE] = { 1, MALI_R32I }, [PAN_VARY_FRAGCOORD] = { 4, MALI_RGBA32F }, }; /* clang-format on */ static mali_pixel_format pan_special_format(const struct panfrost_device *dev, enum pan_special_varying buf) { assert(buf < PAN_VARY_MAX); mali_pixel_format format = (pan_varying_formats[buf].format << 12); #if PAN_ARCH <= 6 unsigned nr = pan_varying_formats[buf].components; format |= panfrost_get_default_swizzle(nr); #endif return format; } static void pan_emit_vary_special(const struct panfrost_device *dev, struct mali_attribute_packed *out, unsigned present, enum pan_special_varying buf) { pan_emit_vary(dev, out, pan_varying_index(present, buf), pan_special_format(dev, buf), 0); } /* Negative indicates a varying is not found */ static signed pan_find_vary(const struct pan_shader_varying *vary, unsigned vary_count, unsigned loc) { for (unsigned i = 0; i < vary_count; ++i) { if (vary[i].location == loc) return i; } return -1; } /* Assign varying locations for the general buffer. Returns the calculated * per-vertex stride, and outputs offsets into the passed array. Negative * offset indicates a varying is not used. */ static unsigned pan_assign_varyings(const struct panfrost_device *dev, struct pan_shader_info *producer, struct pan_shader_info *consumer, signed *offsets) { unsigned producer_count = producer->varyings.output_count; unsigned consumer_count = consumer->varyings.input_count; const struct pan_shader_varying *producer_vars = producer->varyings.output; const struct pan_shader_varying *consumer_vars = consumer->varyings.input; unsigned stride = 0; for (unsigned i = 0; i < producer_count; ++i) { signed loc = pan_find_vary(consumer_vars, consumer_count, producer_vars[i].location); enum pipe_format format = loc >= 0 ? consumer_vars[loc].format : PIPE_FORMAT_NONE; if (format != PIPE_FORMAT_NONE) { offsets[i] = stride; stride += util_format_get_blocksize(format); } else { offsets[i] = -1; } } return stride; } /* Emitter for a single varying (attribute) descriptor */ static void panfrost_emit_varying(const struct panfrost_device *dev, struct mali_attribute_packed *out, const struct pan_shader_varying varying, enum pipe_format pipe_format, unsigned present, uint16_t point_sprite_mask, signed offset, enum pan_special_varying pos_varying) { /* Note: varying.format != pipe_format in some obscure cases due to a * limitation of the NIR linker. This should be fixed in the future to * eliminate the additional lookups. See: * dEQP-GLES3.functional.shaders.conditionals.if.sequence_statements_vertex */ gl_varying_slot loc = varying.location; mali_pixel_format format = GENX(panfrost_format_from_pipe_format)(pipe_format)->hw; if (util_varying_is_point_coord(loc, point_sprite_mask)) { pan_emit_vary_special(dev, out, present, PAN_VARY_PNTCOORD); } else if (loc == VARYING_SLOT_POS) { pan_emit_vary_special(dev, out, present, pos_varying); } else if (loc == VARYING_SLOT_PSIZ) { pan_emit_vary_special(dev, out, present, PAN_VARY_PSIZ); } else if (loc == VARYING_SLOT_FACE) { pan_emit_vary_special(dev, out, present, PAN_VARY_FACE); } else if (offset < 0) { pan_emit_vary(dev, out, 0, (MALI_CONSTANT << 12), 0); } else { STATIC_ASSERT(PAN_VARY_GENERAL == 0); pan_emit_vary(dev, out, 0, format, offset); } } /* Links varyings and uploads ATTRIBUTE descriptors. Can execute at link time, * rather than draw time (under good conditions). */ static void panfrost_emit_varying_descs(struct panfrost_pool *pool, struct panfrost_compiled_shader *producer, struct panfrost_compiled_shader *consumer, uint16_t point_coord_mask, struct pan_linkage *out) { struct panfrost_device *dev = pool->dev; unsigned producer_count = producer->info.varyings.output_count; unsigned consumer_count = consumer->info.varyings.input_count; /* Offsets within the general varying buffer, indexed by location */ signed offsets[PAN_MAX_VARYINGS]; assert(producer_count <= ARRAY_SIZE(offsets)); assert(consumer_count <= ARRAY_SIZE(offsets)); /* Allocate enough descriptors for both shader stages */ struct panfrost_ptr T = pan_pool_alloc_desc_array( &pool->base, producer_count + consumer_count, ATTRIBUTE); /* Take a reference if we're being put on the CSO */ if (!pool->owned) { out->bo = pool->transient_bo; panfrost_bo_reference(out->bo); } struct mali_attribute_packed *descs = T.cpu; out->producer = producer_count ? T.gpu : 0; out->consumer = consumer_count ? T.gpu + (pan_size(ATTRIBUTE) * producer_count) : 0; /* Lay out the varyings. Must use producer to lay out, in order to * respect transform feedback precisions. */ out->present = pan_varying_present(dev, &producer->info, &consumer->info, point_coord_mask); out->stride = pan_assign_varyings(dev, &producer->info, &consumer->info, offsets); for (unsigned i = 0; i < producer_count; ++i) { signed j = pan_find_vary(consumer->info.varyings.input, consumer->info.varyings.input_count, producer->info.varyings.output[i].location); enum pipe_format format = (j >= 0) ? consumer->info.varyings.input[j].format : producer->info.varyings.output[i].format; panfrost_emit_varying(dev, descs + i, producer->info.varyings.output[i], format, out->present, 0, offsets[i], PAN_VARY_POSITION); } for (unsigned i = 0; i < consumer_count; ++i) { signed j = pan_find_vary(producer->info.varyings.output, producer->info.varyings.output_count, consumer->info.varyings.input[i].location); signed offset = (j >= 0) ? offsets[j] : -1; panfrost_emit_varying( dev, descs + producer_count + i, consumer->info.varyings.input[i], consumer->info.varyings.input[i].format, out->present, point_coord_mask, offset, PAN_VARY_FRAGCOORD); } } #if PAN_ARCH <= 5 static void pan_emit_special_input(struct mali_attribute_buffer_packed *out, unsigned present, enum pan_special_varying v, unsigned special) { if (present & BITFIELD_BIT(v)) { unsigned idx = pan_varying_index(present, v); pan_pack(out + idx, ATTRIBUTE_BUFFER, cfg) { cfg.special = special; cfg.type = 0; } } } #endif static void panfrost_emit_varying_descriptor(struct panfrost_batch *batch, unsigned vertex_count, bool point_coord_replace) { struct panfrost_context *ctx = batch->ctx; struct panfrost_compiled_shader *vs = ctx->prog[PIPE_SHADER_VERTEX]; struct panfrost_compiled_shader *fs = ctx->prog[PIPE_SHADER_FRAGMENT]; uint16_t point_coord_mask = 0; memset(&batch->varyings, 0, sizeof(batch->varyings)); #if PAN_ARCH <= 5 struct pipe_rasterizer_state *rast = &ctx->rasterizer->base; /* Point sprites are lowered on Bifrost and newer */ if (point_coord_replace) point_coord_mask = ctx->rasterizer->base.sprite_coord_enable; #endif /* In good conditions, we only need to link varyings once */ bool prelink = (point_coord_mask == 0) && !vs->info.separable && !fs->info.separable; /* Try to reduce copies */ struct pan_linkage _linkage; struct pan_linkage *linkage = prelink ? &vs->linkage : &_linkage; /* Emit ATTRIBUTE descriptors if needed */ if (!prelink || vs->linkage.bo == NULL) { struct panfrost_pool *pool = prelink ? &ctx->descs : &batch->pool; panfrost_emit_varying_descs(pool, vs, fs, point_coord_mask, linkage); } unsigned present = linkage->present, stride = linkage->stride; unsigned count = util_bitcount(present); struct panfrost_ptr T = pan_pool_alloc_desc_array(&batch->pool.base, count + 1, ATTRIBUTE_BUFFER); struct mali_attribute_buffer_packed *varyings = (struct mali_attribute_buffer_packed *)T.cpu; batch->varyings.nr_bufs = count; #if PAN_ARCH >= 6 /* Suppress prefetch on Bifrost */ memset(varyings + count, 0, sizeof(*varyings)); #endif if (stride) { panfrost_emit_varyings( batch, &varyings[pan_varying_index(present, PAN_VARY_GENERAL)], stride, vertex_count); } else { /* The indirect draw code reads the stride field, make sure * that it is initialised */ memset(varyings + pan_varying_index(present, PAN_VARY_GENERAL), 0, sizeof(*varyings)); } /* fp32 vec4 gl_Position */ batch->varyings.pos = panfrost_emit_varyings( batch, &varyings[pan_varying_index(present, PAN_VARY_POSITION)], sizeof(float) * 4, vertex_count); if (present & BITFIELD_BIT(PAN_VARY_PSIZ)) { batch->varyings.psiz = panfrost_emit_varyings( batch, &varyings[pan_varying_index(present, PAN_VARY_PSIZ)], 2, vertex_count); } #if PAN_ARCH <= 5 pan_emit_special_input( varyings, present, PAN_VARY_PNTCOORD, (rast->sprite_coord_mode == PIPE_SPRITE_COORD_LOWER_LEFT) ? MALI_ATTRIBUTE_SPECIAL_POINT_COORD_MAX_Y : MALI_ATTRIBUTE_SPECIAL_POINT_COORD_MIN_Y); pan_emit_special_input(varyings, present, PAN_VARY_FACE, MALI_ATTRIBUTE_SPECIAL_FRONT_FACING); pan_emit_special_input(varyings, present, PAN_VARY_FRAGCOORD, MALI_ATTRIBUTE_SPECIAL_FRAG_COORD); #endif batch->varyings.bufs = T.gpu; batch->varyings.vs = linkage->producer; batch->varyings.fs = linkage->consumer; } #endif static void emit_tls(struct panfrost_batch *batch) { struct panfrost_device *dev = pan_device(batch->ctx->base.screen); /* Emitted with the FB descriptor on Midgard. */ if (PAN_ARCH <= 5 && batch->framebuffer.gpu) return; struct panfrost_bo *tls_bo = batch->stack_size ? panfrost_batch_get_scratchpad( batch, batch->stack_size, dev->thread_tls_alloc, dev->core_id_range) : NULL; struct pan_tls_info tls = { .tls = { .ptr = tls_bo ? tls_bo->ptr.gpu : 0, .size = batch->stack_size, }, }; assert(batch->tls.cpu); GENX(pan_emit_tls)(&tls, batch->tls.cpu); } static void emit_fbd(struct panfrost_batch *batch, struct pan_fb_info *fb) { struct panfrost_device *dev = pan_device(batch->ctx->base.screen); struct panfrost_bo *tls_bo = batch->stack_size ? panfrost_batch_get_scratchpad( batch, batch->stack_size, dev->thread_tls_alloc, dev->core_id_range) : NULL; struct pan_tls_info tls = { .tls = { .ptr = tls_bo ? tls_bo->ptr.gpu : 0, .size = batch->stack_size, }, }; #if PAN_ARCH >= 6 fb->sample_positions = dev->sample_positions->ptr.gpu + panfrost_sample_positions_offset(pan_sample_pattern(fb->nr_samples)); #endif batch->framebuffer.gpu |= GENX(pan_emit_fbd)(fb, 0, &tls, &batch->tiler_ctx, batch->framebuffer.cpu); } /* Mark a surface as written */ static void panfrost_initialize_surface(struct panfrost_batch *batch, struct pipe_surface *surf) { if (surf) { struct panfrost_resource *rsrc = pan_resource(surf->texture); BITSET_SET(rsrc->valid.data, surf->u.tex.level); if (rsrc->separate_stencil) BITSET_SET(rsrc->separate_stencil->valid.data, surf->u.tex.level); } } /* Generate a fragment job. This should be called once per frame. (Usually, * this corresponds to eglSwapBuffers or one of glFlush, glFinish) */ static void emit_fragment_job(struct panfrost_batch *batch, const struct pan_fb_info *pfb) { /* Mark the affected buffers as initialized, since we're writing to it. * Also, add the surfaces we're writing to to the batch */ struct pipe_framebuffer_state *fb = &batch->key; for (unsigned i = 0; i < fb->nr_cbufs; ++i) panfrost_initialize_surface(batch, fb->cbufs[i]); panfrost_initialize_surface(batch, fb->zsbuf); /* The passed tile coords can be out of range in some cases, so we need * to clamp them to the framebuffer size to avoid a TILE_RANGE_FAULT. * Theoretically we also need to clamp the coordinates positive, but we * avoid that edge case as all four values are unsigned. Also, * theoretically we could clamp the minima, but if that has to happen * the asserts would fail anyway (since the maxima would get clamped * and then be smaller than the minima). An edge case of sorts occurs * when no scissors are added to draw, so by default min=~0 and max=0. * But that can't happen if any actual drawing occurs (beyond a * wallpaper reload), so this is again irrelevant in practice. */ batch->maxx = MIN2(batch->maxx, fb->width); batch->maxy = MIN2(batch->maxy, fb->height); /* Rendering region must be at least 1x1; otherwise, there is nothing * to do and the whole job chain should have been discarded. */ assert(batch->maxx > batch->minx); assert(batch->maxy > batch->miny); JOBX(emit_fragment_job)(batch, pfb); } /* Count generated primitives (when there is no geom/tess shaders) for * transform feedback */ static void panfrost_statistics_record(struct panfrost_context *ctx, const struct pipe_draw_info *info, const struct pipe_draw_start_count_bias *draw) { if (!ctx->active_queries) return; uint32_t prims = u_prims_for_vertices(info->mode, draw->count); ctx->prims_generated += prims; if (!ctx->streamout.num_targets) return; ctx->tf_prims_generated += prims; ctx->dirty |= PAN_DIRTY_SO; } static void panfrost_update_streamout_offsets(struct panfrost_context *ctx) { unsigned count = u_stream_outputs_for_vertices(ctx->active_prim, ctx->vertex_count); for (unsigned i = 0; i < ctx->streamout.num_targets; ++i) { if (!ctx->streamout.targets[i]) continue; pan_so_target(ctx->streamout.targets[i])->offset += count; } } /* On Bifrost and older, the Renderer State Descriptor aggregates many pieces of * 3D state. In particular, it groups the fragment shader descriptor with * depth/stencil, blend, polygon offset, and multisampling state. These pieces * of state are dirty tracked independently for the benefit of newer GPUs that * separate the descriptors. FRAGMENT_RSD_DIRTY_MASK contains the list of 3D * dirty flags that trigger re-emits of the fragment RSD. * * Obscurely, occlusion queries are included. Occlusion query state is nominally * specified in the draw call descriptor, but must be considered when determing * early-Z state which is part of the RSD. */ #define FRAGMENT_RSD_DIRTY_MASK \ (PAN_DIRTY_ZS | PAN_DIRTY_BLEND | PAN_DIRTY_MSAA | PAN_DIRTY_RASTERIZER | \ PAN_DIRTY_OQ) static inline void panfrost_update_shader_state(struct panfrost_batch *batch, enum pipe_shader_type st) { struct panfrost_context *ctx = batch->ctx; struct panfrost_compiled_shader *ss = ctx->prog[st]; bool frag = (st == PIPE_SHADER_FRAGMENT); unsigned dirty_3d = ctx->dirty; unsigned dirty = ctx->dirty_shader[st]; if (dirty & (PAN_DIRTY_STAGE_TEXTURE | PAN_DIRTY_STAGE_SHADER)) { batch->textures[st] = panfrost_emit_texture_descriptors(batch, st); } if (dirty & PAN_DIRTY_STAGE_SAMPLER) { batch->samplers[st] = panfrost_emit_sampler_descriptors(batch, st); } /* On Bifrost and older, the fragment shader descriptor is fused * together with the renderer state; the combined renderer state * descriptor is emitted below. Otherwise, the shader descriptor is * standalone and is emitted here. */ if ((dirty & PAN_DIRTY_STAGE_SHADER) && !((PAN_ARCH <= 7) && frag)) { batch->rsd[st] = panfrost_emit_compute_shader_meta(batch, st); } #if PAN_ARCH >= 9 if (dirty & PAN_DIRTY_STAGE_IMAGE) { batch->images[st] = ctx->image_mask[st] ? panfrost_emit_images(batch, st) : 0; } if (dirty & PAN_DIRTY_STAGE_SSBO) batch->ssbos[st] = panfrost_emit_ssbos(batch, st); #endif if ((dirty & ss->dirty_shader) || (dirty_3d & ss->dirty_3d)) { batch->uniform_buffers[st] = panfrost_emit_const_buf( batch, st, &batch->nr_uniform_buffers[st], &batch->push_uniforms[st], &batch->nr_push_uniforms[st]); } #if PAN_ARCH <= 7 /* On Bifrost and older, if the fragment shader changes OR any renderer * state specified with the fragment shader, the whole renderer state * descriptor is dirtied and must be reemited. */ if (frag && ((dirty & PAN_DIRTY_STAGE_SHADER) || (dirty_3d & FRAGMENT_RSD_DIRTY_MASK))) { batch->rsd[st] = panfrost_emit_frag_shader_meta(batch); } /* Vertex shaders need to mix vertex data and image descriptors in the * attribute array. This is taken care of in panfrost_update_state_3d(). */ if (st != PIPE_SHADER_VERTEX && (dirty & PAN_DIRTY_STAGE_IMAGE)) { batch->attribs[st] = panfrost_emit_image_attribs(batch, &batch->attrib_bufs[st], st); } #endif } static inline void panfrost_update_state_3d(struct panfrost_batch *batch) { struct panfrost_context *ctx = batch->ctx; unsigned dirty = ctx->dirty; if (dirty & PAN_DIRTY_TLS_SIZE) panfrost_batch_adjust_stack_size(batch); if (dirty & PAN_DIRTY_BLEND) panfrost_set_batch_masks_blend(batch); if (dirty & PAN_DIRTY_ZS) panfrost_set_batch_masks_zs(batch); #if PAN_ARCH >= 9 if ((dirty & (PAN_DIRTY_ZS | PAN_DIRTY_RASTERIZER)) || (ctx->dirty_shader[PIPE_SHADER_FRAGMENT] & PAN_DIRTY_STAGE_SHADER)) batch->depth_stencil = panfrost_emit_depth_stencil(batch); if (dirty & PAN_DIRTY_BLEND) batch->blend = panfrost_emit_blend_valhall(batch); if (dirty & PAN_DIRTY_VERTEX) { batch->attribs[PIPE_SHADER_VERTEX] = panfrost_emit_vertex_data(batch); batch->attrib_bufs[PIPE_SHADER_VERTEX] = panfrost_emit_vertex_buffers(batch); } #else unsigned vt_shader_dirty = ctx->dirty_shader[PIPE_SHADER_VERTEX]; /* Vertex data, vertex shader and images accessed by the vertex shader have * an impact on the attributes array, we need to re-emit anytime one of these * parameters changes. */ if ((dirty & PAN_DIRTY_VERTEX) || (vt_shader_dirty & (PAN_DIRTY_STAGE_IMAGE | PAN_DIRTY_STAGE_SHADER))) { batch->attribs[PIPE_SHADER_VERTEX] = panfrost_emit_vertex_data( batch, &batch->attrib_bufs[PIPE_SHADER_VERTEX]); } #endif } static void panfrost_launch_xfb(struct panfrost_batch *batch, const struct pipe_draw_info *info, unsigned count) { struct panfrost_context *ctx = batch->ctx; /* Nothing to do */ if (batch->ctx->streamout.num_targets == 0) return; /* TODO: XFB with index buffers */ // assert(info->index_size == 0); if (!u_trim_pipe_prim(info->mode, &count)) return; perf_debug(batch->ctx, "Emulating transform feedback"); struct panfrost_uncompiled_shader *vs_uncompiled = ctx->uncompiled[PIPE_SHADER_VERTEX]; struct panfrost_compiled_shader *vs = ctx->prog[PIPE_SHADER_VERTEX]; vs_uncompiled->xfb->stream_output = vs->stream_output; mali_ptr saved_rsd = batch->rsd[PIPE_SHADER_VERTEX]; mali_ptr saved_ubo = batch->uniform_buffers[PIPE_SHADER_VERTEX]; mali_ptr saved_push = batch->push_uniforms[PIPE_SHADER_VERTEX]; unsigned saved_nr_push_uniforms = batch->nr_push_uniforms[PIPE_SHADER_VERTEX]; ctx->uncompiled[PIPE_SHADER_VERTEX] = NULL; /* should not be read */ ctx->prog[PIPE_SHADER_VERTEX] = vs_uncompiled->xfb; batch->rsd[PIPE_SHADER_VERTEX] = panfrost_emit_compute_shader_meta(batch, PIPE_SHADER_VERTEX); batch->uniform_buffers[PIPE_SHADER_VERTEX] = panfrost_emit_const_buf(batch, PIPE_SHADER_VERTEX, NULL, &batch->push_uniforms[PIPE_SHADER_VERTEX], &batch->nr_push_uniforms[PIPE_SHADER_VERTEX]); JOBX(launch_xfb)(batch, info, count); batch->compute_count++; ctx->uncompiled[PIPE_SHADER_VERTEX] = vs_uncompiled; ctx->prog[PIPE_SHADER_VERTEX] = vs; batch->rsd[PIPE_SHADER_VERTEX] = saved_rsd; batch->uniform_buffers[PIPE_SHADER_VERTEX] = saved_ubo; batch->push_uniforms[PIPE_SHADER_VERTEX] = saved_push; batch->nr_push_uniforms[PIPE_SHADER_VERTEX] = saved_nr_push_uniforms; } /* * Increase the vertex count on the batch using a saturating add, and hope the * compiler can use the machine instruction here... */ static inline void panfrost_increase_vertex_count(struct panfrost_batch *batch, uint32_t increment) { uint32_t sum = batch->vertex_count + increment; if (sum >= batch->vertex_count) batch->vertex_count = sum; else batch->vertex_count = UINT32_MAX; #if PAN_ARCH <= 5 batch->tiler_ctx.midgard.vertex_count = batch->vertex_count; #endif } /* * If we change whether we're drawing points, or whether point sprites are * enabled (specified in the rasterizer), we may need to rebind shaders * accordingly. This implicitly covers the case of rebinding framebuffers, * because all dirty flags are set there. */ static void panfrost_update_active_prim(struct panfrost_context *ctx, const struct pipe_draw_info *info) { const enum mesa_prim prev_prim = u_reduced_prim(ctx->active_prim); const enum mesa_prim new_prim = u_reduced_prim(info->mode); ctx->active_prim = info->mode; if ((ctx->dirty & PAN_DIRTY_RASTERIZER) || (prev_prim != new_prim)) { panfrost_update_shader_variant(ctx, PIPE_SHADER_FRAGMENT); } } static unsigned panfrost_draw_get_vertex_count(struct panfrost_batch *batch, const struct pipe_draw_info *info, const struct pipe_draw_start_count_bias *draw, bool idvs) { struct panfrost_context *ctx = batch->ctx; unsigned vertex_count = ctx->vertex_count; unsigned min_index = 0, max_index = 0; batch->indices = 0; if (info->index_size && PAN_ARCH >= 9) { batch->indices = panfrost_get_index_buffer(batch, info, draw); /* Use index count to estimate vertex count */ panfrost_increase_vertex_count(batch, draw->count); } else if (info->index_size) { batch->indices = panfrost_get_index_buffer_bounded( batch, info, draw, &min_index, &max_index); /* Use the corresponding values */ vertex_count = max_index - min_index + 1; ctx->offset_start = min_index + draw->index_bias; panfrost_increase_vertex_count(batch, vertex_count); } else { ctx->offset_start = draw->start; panfrost_increase_vertex_count(batch, vertex_count); } if (PAN_ARCH <= 9 && info->instance_count > 1) { unsigned count = vertex_count; /* Index-Driven Vertex Shading requires different instances to * have different cache lines for position results. Each vertex * position is 16 bytes and the Mali cache line is 64 bytes, so * the instance count must be aligned to 4 vertices. */ if (idvs) count = ALIGN_POT(count, 4); ctx->padded_count = panfrost_padded_vertex_count(count); } else { ctx->padded_count = vertex_count; } return vertex_count; } static void panfrost_single_draw_direct(struct panfrost_batch *batch, const struct pipe_draw_info *info, unsigned drawid_offset, const struct pipe_draw_start_count_bias *draw) { if (!draw->count || !info->instance_count) return; struct panfrost_context *ctx = batch->ctx; panfrost_update_active_prim(ctx, info); /* Take into account a negative bias */ ctx->vertex_count = draw->count + (info->index_size ? abs(draw->index_bias) : 0); ctx->instance_count = info->instance_count; ctx->base_vertex = info->index_size ? draw->index_bias : 0; ctx->base_instance = info->start_instance; ctx->drawid = drawid_offset; struct panfrost_compiled_shader *vs = ctx->prog[PIPE_SHADER_VERTEX]; bool idvs = vs->info.vs.idvs; UNUSED unsigned vertex_count = panfrost_draw_get_vertex_count(batch, info, draw, idvs); panfrost_statistics_record(ctx, info, draw); panfrost_update_state_3d(batch); panfrost_update_shader_state(batch, PIPE_SHADER_VERTEX); panfrost_update_shader_state(batch, PIPE_SHADER_FRAGMENT); panfrost_clean_state_3d(ctx); if (ctx->uncompiled[PIPE_SHADER_VERTEX]->xfb) { panfrost_launch_xfb(batch, info, draw->count); } /* Increment transform feedback offsets */ panfrost_update_streamout_offsets(ctx); /* Any side effects must be handled by the XFB shader, so we only need * to run vertex shaders if we need rasterization. */ if (panfrost_batch_skip_rasterization(batch)) return; #if PAN_ARCH <= 7 /* Emit all sort of descriptors. */ panfrost_emit_varying_descriptor(batch, ctx->padded_count * ctx->instance_count, info->mode == MESA_PRIM_POINTS); #endif JOBX(launch_draw)(batch, info, drawid_offset, draw, vertex_count); batch->draw_count++; } static bool panfrost_compatible_batch_state(struct panfrost_batch *batch, enum mesa_prim reduced_prim) { struct panfrost_context *ctx = batch->ctx; struct pipe_rasterizer_state *rast = &ctx->rasterizer->base; if (reduced_prim == MESA_PRIM_LINES && !pan_tristate_set(&batch->line_smoothing, rast->line_smooth)) return false; /* Only applies on Valhall */ if (PAN_ARCH < 9) return true; bool coord = (rast->sprite_coord_mode == PIPE_SPRITE_COORD_LOWER_LEFT); bool first = rast->flatshade_first; /* gl_PointCoord orientation only matters when drawing points, but * provoking vertex doesn't matter for points. */ if (reduced_prim == MESA_PRIM_POINTS) return pan_tristate_set(&batch->sprite_coord_origin, coord); else return pan_tristate_set(&batch->first_provoking_vertex, first); } static struct panfrost_batch * prepare_draw(struct pipe_context *pipe, const struct pipe_draw_info *info) { struct panfrost_context *ctx = pan_context(pipe); struct panfrost_device *dev = pan_device(pipe->screen); /* Do some common setup */ struct panfrost_batch *batch = panfrost_get_batch_for_fbo(ctx); /* Don't add too many jobs to a single batch. Job manager hardware has a * hard limit of 65536 jobs per job chain. Given a draw issues a maximum * of 3 jobs (a vertex, a tiler and a compute job is XFB is enabled), we * could use 65536 / 3 as a limit, but we choose a smaller soft limit * (arbitrary) to avoid the risk of timeouts. This might not be a good * idea. */ if (unlikely(batch->draw_count > 10000)) batch = panfrost_get_fresh_batch_for_fbo(ctx, "Too many draws"); enum mesa_prim reduced_prim = u_reduced_prim(info->mode); if (unlikely(!panfrost_compatible_batch_state(batch, reduced_prim))) { batch = panfrost_get_fresh_batch_for_fbo(ctx, "State change"); ASSERTED bool succ = panfrost_compatible_batch_state(batch, reduced_prim); assert(succ && "must be able to set state for a fresh batch"); } /* panfrost_batch_skip_rasterization reads * batch->scissor_culls_everything, which is set by * panfrost_emit_viewport, so call that first. */ if (ctx->dirty & (PAN_DIRTY_VIEWPORT | PAN_DIRTY_SCISSOR)) batch->viewport = panfrost_emit_viewport(batch); /* Mark everything dirty when debugging */ if (unlikely(dev->debug & PAN_DBG_DIRTY)) panfrost_dirty_state_all(ctx); /* Conservatively assume draw parameters always change */ ctx->dirty |= PAN_DIRTY_PARAMS | PAN_DIRTY_DRAWID; return batch; } static void panfrost_draw_indirect(struct pipe_context *pipe, const struct pipe_draw_info *info, unsigned drawid_offset, const struct pipe_draw_indirect_info *indirect) { struct panfrost_context *ctx = pan_context(pipe); if (!PAN_GPU_SUPPORTS_DRAW_INDIRECT || ctx->active_queries || ctx->streamout.num_targets) { util_draw_indirect(pipe, info, drawid_offset, indirect); perf_debug(ctx, "Emulating indirect draw on the CPU"); return; } struct panfrost_batch *batch = prepare_draw(pipe, info); struct pipe_draw_info tmp_info = *info; panfrost_batch_read_rsrc(batch, pan_resource(indirect->buffer), PIPE_SHADER_VERTEX); panfrost_update_active_prim(ctx, &tmp_info); ctx->drawid = drawid_offset; batch->indices = 0; if (info->index_size) { struct panfrost_resource *index_buffer = pan_resource(info->index.resource); panfrost_batch_read_rsrc(batch, index_buffer, PIPE_SHADER_VERTEX); batch->indices = index_buffer->image.data.base; } panfrost_update_state_3d(batch); panfrost_update_shader_state(batch, PIPE_SHADER_VERTEX); panfrost_update_shader_state(batch, PIPE_SHADER_FRAGMENT); panfrost_clean_state_3d(ctx); /* Increment transform feedback offsets */ panfrost_update_streamout_offsets(ctx); /* Any side effects must be handled by the XFB shader, so we only need * to run vertex shaders if we need rasterization. */ if (panfrost_batch_skip_rasterization(batch)) return; JOBX(launch_draw_indirect)(batch, &tmp_info, drawid_offset, indirect); batch->draw_count++; } static void panfrost_multi_draw_direct(struct pipe_context *pipe, const struct pipe_draw_info *info, unsigned drawid_offset, const struct pipe_draw_start_count_bias *draws, unsigned num_draws) { struct panfrost_context *ctx = pan_context(pipe); struct panfrost_batch *batch = prepare_draw(pipe, info); struct pipe_draw_info tmp_info = *info; unsigned drawid = drawid_offset; for (unsigned i = 0; i < num_draws; i++) { panfrost_single_draw_direct(batch, &tmp_info, drawid, &draws[i]); if (tmp_info.increment_draw_id) { ctx->dirty |= PAN_DIRTY_DRAWID; drawid++; } } } static void panfrost_draw_vbo(struct pipe_context *pipe, const struct pipe_draw_info *info, unsigned drawid_offset, const struct pipe_draw_indirect_info *indirect, const struct pipe_draw_start_count_bias *draws, unsigned num_draws) { struct panfrost_context *ctx = pan_context(pipe); if (!panfrost_render_condition_check(ctx)) return; ctx->draw_calls++; if (indirect && indirect->buffer) { assert(num_draws == 1); panfrost_draw_indirect(pipe, info, drawid_offset, indirect); } else { panfrost_multi_draw_direct(pipe, info, drawid_offset, draws, num_draws); } } /* Launch grid is the compute equivalent of draw_vbo, so in this routine, we * construct the COMPUTE job and some of its payload. */ static void panfrost_launch_grid_on_batch(struct pipe_context *pipe, struct panfrost_batch *batch, const struct pipe_grid_info *info) { struct panfrost_context *ctx = pan_context(pipe); util_dynarray_foreach(&ctx->global_buffers, struct pipe_resource *, res) { if (!*res) continue; struct panfrost_resource *buffer = pan_resource(*res); panfrost_batch_write_rsrc(batch, buffer, PIPE_SHADER_COMPUTE); } if (info->indirect && !PAN_GPU_SUPPORTS_DISPATCH_INDIRECT) { struct pipe_transfer *transfer; uint32_t *params = pipe_buffer_map_range(pipe, info->indirect, info->indirect_offset, 3 * sizeof(uint32_t), PIPE_MAP_READ, &transfer); struct pipe_grid_info direct = *info; direct.indirect = NULL; direct.grid[0] = params[0]; direct.grid[1] = params[1]; direct.grid[2] = params[2]; pipe_buffer_unmap(pipe, transfer); if (params[0] && params[1] && params[2]) panfrost_launch_grid_on_batch(pipe, batch, &direct); return; } ctx->compute_grid = info; /* Conservatively assume workgroup size changes every launch */ ctx->dirty |= PAN_DIRTY_PARAMS; panfrost_update_shader_state(batch, PIPE_SHADER_COMPUTE); /* We want our compute thread descriptor to be per job. * Save the global one, and restore it when we're done emitting * the job. */ mali_ptr saved_tls = batch->tls.gpu; batch->tls.gpu = panfrost_emit_shared_memory(batch, info); /* if indirect, mark the indirect buffer as being read */ if (info->indirect) panfrost_batch_read_rsrc(batch, pan_resource(info->indirect), PIPE_SHADER_COMPUTE); /* launch it */ JOBX(launch_grid)(batch, info); batch->compute_count++; batch->tls.gpu = saved_tls; } static void panfrost_launch_grid(struct pipe_context *pipe, const struct pipe_grid_info *info) { struct panfrost_context *ctx = pan_context(pipe); /* XXX - shouldn't be necessary with working memory barriers. Affected * test: KHR-GLES31.core.compute_shader.pipeline-post-xfb */ panfrost_flush_all_batches(ctx, "Launch grid pre-barrier"); struct panfrost_batch *batch = panfrost_get_batch_for_fbo(ctx); panfrost_launch_grid_on_batch(pipe, batch, info); panfrost_flush_all_batches(ctx, "Launch grid post-barrier"); } #define AFBC_BLOCK_ALIGN 16 static void panfrost_launch_afbc_shader(struct panfrost_batch *batch, void *cso, struct pipe_constant_buffer *cbuf, unsigned nr_blocks) { struct pipe_context *pctx = &batch->ctx->base; void *saved_cso = NULL; struct pipe_constant_buffer saved_const = {}; struct pipe_grid_info grid = { .block[0] = 1, .block[1] = 1, .block[2] = 1, .grid[0] = nr_blocks, .grid[1] = 1, .grid[2] = 1, }; struct panfrost_constant_buffer *pbuf = &batch->ctx->constant_buffer[PIPE_SHADER_COMPUTE]; saved_cso = batch->ctx->uncompiled[PIPE_SHADER_COMPUTE]; util_copy_constant_buffer(&pbuf->cb[0], &saved_const, true); pctx->bind_compute_state(pctx, cso); pctx->set_constant_buffer(pctx, PIPE_SHADER_COMPUTE, 0, false, cbuf); panfrost_launch_grid_on_batch(pctx, batch, &grid); pctx->bind_compute_state(pctx, saved_cso); pctx->set_constant_buffer(pctx, PIPE_SHADER_COMPUTE, 0, true, &saved_const); } #define LAUNCH_AFBC_SHADER(name, batch, rsrc, consts, nr_blocks) \ struct pan_afbc_shader_data *shaders = \ panfrost_afbc_get_shaders(batch->ctx, rsrc, AFBC_BLOCK_ALIGN); \ struct pipe_constant_buffer constant_buffer = { \ .buffer_size = sizeof(consts), \ .user_buffer = &consts}; \ panfrost_launch_afbc_shader(batch, shaders->name##_cso, &constant_buffer, \ nr_blocks); static void panfrost_afbc_size(struct panfrost_batch *batch, struct panfrost_resource *src, struct panfrost_bo *metadata, unsigned offset, unsigned level) { struct pan_image_slice_layout *slice = &src->image.layout.slices[level]; struct panfrost_afbc_size_info consts = { .src = src->image.data.base + src->image.data.offset + slice->offset, .metadata = metadata->ptr.gpu + offset, }; panfrost_batch_read_rsrc(batch, src, PIPE_SHADER_COMPUTE); panfrost_batch_write_bo(batch, metadata, PIPE_SHADER_COMPUTE); LAUNCH_AFBC_SHADER(size, batch, src, consts, slice->afbc.nr_blocks); } static void panfrost_afbc_pack(struct panfrost_batch *batch, struct panfrost_resource *src, struct panfrost_bo *dst, struct pan_image_slice_layout *dst_slice, struct panfrost_bo *metadata, unsigned metadata_offset, unsigned level) { struct pan_image_slice_layout *src_slice = &src->image.layout.slices[level]; struct panfrost_afbc_pack_info consts = { .src = src->image.data.base + src->image.data.offset + src_slice->offset, .dst = dst->ptr.gpu + dst_slice->offset, .metadata = metadata->ptr.gpu + metadata_offset, .header_size = dst_slice->afbc.header_size, .src_stride = src_slice->afbc.stride, .dst_stride = dst_slice->afbc.stride, }; panfrost_batch_write_rsrc(batch, src, PIPE_SHADER_COMPUTE); panfrost_batch_write_bo(batch, dst, PIPE_SHADER_COMPUTE); panfrost_batch_add_bo(batch, metadata, PIPE_SHADER_COMPUTE); LAUNCH_AFBC_SHADER(pack, batch, src, consts, dst_slice->afbc.nr_blocks); } static void * panfrost_create_rasterizer_state(struct pipe_context *pctx, const struct pipe_rasterizer_state *cso) { struct panfrost_rasterizer *so = CALLOC_STRUCT(panfrost_rasterizer); so->base = *cso; #if PAN_ARCH <= 7 pan_pack(&so->multisample, MULTISAMPLE_MISC, cfg) { cfg.multisample_enable = cso->multisample; cfg.fixed_function_near_discard = cso->depth_clip_near; cfg.fixed_function_far_discard = cso->depth_clip_far; cfg.fixed_function_depth_range_fixed = !cso->depth_clamp; cfg.shader_depth_range_fixed = true; } pan_pack(&so->stencil_misc, STENCIL_MASK_MISC, cfg) { cfg.front_facing_depth_bias = cso->offset_tri; cfg.back_facing_depth_bias = cso->offset_tri; cfg.single_sampled_lines = !cso->multisample; } #endif return so; } #if PAN_ARCH >= 9 /* * Given a pipe_vertex_element, pack the corresponding Valhall attribute * descriptor. This function is called at CSO create time. */ static void panfrost_pack_attribute(struct panfrost_device *dev, const struct pipe_vertex_element el, struct mali_attribute_packed *out) { pan_pack(out, ATTRIBUTE, cfg) { cfg.table = PAN_TABLE_ATTRIBUTE_BUFFER; cfg.frequency = (el.instance_divisor > 0) ? MALI_ATTRIBUTE_FREQUENCY_INSTANCE : MALI_ATTRIBUTE_FREQUENCY_VERTEX; cfg.format = GENX(panfrost_format_from_pipe_format)(el.src_format)->hw; cfg.offset = el.src_offset; cfg.buffer_index = el.vertex_buffer_index; cfg.stride = el.src_stride; if (el.instance_divisor == 0) { /* Per-vertex */ cfg.attribute_type = MALI_ATTRIBUTE_TYPE_1D; cfg.frequency = MALI_ATTRIBUTE_FREQUENCY_VERTEX; cfg.offset_enable = true; } else if (util_is_power_of_two_or_zero(el.instance_divisor)) { /* Per-instance, POT divisor */ cfg.attribute_type = MALI_ATTRIBUTE_TYPE_1D_POT_DIVISOR; cfg.frequency = MALI_ATTRIBUTE_FREQUENCY_INSTANCE; cfg.divisor_r = __builtin_ctz(el.instance_divisor); } else { /* Per-instance, NPOT divisor */ cfg.attribute_type = MALI_ATTRIBUTE_TYPE_1D_NPOT_DIVISOR; cfg.frequency = MALI_ATTRIBUTE_FREQUENCY_INSTANCE; cfg.divisor_d = panfrost_compute_magic_divisor( el.instance_divisor, &cfg.divisor_r, &cfg.divisor_e); } } } #endif static void * panfrost_create_vertex_elements_state(struct pipe_context *pctx, unsigned num_elements, const struct pipe_vertex_element *elements) { struct panfrost_vertex_state *so = CALLOC_STRUCT(panfrost_vertex_state); UNUSED struct panfrost_device *dev = pan_device(pctx->screen); so->num_elements = num_elements; memcpy(so->pipe, elements, sizeof(*elements) * num_elements); for (unsigned i = 0; i < num_elements; ++i) so->strides[elements[i].vertex_buffer_index] = elements[i].src_stride; #if PAN_ARCH >= 9 for (unsigned i = 0; i < num_elements; ++i) panfrost_pack_attribute(dev, elements[i], &so->attributes[i]); #else /* Assign attribute buffers corresponding to the vertex buffers, keyed * for a particular divisor since that's how instancing works on Mali */ for (unsigned i = 0; i < num_elements; ++i) { so->element_buffer[i] = pan_assign_vertex_buffer( so->buffers, &so->nr_bufs, elements[i].vertex_buffer_index, elements[i].instance_divisor); } for (int i = 0; i < num_elements; ++i) { enum pipe_format fmt = elements[i].src_format; so->formats[i] = GENX(panfrost_format_from_pipe_format)(fmt)->hw; assert(MALI_EXTRACT_INDEX(so->formats[i]) && "format must be supported"); } /* Let's also prepare vertex builtins */ so->formats[PAN_VERTEX_ID] = GENX(panfrost_format_from_pipe_format)(PIPE_FORMAT_R32_UINT)->hw; so->formats[PAN_INSTANCE_ID] = GENX(panfrost_format_from_pipe_format)(PIPE_FORMAT_R32_UINT)->hw; #endif return so; } static inline unsigned pan_pipe_to_stencil_op(enum pipe_stencil_op in) { switch (in) { case PIPE_STENCIL_OP_KEEP: return MALI_STENCIL_OP_KEEP; case PIPE_STENCIL_OP_ZERO: return MALI_STENCIL_OP_ZERO; case PIPE_STENCIL_OP_REPLACE: return MALI_STENCIL_OP_REPLACE; case PIPE_STENCIL_OP_INCR: return MALI_STENCIL_OP_INCR_SAT; case PIPE_STENCIL_OP_DECR: return MALI_STENCIL_OP_DECR_SAT; case PIPE_STENCIL_OP_INCR_WRAP: return MALI_STENCIL_OP_INCR_WRAP; case PIPE_STENCIL_OP_DECR_WRAP: return MALI_STENCIL_OP_DECR_WRAP; case PIPE_STENCIL_OP_INVERT: return MALI_STENCIL_OP_INVERT; default: unreachable("Invalid stencil op"); } } #if PAN_ARCH <= 7 static inline void pan_pipe_to_stencil(const struct pipe_stencil_state *in, struct mali_stencil_packed *out) { pan_pack(out, STENCIL, s) { s.mask = in->valuemask; s.compare_function = (enum mali_func)in->func; s.stencil_fail = pan_pipe_to_stencil_op(in->fail_op); s.depth_fail = pan_pipe_to_stencil_op(in->zfail_op); s.depth_pass = pan_pipe_to_stencil_op(in->zpass_op); } } #endif static bool pipe_zs_always_passes(const struct pipe_depth_stencil_alpha_state *zsa) { if (zsa->depth_enabled && zsa->depth_func != PIPE_FUNC_ALWAYS) return false; if (zsa->stencil[0].enabled && zsa->stencil[0].func != PIPE_FUNC_ALWAYS) return false; if (zsa->stencil[1].enabled && zsa->stencil[1].func != PIPE_FUNC_ALWAYS) return false; return true; } static void * panfrost_create_depth_stencil_state( struct pipe_context *pipe, const struct pipe_depth_stencil_alpha_state *zsa) { struct panfrost_zsa_state *so = CALLOC_STRUCT(panfrost_zsa_state); so->base = *zsa; const struct pipe_stencil_state front = zsa->stencil[0]; const struct pipe_stencil_state back = zsa->stencil[1].enabled ? zsa->stencil[1] : front; enum mali_func depth_func = zsa->depth_enabled ? (enum mali_func)zsa->depth_func : MALI_FUNC_ALWAYS; /* Normalize (there's no separate enable) */ if (PAN_ARCH <= 5 && !zsa->alpha_enabled) so->base.alpha_func = MALI_FUNC_ALWAYS; #if PAN_ARCH <= 7 /* Prepack relevant parts of the Renderer State Descriptor. They will * be ORed in at draw-time */ pan_pack(&so->rsd_depth, MULTISAMPLE_MISC, cfg) { cfg.depth_function = depth_func; cfg.depth_write_mask = zsa->depth_writemask; } pan_pack(&so->rsd_stencil, STENCIL_MASK_MISC, cfg) { cfg.stencil_enable = front.enabled; cfg.stencil_mask_front = front.writemask; cfg.stencil_mask_back = back.writemask; #if PAN_ARCH <= 5 cfg.alpha_test_compare_function = (enum mali_func)so->base.alpha_func; #endif } /* Stencil tests have their own words in the RSD */ pan_pipe_to_stencil(&front, &so->stencil_front); pan_pipe_to_stencil(&back, &so->stencil_back); #else /* Pack with nodefaults so only explicitly set fields affect pan_merge() when * emitting depth stencil descriptor */ pan_pack_nodefaults(&so->desc, DEPTH_STENCIL, cfg) { cfg.front_compare_function = (enum mali_func)front.func; cfg.front_stencil_fail = pan_pipe_to_stencil_op(front.fail_op); cfg.front_depth_fail = pan_pipe_to_stencil_op(front.zfail_op); cfg.front_depth_pass = pan_pipe_to_stencil_op(front.zpass_op); cfg.back_compare_function = (enum mali_func)back.func; cfg.back_stencil_fail = pan_pipe_to_stencil_op(back.fail_op); cfg.back_depth_fail = pan_pipe_to_stencil_op(back.zfail_op); cfg.back_depth_pass = pan_pipe_to_stencil_op(back.zpass_op); cfg.stencil_test_enable = front.enabled; cfg.front_write_mask = front.writemask; cfg.back_write_mask = back.writemask; cfg.front_value_mask = front.valuemask; cfg.back_value_mask = back.valuemask; cfg.depth_write_enable = zsa->depth_writemask; cfg.depth_function = depth_func; } #endif so->enabled = zsa->stencil[0].enabled || (zsa->depth_enabled && zsa->depth_func != PIPE_FUNC_ALWAYS); so->zs_always_passes = pipe_zs_always_passes(zsa); so->writes_zs = util_writes_depth_stencil(zsa); /* TODO: Bounds test should be easy */ assert(!zsa->depth_bounds_test); return so; } static struct pipe_sampler_view * panfrost_create_sampler_view(struct pipe_context *pctx, struct pipe_resource *texture, const struct pipe_sampler_view *template) { struct panfrost_context *ctx = pan_context(pctx); struct panfrost_sampler_view *so = rzalloc(pctx, struct panfrost_sampler_view); pan_legalize_format(ctx, pan_resource(texture), template->format, false, false); pipe_reference(NULL, &texture->reference); so->base = *template; so->base.texture = texture; so->base.reference.count = 1; so->base.context = pctx; panfrost_create_sampler_view_bo(so, pctx, texture); return (struct pipe_sampler_view *)so; } /* A given Gallium blend state can be encoded to the hardware in numerous, * dramatically divergent ways due to the interactions of blending with * framebuffer formats. Conceptually, there are two modes: * * - Fixed-function blending (for suitable framebuffer formats, suitable blend * state, and suitable blend constant) * * - Blend shaders (for everything else) * * A given Gallium blend configuration will compile to exactly one * fixed-function blend state, if it compiles to any, although the constant * will vary across runs as that is tracked outside of the Gallium CSO. * * However, that same blend configuration will compile to many different blend * shaders, depending on the framebuffer formats active. The rationale is that * blend shaders override not just fixed-function blending but also * fixed-function format conversion, so blend shaders are keyed to a particular * framebuffer format. As an example, the tilebuffer format is identical for * RG16F and RG16UI -- both are simply 32-bit raw pixels -- so both require * blend shaders. * * All of this state is encapsulated in the panfrost_blend_state struct * (our subclass of pipe_blend_state). */ /* Create a blend CSO. Essentially, try to compile a fixed-function * expression and initialize blend shaders */ static void * panfrost_create_blend_state(struct pipe_context *pipe, const struct pipe_blend_state *blend) { struct panfrost_blend_state *so = CALLOC_STRUCT(panfrost_blend_state); so->base = *blend; so->pan.logicop_enable = blend->logicop_enable; so->pan.logicop_func = blend->logicop_func; so->pan.rt_count = blend->max_rt + 1; for (unsigned c = 0; c < so->pan.rt_count; ++c) { unsigned g = blend->independent_blend_enable ? c : 0; const struct pipe_rt_blend_state pipe = blend->rt[g]; struct pan_blend_equation equation = {0}; equation.color_mask = pipe.colormask; equation.blend_enable = pipe.blend_enable; if (pipe.blend_enable) { equation.rgb_func = pipe.rgb_func; equation.rgb_src_factor = pipe.rgb_src_factor; equation.rgb_dst_factor = pipe.rgb_dst_factor; equation.alpha_func = pipe.alpha_func; equation.alpha_src_factor = pipe.alpha_src_factor; equation.alpha_dst_factor = pipe.alpha_dst_factor; } /* Determine some common properties */ unsigned constant_mask = pan_blend_constant_mask(equation); const bool supports_2src = pan_blend_supports_2src(PAN_ARCH); so->info[c] = (struct pan_blend_info){ .enabled = (equation.color_mask != 0) && !(blend->logicop_enable && blend->logicop_func == PIPE_LOGICOP_NOOP), .opaque = !blend->logicop_enable && pan_blend_is_opaque(equation), .constant_mask = constant_mask, /* TODO: check the dest for the logicop */ .load_dest = blend->logicop_enable || pan_blend_reads_dest(equation), /* Could this possibly be fixed-function? */ .fixed_function = !blend->logicop_enable && pan_blend_can_fixed_function(equation, supports_2src) && (!constant_mask || pan_blend_supports_constant(PAN_ARCH, c)), .alpha_zero_nop = pan_blend_alpha_zero_nop(equation), .alpha_one_store = pan_blend_alpha_one_store(equation), }; so->pan.rts[c].equation = equation; /* Bifrost needs to know if any render target loads its * destination in the hot draw path, so precompute this */ if (so->info[c].load_dest) so->load_dest_mask |= BITFIELD_BIT(c); /* Bifrost needs to know if any render target loads its * destination in the hot draw path, so precompute this */ if (so->info[c].enabled) so->enabled_mask |= BITFIELD_BIT(c); /* Converting equations to Mali style is expensive, do it at * CSO create time instead of draw-time */ if (so->info[c].fixed_function) { so->equation[c] = pan_pack_blend(equation); } } return so; } #if PAN_ARCH >= 9 static enum mali_flush_to_zero_mode panfrost_ftz_mode(struct pan_shader_info *info) { if (info->ftz_fp32) { if (info->ftz_fp16) return MALI_FLUSH_TO_ZERO_MODE_ALWAYS; else return MALI_FLUSH_TO_ZERO_MODE_DX11; } else { /* We don't have a "flush FP16, preserve FP32" mode, but APIs * should not be able to generate that. */ assert(!info->ftz_fp16 && !info->ftz_fp32); return MALI_FLUSH_TO_ZERO_MODE_PRESERVE_SUBNORMALS; } } #endif static void prepare_shader(struct panfrost_compiled_shader *state, struct panfrost_pool *pool, bool upload) { #if PAN_ARCH <= 7 void *out = &state->partial_rsd; if (upload) { struct panfrost_ptr ptr = pan_pool_alloc_desc(&pool->base, RENDERER_STATE); state->state = panfrost_pool_take_ref(pool, ptr.gpu); out = ptr.cpu; } pan_pack(out, RENDERER_STATE, cfg) { pan_shader_prepare_rsd(&state->info, state->bin.gpu, &cfg); } #else assert(upload); /* The address in the shader program descriptor must be non-null, but * the entire shader program descriptor may be omitted. * * See dEQP-GLES31.functional.compute.basic.empty */ if (!state->bin.gpu) return; bool vs = (state->info.stage == MESA_SHADER_VERTEX); bool secondary_enable = (vs && state->info.vs.secondary_enable); unsigned nr_variants = secondary_enable ? 3 : vs ? 2 : 1; struct panfrost_ptr ptr = pan_pool_alloc_desc_array(&pool->base, nr_variants, SHADER_PROGRAM); state->state = panfrost_pool_take_ref(pool, ptr.gpu); /* Generic, or IDVS/points */ pan_pack(ptr.cpu, SHADER_PROGRAM, cfg) { cfg.stage = pan_shader_stage(&state->info); if (cfg.stage == MALI_SHADER_STAGE_FRAGMENT) cfg.fragment_coverage_bitmask_type = MALI_COVERAGE_BITMASK_TYPE_GL; else if (vs) cfg.vertex_warp_limit = MALI_WARP_LIMIT_HALF; cfg.register_allocation = pan_register_allocation(state->info.work_reg_count); cfg.binary = state->bin.gpu; cfg.preload.r48_r63 = (state->info.preload >> 48); cfg.flush_to_zero_mode = panfrost_ftz_mode(&state->info); if (cfg.stage == MALI_SHADER_STAGE_FRAGMENT) cfg.requires_helper_threads = state->info.contains_barrier; } if (!vs) return; /* IDVS/triangles */ pan_pack(ptr.cpu + pan_size(SHADER_PROGRAM), SHADER_PROGRAM, cfg) { cfg.stage = pan_shader_stage(&state->info); cfg.vertex_warp_limit = MALI_WARP_LIMIT_HALF; cfg.register_allocation = pan_register_allocation(state->info.work_reg_count); cfg.binary = state->bin.gpu + state->info.vs.no_psiz_offset; cfg.preload.r48_r63 = (state->info.preload >> 48); cfg.flush_to_zero_mode = panfrost_ftz_mode(&state->info); } if (!secondary_enable) return; pan_pack(ptr.cpu + (pan_size(SHADER_PROGRAM) * 2), SHADER_PROGRAM, cfg) { unsigned work_count = state->info.vs.secondary_work_reg_count; cfg.stage = pan_shader_stage(&state->info); cfg.vertex_warp_limit = MALI_WARP_LIMIT_FULL; cfg.register_allocation = pan_register_allocation(work_count); cfg.binary = state->bin.gpu + state->info.vs.secondary_offset; cfg.preload.r48_r63 = (state->info.vs.secondary_preload >> 48); cfg.flush_to_zero_mode = panfrost_ftz_mode(&state->info); } #endif } static void screen_destroy(struct pipe_screen *pscreen) { struct panfrost_device *dev = pan_device(pscreen); GENX(pan_blitter_cache_cleanup)(&dev->blitter); } static void panfrost_sampler_view_destroy(struct pipe_context *pctx, struct pipe_sampler_view *pview) { struct panfrost_sampler_view *view = (struct panfrost_sampler_view *)pview; pipe_resource_reference(&pview->texture, NULL); panfrost_bo_unreference(view->state.bo); ralloc_free(view); } static void context_populate_vtbl(struct pipe_context *pipe) { pipe->draw_vbo = panfrost_draw_vbo; pipe->launch_grid = panfrost_launch_grid; pipe->create_vertex_elements_state = panfrost_create_vertex_elements_state; pipe->create_rasterizer_state = panfrost_create_rasterizer_state; pipe->create_depth_stencil_alpha_state = panfrost_create_depth_stencil_state; pipe->create_sampler_view = panfrost_create_sampler_view; pipe->sampler_view_destroy = panfrost_sampler_view_destroy; pipe->create_sampler_state = panfrost_create_sampler_state; pipe->create_blend_state = panfrost_create_blend_state; pipe->get_sample_position = u_default_get_sample_position; } static void context_init(struct panfrost_context *ctx) { } static void context_cleanup(struct panfrost_context *ctx) { } #if PAN_ARCH <= 5 /* Returns the polygon list's GPU address if available, or otherwise allocates * the polygon list. It's perfectly fast to use allocate/free BO directly, * since we'll hit the BO cache and this is one-per-batch anyway. */ static mali_ptr batch_get_polygon_list(struct panfrost_batch *batch) { struct panfrost_device *dev = pan_device(batch->ctx->base.screen); if (!batch->tiler_ctx.midgard.polygon_list) { bool has_draws = batch->draw_count > 0; unsigned size = panfrost_tiler_get_polygon_list_size( batch->key.width, batch->key.height, batch->vertex_count, !dev->model->quirks.no_hierarchical_tiling); /* Create the BO as invisible if we can. If there are no draws, * we need to write the polygon list manually because there's * no WRITE_VALUE job in the chain */ bool init_polygon_list = !has_draws; batch->polygon_list_bo = panfrost_batch_create_bo( batch, size, init_polygon_list ? 0 : PAN_BO_INVISIBLE, PIPE_SHADER_VERTEX, "Polygon list"); batch->tiler_ctx.midgard.polygon_list = batch->polygon_list_bo->ptr.gpu; panfrost_batch_add_bo(batch, batch->polygon_list_bo, PIPE_SHADER_FRAGMENT); if (init_polygon_list && dev->model->quirks.no_hierarchical_tiling) { assert(batch->polygon_list_bo->ptr.cpu); uint32_t *polygon_list_body = batch->polygon_list_bo->ptr.cpu + MALI_MIDGARD_TILER_MINIMUM_HEADER_SIZE; /* Magic for Mali T720 */ polygon_list_body[0] = 0xa0000000; } else if (init_polygon_list) { assert(batch->polygon_list_bo->ptr.cpu); uint32_t *header = batch->polygon_list_bo->ptr.cpu; memset(header, 0, size); } batch->tiler_ctx.midgard.disable = !has_draws; batch->tiler_ctx.midgard.no_hierarchical_tiling = dev->model->quirks.no_hierarchical_tiling; batch->tiler_ctx.midgard.heap.start = dev->tiler_heap->ptr.gpu; batch->tiler_ctx.midgard.heap.size = panfrost_bo_size(dev->tiler_heap); } return batch->tiler_ctx.midgard.polygon_list; } #endif static void init_polygon_list(struct panfrost_batch *batch) { #if PAN_ARCH <= 5 mali_ptr polygon_list = batch_get_polygon_list(batch); pan_jc_initialize_tiler(&batch->pool.base, &batch->jm.jobs.vtc_jc, polygon_list); #endif } static int submit_batch(struct panfrost_batch *batch, struct pan_fb_info *fb) { JOBX(preload_fb)(batch, fb); init_polygon_list(batch); /* Now that all draws are in, we can finally prepare the * FBD for the batch (if there is one). */ emit_tls(batch); if (panfrost_has_fragment_job(batch)) { emit_fbd(batch, fb); emit_fragment_job(batch, fb); } return JOBX(submit_batch)(batch); } static void emit_write_timestamp(struct panfrost_batch *batch, struct panfrost_resource *dst, unsigned offset) { batch->need_job_req_cycle_count = true; batch->has_time_query = true; JOBX(emit_write_timestamp)(batch, dst, offset); } void GENX(panfrost_cmdstream_screen_init)(struct panfrost_screen *screen) { struct panfrost_device *dev = &screen->dev; screen->vtbl.prepare_shader = prepare_shader; screen->vtbl.screen_destroy = screen_destroy; screen->vtbl.context_populate_vtbl = context_populate_vtbl; screen->vtbl.context_init = JOBX(init_context); screen->vtbl.context_cleanup = JOBX(cleanup_context); screen->vtbl.init_batch = JOBX(init_batch); screen->vtbl.cleanup_batch = JOBX(cleanup_batch); screen->vtbl.submit_batch = submit_batch; screen->vtbl.get_blend_shader = GENX(pan_blend_get_shader_locked); screen->vtbl.get_compiler_options = GENX(pan_shader_get_compiler_options); screen->vtbl.compile_shader = GENX(pan_shader_compile); screen->vtbl.afbc_size = panfrost_afbc_size; screen->vtbl.afbc_pack = panfrost_afbc_pack; screen->vtbl.emit_write_timestamp = emit_write_timestamp; GENX(pan_blitter_cache_init) (&dev->blitter, panfrost_device_gpu_id(dev), &dev->blend_shaders, &screen->blitter.bin_pool.base, &screen->blitter.desc_pool.base); #if PAN_GPU_SUPPORTS_DISPATCH_INDIRECT pan_indirect_dispatch_meta_init( &dev->indirect_dispatch, panfrost_device_gpu_id(dev), &screen->blitter.bin_pool.base, &screen->blitter.desc_pool.base); #endif }