/* * Copyright © 2012-2018 Rob Clark * SPDX-License-Identifier: MIT * * Authors: * Rob Clark */ #include "freedreno_drmif.h" #include "freedreno_priv.h" /** * priority of zero is highest priority, and higher numeric values are * lower priorities */ struct fd_pipe * fd_pipe_new2(struct fd_device *dev, enum fd_pipe_id id, uint32_t prio) { struct fd_pipe *pipe; uint64_t val; if (id > FD_PIPE_MAX) { ERROR_MSG("invalid pipe id: %d", id); return NULL; } if ((prio != 1) && (fd_device_version(dev) < FD_VERSION_SUBMIT_QUEUES)) { ERROR_MSG("invalid priority!"); return NULL; } pipe = dev->funcs->pipe_new(dev, id, prio); if (!pipe) { ERROR_MSG("allocation failed"); return NULL; } pipe->dev = dev; pipe->id = id; p_atomic_set(&pipe->refcnt, 1); fd_pipe_get_param(pipe, FD_GPU_ID, &val); pipe->dev_id.gpu_id = val; fd_pipe_get_param(pipe, FD_CHIP_ID, &val); pipe->dev_id.chip_id = val; pipe->is_64bit = fd_dev_64b(&pipe->dev_id); /* Use the _NOSYNC flags because we don't want the control_mem bo to hold * a reference to the ourself. This also means that we won't be able * to determine if the buffer is idle which is needed by bo-cache. But * pipe creation/destroy is not a high frequency event. */ pipe->control_mem = fd_bo_new(dev, sizeof(*pipe->control), FD_BO_CACHED_COHERENT | _FD_BO_NOSYNC, "pipe-control"); pipe->control = fd_bo_map(pipe->control_mem); /* We could be getting a bo from the bo-cache, make sure the fence value * is not garbage: */ pipe->control->fence = 0; pipe->control_mem->bo_reuse = NO_CACHE; return pipe; } struct fd_pipe * fd_pipe_new(struct fd_device *dev, enum fd_pipe_id id) { return fd_pipe_new2(dev, id, 1); } struct fd_pipe * fd_pipe_ref(struct fd_pipe *pipe) { simple_mtx_lock(&fence_lock); fd_pipe_ref_locked(pipe); simple_mtx_unlock(&fence_lock); return pipe; } struct fd_pipe * fd_pipe_ref_locked(struct fd_pipe *pipe) { simple_mtx_assert_locked(&fence_lock); pipe->refcnt++; return pipe; } void fd_pipe_del(struct fd_pipe *pipe) { simple_mtx_lock(&fence_lock); fd_pipe_del_locked(pipe); simple_mtx_unlock(&fence_lock); } void fd_pipe_del_locked(struct fd_pipe *pipe) { simple_mtx_assert_locked(&fence_lock); if (--pipe->refcnt) return; fd_bo_del(pipe->control_mem); pipe->funcs->destroy(pipe); } /** * Flush any unflushed deferred submits. This is called at context- * destroy to make sure we don't leak unflushed submits. */ void fd_pipe_purge(struct fd_pipe *pipe) { struct fd_device *dev = pipe->dev; struct fd_fence *unflushed_fence = NULL; simple_mtx_lock(&dev->submit_lock); /* We only queue up deferred submits for a single pipe at a time, so * if there is a deferred_submits_fence on the same pipe as us, we * know we have deferred_submits queued, which need to be flushed: */ if (dev->deferred_submits_fence && dev->deferred_submits_fence->pipe == pipe) { unflushed_fence = fd_fence_ref(dev->deferred_submits_fence); } simple_mtx_unlock(&dev->submit_lock); if (unflushed_fence) { fd_fence_flush(unflushed_fence); fd_fence_del(unflushed_fence); } if (pipe->funcs->finish) pipe->funcs->finish(pipe); } int fd_pipe_get_param(struct fd_pipe *pipe, enum fd_param_id param, uint64_t *value) { return pipe->funcs->get_param(pipe, param, value); } int fd_pipe_set_param(struct fd_pipe *pipe, enum fd_param_id param, uint64_t value) { return pipe->funcs->set_param(pipe, param, value); } const struct fd_dev_id * fd_pipe_dev_id(struct fd_pipe *pipe) { return &pipe->dev_id; } int fd_pipe_wait(struct fd_pipe *pipe, const struct fd_fence *fence) { return fd_pipe_wait_timeout(pipe, fence, ~0); } int fd_pipe_wait_timeout(struct fd_pipe *pipe, const struct fd_fence *fence, uint64_t timeout) { if (!fd_fence_after(fence->ufence, pipe->control->fence)) return 0; if (!timeout) return -ETIMEDOUT; fd_pipe_flush(pipe, fence->ufence); return pipe->funcs->wait(pipe, fence, timeout); } uint32_t fd_pipe_emit_fence(struct fd_pipe *pipe, struct fd_ringbuffer *ring) { uint32_t fence = ++pipe->last_fence; unsigned gen = fd_dev_gen(&pipe->dev_id); if (gen >= A7XX) { OUT_PKT7(ring, CP_EVENT_WRITE7, 4); OUT_RING(ring, CP_EVENT_WRITE_0_EVENT(CACHE_FLUSH_TS) | CP_EVENT_WRITE7_0_WRITE_SRC(EV_WRITE_USER_32B) | CP_EVENT_WRITE7_0_WRITE_DST(EV_DST_RAM) | CP_EVENT_WRITE7_0_WRITE_ENABLED); OUT_RELOC(ring, control_ptr(pipe, fence)); /* ADDR_LO/HI */ OUT_RING(ring, fence); } else if (gen >= A5XX) { OUT_PKT7(ring, CP_EVENT_WRITE, 4); OUT_RING(ring, CP_EVENT_WRITE_0_EVENT(CACHE_FLUSH_TS)); OUT_RELOC(ring, control_ptr(pipe, fence)); /* ADDR_LO/HI */ OUT_RING(ring, fence); } else { OUT_PKT3(ring, CP_EVENT_WRITE, 3); OUT_RING(ring, CP_EVENT_WRITE_0_EVENT(CACHE_FLUSH_TS)); OUT_RELOC(ring, control_ptr(pipe, fence)); /* ADDR */ OUT_RING(ring, fence); } return fence; } struct fd_fence * fd_fence_new(struct fd_pipe *pipe, bool use_fence_fd) { struct fd_fence *f = calloc(1, sizeof(*f)); f->refcnt = 1; f->pipe = fd_pipe_ref(pipe); util_queue_fence_init(&f->ready); f->use_fence_fd = use_fence_fd; f->fence_fd = -1; return f; } struct fd_fence * fd_fence_ref(struct fd_fence *f) { simple_mtx_lock(&fence_lock); fd_fence_ref_locked(f); simple_mtx_unlock(&fence_lock); return f; } struct fd_fence * fd_fence_ref_locked(struct fd_fence *f) { simple_mtx_assert_locked(&fence_lock); f->refcnt++; return f; } void fd_fence_del(struct fd_fence *f) { simple_mtx_lock(&fence_lock); fd_fence_del_locked(f); simple_mtx_unlock(&fence_lock); } void fd_fence_del_locked(struct fd_fence *f) { simple_mtx_assert_locked(&fence_lock); if (--f->refcnt) return; fd_pipe_del_locked(f->pipe); if (f->use_fence_fd && (f->fence_fd != -1)) close(f->fence_fd); free(f); } /** * Wait until corresponding submit is flushed to kernel */ void fd_fence_flush(struct fd_fence *f) { MESA_TRACE_FUNC(); /* * TODO we could simplify this to remove the flush_sync part of * fd_pipe_sp_flush() and just rely on the util_queue_fence_wait() */ fd_pipe_flush(f->pipe, f->ufence); util_queue_fence_wait(&f->ready); } int fd_fence_wait(struct fd_fence *f) { MESA_TRACE_FUNC(); return fd_pipe_wait(f->pipe, f); }